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Abstract. This note outlines some first steps in the classification of Fano
manifolds for which c21 − 2c2 is positive or nef.

1. Introduction

This note lists the few known examples of Fano manifolds X for which the second
graded piece of the Chern character is positive, ch2(TX) = (C2

1−2C2)(TX)/2. There
are also many non-examples. Presumably there are many more positive examples.
They do not seem easy to find.

Theorem 1.1. In the following cases X is Fano and ch2(TX) is ample, positive or
nef.

(1) For every projective and weighted projective space, ch2(TX) is ample.
(2) For a Grassmannian X = Grass(k, n) of k-dimensional subspaces of a fixed

n-dimensional space with 2k ≤ n, ch2(TX) is ample if k = 1, positive if
n = 2k or n = 2k + 1, and nef if n = 2k + 2.

(3) A complete intersection Y = D1 ∩ · · · ∩ Dr in X is Fano if (C1(TX) −
([D1] + · · · + [Dr]))|Y is ample. And ch2(TY ) is ample, resp. positive,
weakly positive, nef, if (ch2(TX)−1/2([D1]2 + · · ·+[Dr]))|Y is ample, resp.
positive, weakly positive, nef.

(4) In particular, for a complete intersection of type (d1, . . . , dr) in a n-dimensional
weighted projective space, ch2(TX) is ample, resp. nef, if d2

1+· · ·+d2
r < n+1,

resp. ≤ n+ 1.
(5) A product X × Y of Fano manifolds X and Y is Fano, and ch2(TX×Y ) is

nef if ch2(TX) and ch2(TY ) are nef.
(6) A projective bundle Y = P(E) over a Fano manifold X associated to an

extension E of OX by an invertible sheaf L, is Fano if c1(TX) − c1(L) is
ample. And ch2(TY ) is nef if ch2(TX) + C1(L)2/2 is nef.

(7) In particular, let (n, d, a) be integers such that d ≥ 1, n ≥ (d2 + d + 1)/2,
and n− d ≥ a ≥ d

√
max(0, d2 − n− 1)e. Let X be a degree d hypersurface

in Pn, and let E = (OPn(−a) ⊕ OPn)|X . Then Y = P(E) is Fano and
ch2(TY ) is nef.

Theorem 1.2. In the following cases ch2(TX) is not ample.

(1) For a Grassmannian Grass(k, n) with 2k ≤ n, ch2(TX) is not ample if
k > 1, and it is not nef if (n− 2)/2 > k > 1.

(2) For a product X × Y of positive-dimensional Fano manifolds, ch2(TX×Y )
is not weakly positive.
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(3) For a projective bundle Y = P(E) over a positive-dimensional Fano mani-
fold X, ch2(TY ) is not weakly positive. Moreover, if rk(E) > 2, then Y is
nef only if the restriction to every curve in X is semistable.

(4) For a blowing up Y of Pn in a nonempty, codimension 2 center, ch2(TY ) is
not nef.

Following are the definitions of nef, weakly positive, positive and ample for cycles
of codimension greater than one.

Notation 1.3. Let X be a projective variety over an algebraically closed field. For
every integer k ≥ 0, denote by Nk(X) the finitely-generated free Abelian group of
k-cycles modulo numerical equivalence, and denote by Nk(X) the kth graded piece
of the quotient algebra A∗(X)/Num∗(X), cf. [Ful84, Example 19.3.9]. For every
Z-module B, denote Nk(X)B := Nk(X)⊗B, resp. Nk(X)B := Nk(X)⊗B. Denote
by NEk(X) ⊂ Nk(X) the semigroup generated by nonzero, effective k-cycles. For
B a subring of R, denote by NEk(X)B the B>0-semigroup in Nk(X)B generated
by NEk(X).

Definition 1.4. A class in Nk(X)R is nef if it pairs nonnegatively with every
element in NEk(X). The corresponding cone is denote Nefk(X). A class is weakly
positive if it pairs positively with every element in NEk(X). The corresponding
cone is denoted WPosk(X). A class is positive if it is contained in the interior of
Nefk(X); the interior of Nefk(X) is denoted Posk(X). The ample cone is the R>0-
semigroup generated by the image of the cup-product map, (Pos1(X))k → Nk(X)R.
It is denoted Amplek(X), and its elements are ample classes.

Remark 1.5. There are obvious inclusions,

Amplek(X) ⊂ Posk(X) ⊂ WPosk(X) ⊂ Nefk(X).

For k = 1, Ample1(X) = Pos1(X) by definition. Moreover, by Kleiman’s crite-
rion, this is the R>0-semigroup generated by first Chern classes of ample invertible
sheaves. For k > 1, it can happen that Amplek(X) 6= Posk(X); for instance,
because (N1(X))⊗k → Nk(X) is not surjective. There are also examples where
Posk(X) 6= WPosk(X) and WPosk(X) 6= Nefk(X).

2. Projective spaces, Grassmannians, products and complete
intersections

2.1. Projective spaces. The simplest example is Pn for n ≥ 2. Denote by h ∈
N1(Pn) the first Chern class of OPn(1). Using the Euler sequence,

0 −−−−→ OPn −−−−→ OPn(1)⊕(n+1) −−−−→ TPn −−−−→ 0,

the Chern character of TPn is (n+ 1)eh − 1. In particular, chk(TX) = (n+ 1)hk/k!
for every k = 1, . . . , n. So chk(TX) is ample for k = 1, . . . , n.

Weighted projective spaces work the same way provided we consider the space
as a smooth Deligne-Mumford stack.

2.2. Grassmannians. Let X be the Grassmannian Grass(k, n) of k-dimensional
subspaces of a fixed n-dimensional space. Since Grass(k, n) ∼= Grass(n − k, n),
assume 2k ≤ n without loss of generality. Denote by O⊕n

X → S∨k the universal rank
k quotient. There is an analogue of the Euler sequence,

0 −−−−→ HomOX
(S∨k , S

∨
k ) −−−−→ (S∨k )⊕n −−−−→ TX −−−−→ 0.
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The Chern classes of S∨k are the Schubert classes,

Cm(S∨k ) = σ1m = σ1,...,1.

Therefore, by standard Chern class computations

ch(TX) = (n− k)k + nσ1 +
[
n+ 2− 2k

2
σ2 −

n− 2− 2k
2

σ1,1

]
.

In particular, if n > 2k+2, then ch2(TX) has negative intersection with the effective
Schubert cycle dual to σ1,1. If n = 2k + 2, ch2(TX) has intersection number 0.
If n = 2k or n = 2k + 1, ch2(TX) has positive intersection number with every
irreducible surface in X. But it is not a multiple of σ2

1 , thus it is not ample.

2.3. Products. For a product X × Y , there is an isomorphism

TX×Y
∼= pr∗XTX ⊕ pr∗Y TY .

Therefore there is an equation

ch(TX×Y ) = pr∗Xch(TX) + pr∗Y ch(TY ).

In particular C1(TX×Y ) = pr∗XC1(TX)+pr∗Y C1(TY ) is ample if C1(TX) and C1(TY )
are ample. Similarly, ch2(TX×Y ) is nef if ch2(TX) and ch2(TY ) are nef. However, for
every curve A ⊂ X and every curve B ⊂ Y , the intersection number of ch2(TX×Y )
with A×B is 0. Therefore ch2(TX×Y ) is not weakly positive.

2.4. Complete intersections. Let Y be a smooth complete intersection of divi-
sors D1, . . . , Dr in X. There is an exact sequence

0 −−−−→ TY −−−−→ TX |Y −−−−→ ⊕r
i=1OX(Di)|Y −−−−→ 0.

Therefore there is an equation

ch(TY ) =

[
ch(TX)−

r∑
i=1

e[Di]

]
|Y .

In other words, for every integer m,

chm(TY ) =

[
chm(TX)− 1

m!

r∑
i=1

[Di]m
]
|Y .

Therefore Y is Fano if (C1(TX) − ([D1] + · · · + [Dr]))|Y is ample. And ch2(TY ) is
ample, resp. positive, weakly positive, nef, if (ch2(TX)− 1/2([D1]2 + · · ·+ [Dr]))|Y
is ample, resp. positive, weakly positive, nef.

In particular, taking X to be an n-dimensional weighted projective spaces, and
taking [Di] = dih for each i = 1, . . . , r, the Chern character of TY is (n+1)eh−1−∑r

i=1 e
dih. Thus chk(TY ) = 1/k!(n+ 1− (dk

1 + · · ·+ dk
r ))hk for k = 1, . . . , n− r. In

particular, if d2
1 + · · ·+ dk

r < n+ 1, resp. ≤ n+ 1, then ch2(TY ) is ample, resp. nef.

3. Projective bundles

One way to produce new examples of Fano manifolds is to form the projective
bundle of a vector bundle of “low degree” over a given Fano manifold.

Lemma 3.1. Let E be a vector bundle on X of rank r. Denote by π : PE → X the
associated projective bundle. The graded pieces of the Chern character of TPE are,
c1(TPE) = rζ+π∗(c1(TX)+c1(E)) and ch2(TPE) = rζ2/2+π∗c1(E)ζ+π∗(ch2(TX)+
ch2(E)), where ζ equals c1(OPE(1)).
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Proof. There is an Euler sequence,

0 −−−−→ OPE −−−−→ π∗E ⊗OPE(1) −−−−→ TPE/X −−−−→ 0.

Therefore ch(TPE/X) = π∗ch(E)eζ − 1, i.e.,

(r + π∗c1(E) + π∗ch2(E) + . . . )(1 + ζ + ζ2/2 + . . . )− 1 =

[r − 1] + [rζ + π∗c1(E)] + [rζ2/2 + π∗c1(E)ζ + π∗ch2(E)] + . . .

Using the exact sequence,

0 −−−−→ TPE/X −−−−→ TPE −−−−→ π∗TX −−−−→ 0,

ch(TPE) equals ch(TPE/X)+π∗ch(TX). Thus ch1(TPE/X) = rζ+π∗(c1(TX)+c1(E))
and,

ch2(TPE) = rζ2/2 + π∗c1(E)ζ + π∗(ch2(TX) + ch2(E)).
�

Proposition 3.2. Let X be a smooth Fano manifold and let E be a vector bundle
on X of rank r. The projective bundle PE is Fano if and only if there exists ε > 0
such that for every irreducible curve B ⊂ X,

µ1
B(E|B)− µB(E|B) ≤ (1− ε)degB(−KX)/r,

where µB and µ1
B are the slopes from Definition 5.2, resp. Definition 5.3.

Proof. The invertible sheaf ω∨PE is π-relatively ample. By hypothesis, ω∨X is ample.
By Lemma 5.4, ω∨PE is ample iff there exists a real number ε > 0 such that

degB(g∗ω∨PE) ≥ εdegB(g∗π∗ω∨X),

for every finite morphism g : B → PE of a smooth, connected curve to X for which
π ◦ g is also finite. Using the universal property of PE, this holds iff for every finite
morphism f : B → X and every invertible quotient f∗E∨ → L∨,

degB(g∗ω∨PE) ≥ εdegB(g∗π∗ω∨X),

where g : B → PE is the associated morphism. By Lemma 3.1, degB(ω∨PE) equals
rc1(L∨) + c1(f∗E) + c1(f∗TX), i.e.,

r[c1(f∗TX)/r − (µB(L)− µB(f∗E))].

So, finally, ω∨PE is ample iff there exists ε > 0 such that for every finite morphism
f : B → X and every invertible quotient f∗E∨ � L∨,

µB(L)− µB(f∗E) ≤ (1− ε)degB(f∗c1(TX))/r.

Taking the supremum over covers of B and invertible quotients of the pullback of
E, this is,

µ1
B(f∗E)− µB(f∗E) ≤ (1− ε)degB(−f∗KX)/r.

Since every finite morphism f : B → X factors through its image, it suffices to
consider only irreducible curves B in X. �

For r = 2, there is a necessary and sufficient condition for ch2(TPE) to be nef.

Proposition 3.3. Let E be a vector bundle on X of rank 2. Denoting by π : PE →
X the projection, ch2(TPE) = π∗(ch2(TX) + 1/2(c21 − 4c2)(E)). Therefore ch2(TPE)
is nef iff ch2(TX) + 1/2(c21− 4c2)(E) is nef. If dim(X) > 0, ch2(TPE) is not weakly
positive.
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Proof. By Lemma 3.1, ch2(TPE) equals ζ2 + π∗c1(E)ζ + π∗(ch2(TX) + ch2(E)). By
definition of the Chern classes of E, ζ2 + π∗c1(E)ζ + π∗c2(E) equals 0. So the
class above is −π∗c2(E) + π∗(ch2(TX) + ch2(E)). Finally, ch2(E) − c2(E) equals
1/2(c21 − 2c2)(E)− c2(E) = 1/2(c21 − 4c2)(E). �

Applying Proposition 3.2 and Proposition 3.3 to the vector bundle E = L∨ ⊕ OX

gives Theorem 1.1(6).

Finally, for r > 2, there is a necessary condition for ch2(TPE) to be nef.

Proposition 3.4. Let E be a vector bundle of rank r > 2 on X. If ch2(TPE) is nef,
then the pullback of E to every smooth, projective, connected curve is semistable.
Also, ch2(TPE) is not weakly positive if dim(X) > 0 and if the pullback of E to
some curve is strictly semistable, e.g., if X contains a rational curve.

Proof. If the pullback of E to some smooth, projective, connected curve is not
semistable, then by Corollary 5.11, there exists a smooth, projective, connected
curve B, a morphism f : B → X, and a rank 2 locally free subsheaf F of f∗E such
that f∗E/F is locally free and µB(F ) > µB(E). There is an induced morphism
g : PF → PE such that π ◦ g = f ◦ π. By Lemma 3.1, g∗ch2(TPE) equals rξ2/2 +
π∗f∗c1(E)ξ + π∗f∗(ch2(TX) + ch2(E)), where ξ equals c1(OPF (1)). Since B is a
curve, f∗(ch2(TX) + ch2(E)) equals 0. Also, by definition of the Chern classes of
F , ξ2 + π∗c1(F )ξ = 0. Substituting in,

g∗ch2(TPE) = 1/2π∗(2c1(f∗E)− rc1(F ))ξ.

In particular, degPF (g∗ch2(TPE)) equals 1/2(2degB(c1(f∗E)) − rdegB(F )). This
equals r(µB(f∗E)−µB(F )), which is negative by construction. Therefore ch2(TPE)
is not nef. �

Remark 3.5. A vector bundle on a product of projective spaces whose restric-
tion to every curve is semistable is of the form L⊕r, where L is an invertible
sheaf, [OSS80, Thm. 3.2.1]. In this case, PE is also a product of projective spaces.

Corollary 3.6. Let X be a Fano manifold. For every vector bundle E on X of
rank r > 1, ch2(TPE) is not weakly positive.

4. Blowings up

Let X be a smooth, connected, projective variety, let i : Y ↪→ X be the closed
immersion of a smooth, connected subvariety of X of codimension c. Denote by
ν : X̃ → X the blowing up of X along Y . Denote by π : E → Y the exceptional
divisor. Denote by j : E → X̃ the obvious inclusion. Then E = PNY/X and
i∗O eX(E) is canonically isomorphic to OPN (−1).

Lemma 4.1. The graded pieces of the Chern character of X̃ are, c1(T eX) = ν∗c1(TX)−
(c− 1)[E] and ch2(T eX) = ν∗ch2(TX) + (c+ 1)[E]2/2− i∗π

∗c1(NY/X)

Proof. Using the short exact sequence,

0 −−−−→ ν∗ΩX −−−−→ Ω eX −−−−→ j∗Ωπ −−−−→ 0,

ch(Ω eX) equals ν∗ch(ΩX) + ch(j∗Ωπ). Grothendieck-Riemann-Roch for the mor-
phism j gives,

ch(Rj∗a) = j∗(ch(a))(1− e−[E])/[E].
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Using the Euler sequence for Ωπ,

0 −−−−→ Ωπ −−−−→ π∗N∨
Y/X ⊗OPN (−1) −−−−→ OE −−−−→ 0,

ch(Ωπ) equals π∗ch(N∨
Y/X)i∗(1 + e[E]) − 1. Putting the pieces together gives the

lemma. �

When is X̃ Fano? Denote by C1 the collection of finite morphisms g : B → X from
a smooth, connected curve to X whose image is not contained in Y . Denote by C2

the collection of finite morphisms g : B → Y from a smooth, connected curve to Y .
The following result is well-known.

Proposition 4.2. Let h be the first Chern class of an ample invertible sheaf on
X, e.g., h = c1(TX) if X is Fano. The blowing up X̃ is Fano iff there exists ε > 0
such that,

(i) for every g : B → X in C1,

degB(g−1Y ) ≤ 1
c− 1

(degB(g∗c1(TX))− εdegB(g∗h)),

and
(ii) for every g : B → Y in C2,

µ1
B(g∗NY/X) ≤ 1

c− 1
(degB(g∗c1(TX))− εdegB(g∗h)).

The proof is similar to the proof of Proposition 3.2. Using an analogue of Proposi-
tion 3.3, no blowing-up of Pn is a Fano manifold with ch2 nef.

5. Theorems about vector bundles on curves

There are two theorems in this section. The first theorem goes back to Shou-Wu
Zhang, though possibly it is older. A much more sophisticated arithmetic analogue
was also proved by Shou-Wu Zhang in [Zha95, Theorem 1.10]. The second theorem
in this section is a variation of the first theorem.

Definition 5.1. Let B be a smooth, projective curve. A cover of B is a finite,
flat morphism f : C → B of constant, positive degree. A vector bundle on B is a
locally free OB-module of constant rank.

Definition 5.2. Let B be a smooth, projective curve. For every non-zero vector
bundle E on B, the slope is,

µB(E) = deg(E)/rank(E) = χ(B,E)/rank(E)− χ(B,OB).

For every cover f : C → B and every non-zero vector bundle E on C, the B-slope
is,

µB(f,E) := deg(E)/(deg(f)rank(E)) = µB(f∗E)− µB(f∗OC).

When there is no chance of confusion, this is denoted simply µB(E).

For every cover g : C ′ → C, f ◦ g : C ′ → B is a cover and µB(f ◦ g, g∗E) equals
µB(f,E).

6



Definition 5.3. Let B be a smooth, projective curve and let E be a vector bundle
on B of rank r > 0. For every integer 1 ≤ k ≤ r, define µk

B(E) to be,

sup{−µB(f, F∨)|f : C → B a cover , f∗E∨ → F∨ a rank k quotient}

= sup{µB(f, F )|f : C → B a cover , F ⊂ f∗E a rank k
subbundle whose cokernel is locally free}.

Let f : X → Y be a morphism of projective varieties. Denote by C1 the collection of
all irreducible curves in X not contained in a fiber of f . Denote by C2 the collection
of finite morphisms g : C → X occurring as the normalization of an irreducible
curve in X not contained in a fiber of f . Finally, denote by C3 the collection of all
finite morphisms from smooth, connected curves to X whose image is not contained
in a fiber of f .

Lemma 5.4. Let f : X → Y be a morphism of projective varieties and let L be
an ample invertible OY -module. An f-ample invertible OX-module M is ample iff
there exists a real number ε > 0 such that for every morphism g : C → X in C1,
resp. C2, C3, degC(g∗M) ≥ εdegC(g∗f∗L).

Proof. Because M is f -ample and L is ample, there exists an integer n > 0 such
that M ⊗ f∗L⊗n is ample. By Kleiman’s criterion, M is ample iff there exists a
real number 0 < δ < 1 such that for every irreducible curve C in X,

degC(M) ≥ δdegC(M ⊗ f∗L⊗n).

Simplifying, this is equivalent to,

degC(M) ≥ nδ

1− δ
degC(f∗L).

As M is f -ample, this holds if C is contained in a fiber of f . So M is ample iff the
inequality holds for every curve in C1. Setting ε = nδ/(1− δ), δ = ε/(n+ ε), gives
the lemma.

Since C2 ⊂ C3, the condition for C3 implies the condition for C2. Since degrees on
a curve can be computed after pulling back to the normalization, the condition for
C2 implies the condition for C1. Finally, for every morphism g : C → X in C3, g(C)
is in C1. The inequality for g(C) implies the inequality for C. Thus the condition
for C1 implies the condition for C3. �

Lemma 5.5. Let B be a smooth, connected, projective curve. A nonzero vector
bundle E on B is ample iff there exists a positive real number δ such that for every
cover f : C → B and every invertible quotient f∗E → L, µB(L) ≥ δ. In other
words, E is ample iff µ1

B(L∨) < 0.

Proof. Denote by π : PE∨ → B the projective bundle associated to E∨, and de-
note by π∗E → OPE∨(1) the tautological invertible quotient. By definition, E is
ample iff OPE∨(1) is an ample invertible sheaf. Of course OPE∨(1) is π-relatively
ample. Let M be an invertible OB-module of degree 1. Then M is ample. By
Lemma 5.4, OPE∨(1) is ample iff there exists ε > 0 such that for every smooth,
connected curve C and every finite morphism g : C → PE∨ such that π ◦ g is finite,
degC(g∗OPE∨(1)) ≥ εdegC(g∗π∗M). Of course degC(g∗π∗M) = deg(π ◦ g). Using
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the universal property of PE∨, this holds iff for every cover f : C → B and every
invertible quotient f∗E → L,

degC(L) ≥ εdeg(f) ⇔ µB(L) ≥ ε.

�

Lemma 5.6. For every ample vector bundle E on B, there exists a cover f : C →
B, invertible OC-modules L1, . . . , Lr, and a morphism of OC-modules, φ : f∗E →
(L1 ⊕ · · · ⊕ Lr) such that,

(i) the support of coker(φ) is a finite set,
(ii) for every i = 1, . . . , r, the projection f∗E → ⊕j 6=iLj is surjective, and
(iii) for every i = 1, . . . , r, µB(Li) = degB(E).

Proof. Denote r = rank(E). The claim is that for every k = 1, . . . , r, there exists
a cover fk : Ck → B, invertible OCk

-modules Lk,1, . . . , Lk,k, and a morphism of
OCk

-modules, φk : f∗E → (Lk,1 ⊕ · · · ⊕ Lk,k) satisfying (ii) and (iii) above and
the following variant of (i): for k < r, φk is surjective and for k = r, the support
of coker(φk) is a finite set. The lemma is the case k = r. The claim is proved by
induction on k.

The base case is k = 1. Denote by π : PE∨ → B the projective bundle associated
to E∨, and denote by π∗E � OPE∨(1) the tautological invertible quotient. By
hypothesis, OPE∨(1) is ample. By Bertini’s theorem, for d1, . . . , dr−1 � 0, there
exist effective Cartier divisors D1, . . . , Dr−1 with Di ∈ |OPE∨(di)| such that the
intersection C1 = D1 ∩ · · · ∩Dr is a smooth, connected curve, cf. [Jou83]. Denote
by f1 : C1 → B the restriction of π. Denote by φ1 : f∗E → L1,1 the restriction
of π∗E → OPE∨(1). This satisfies (i) because π∗E → OPE∨(1) is surjective. It
satisfies (ii) trivially. Finally, deg(f) equals d1× · · ·× dr−1, and degC1

(L1,1) equals
d1×· · ·×dr−1×[c1(OPE∨(1))]r, i.e., d1×· · ·×dr−1×degB(E). Therefore µB(L1,1) =
degB(E), i.e., this satisfies (iii).

By way of induction, assume the result is known for k < r, and consider the case
k + 1. Since φk is surjective, there is an induced closed immersion P(Lk,1 ⊕ · · · ⊕
Lk,k)∨ ↪→ P(f∗kE)∨. The image is irreducible and has codimension r − k ≥ 1. For
every i = 1, . . . , k, the image of P(⊕j 6=iLk,j)∨ is irreducible and has codimension
r − k + 1 ≥ 2. Associated to the finite morphism fk, there is a finite morphism
P(f∗kE)∨ → PE∨. The pullback of an ample invertible sheaf by a finite morphism
is ample; hence OP(f∗k E)∨(1) is ample. By Bertini’s theorem, for d1, . . . , dr−1 � 0,
there exist effective Cartier divisors D1, . . . , Dr−1 with Di ∈ |OP(f∗k E)∨(di)| such
that the intersection Ck+1 = D1 ∩ · · · ∩Dr−1 is a smooth, connected curve, disjoint
from P(⊕j 6=iLj)∨ for every i = 1, . . . , k, and either disjoint from P(⊕iLi)∨ if k <
r − 1, or else intersecting P(⊕iLi)∨ in finitely many points if k = r − 1. Define
gk+1 : Ck+1 → Ck to be the restriction of the projection. Define fk+1 = fk ◦ gk+1,
define Lk+1,i = g∗k+1Lk,i for i = 1, . . . , k, and define Lk+1,k+1 to be the restriction
of OP(f∗k E)∨(1). Define φk+1 to be the obvious morphism.

The cokernel of φk+1 is supported on the intersection of Ck+1 with P(Lk,1 ⊕ · · · ⊕
Lk,k)∨. By construction, this is empty if k < r− 1, and is a a finite set if k = r− 1.
Thus φk+1 satisfies (i). By the induction hypothesis, f∗k+1E → (Lk+1,1 ⊕ · · · ⊕
Lk+1,k), which is the pullback under gk+1 of φk, is surjective. For i = 1, . . . , k, the
cokernel of f∗k+1E → ⊕j 6=iLk+1,j is supported on the intersection of Ck+1 with the
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image of P(⊕j 6=iLk,j)∨). By construction, this is empty, i.e., f∗k+1E → ⊕j 6=iLk+1,j

is surjective. Thus φk+1 satisfies (ii). Finally, φk+1 satisfies (iii) by the same
argument as in the base case. The claim is proved by induction on k. �

Theorem 5.7. For every non-zero vector bundle E on B, for every ε > 0, there
exists a cover f : C → B and a invertible quotient f∗E → L such that µB(L) <
µB(E) + ε. In other words, µ1

B(E∨) ≥ µB(E∨).

Proof. Denote r = rank(E). If r = 1, set f = IdB and L = E. Then L is an
invertible quotient of f∗E, and µB(L) equals µB(E) which is less than µB(E) + ε.
Therefore assume r > 1.

Certainly an effective version of the following argument can be given, but a simpler
argument is by contradiction.

Hypothesis 5.8. For every cover f : C → B and every invertible quotient f∗E →
L, µB(L) is ≥ µB(E) + ε, i.e., µ1

B(E∨) < µB(E∨)− ε.

By way of contradiction, assume Hypothesis 5.8. Let f : C → B be a connected,
smooth cover of degree d. For every a/d ∈ 1

dZ, there exists an invertible sheaf M
on C of degree a, and thus µB(M) = a/d. In particular, for d sufficiently large,
there exists an invertible quotient M such that 0 < µB(E) − µB(M) < ε/(r − 1).
Denote δ = µB(E)− µB(M). Denote F = f∗E ⊗M∨. Then µB(F ) equals δ, and
0 < δ < ε/(r − 1).

Let g : C ′ → C be any cover and let g∗F → N be any invertible quotient. Then
f ◦ g : C ′ → B is a cover and (f ◦ g)∗E = g∗F ⊗ g∗M → N ⊗ g∗M is an invertible
quotient. By Hypothesis 5.8,

µC(N) = deg(f)µB(N) = deg(f)(µB(N ⊗ g∗M)− µB(M))

≥ deg(f)((µB(E) + ε)− µB(M)) > deg(f)ε.

By Lemma 5.5, F is an ample vector bundle on C. By Lemma 5.6, there exists a
cover g : C ′ → C and an invertible quotient g∗F → P such that µB(P ) = rµB(F ) =
rδ. Therefore L := g∗M ⊗ P is an invertible quotient of g∗f∗E and,

µB(L) = µB(g∗M ⊗ P ) = µB(M) + rδ = µB(E) + (r − 1)δ.

By hypothesis, (r − 1)δ < ε. So µB(L) < µB(E) + ε, contradicting Hypothesis 5.8.
The proposition is proved by contradiction. �

Corollary 5.9. For every non-zero vector bundle E on B, for every ε > 0, there
exists a cover f : C → B and a sequence of vector bundle quotients,

f∗E = Er � Er−1 � · · · � E1,

such that each Ek is a vector bundle of rank k and µB(Ek) < µB(E) + ε.

Proof. The proof is by induction on the rank r of E. If rank(E) = 1, defining
f = IdB and E1 = E, the result follows. Thus, assume r > 1 and the result is
known for smaller values of r. By Theorem 5.7, there exists a cover g : B′ → B and
a rank 1 quotient g∗E → L such that µB(L) < µB(E) + ε. Denote by K the kernel
of g∗E → L. Then rank(K) = r − 1 and µB(K) = (rµB(E)− µB(L))/(r − 1). By
the induction hypothesis, there exists a cover h : C → B′ and a sequence of vector
bundle quotients,

h∗K = Kr−1 � · · · � K1,
9



such that each Kk is a vector bundle of rank k, and µB′(Kk) ≤ µB′(K) + deg(g)ε.
Of course µB(F ) = µB′(F )/deg(g) for every F . Thus µB(Kk) ≤ µB(K) + ε.

Define f = h ◦ g, define E1 = h∗L, and for every k = 2, . . . , r, define f∗E � Ek to
be the unique quotient whose kernel is contained in h∗K and such that h∗K → Ek

has image Kk−1. Then µB(E1) = µB(L) ≤ µB(E) + ε, and for k = 2, . . . , r,

µB(Ek) = 1/k(µB(L) + (k − 1)µB(Kk−1)) < 1/k(µB(L) + (k − 1)µB(K) + (k − 1)ε) =

r(k−1)
(r−1)kµB(E) + r−k

(r−1)kµB(L) + (r−1)(k−1)
(r−1)k ε < µB(E) + r−k

(r−1)k ε+ (r−1)(k−1)
(r−1)k ε < µB(E) + ε.

�

For semistable bundles in characteristic zero, there is a more precise result. An
arithmetic analogue is also proved by Zhang in [Zha95, Theorem 1.10].

Theorem 5.10 (Zhang). Let B be a smooth, projective curve over an algebraically
closed field of characteristic 0. Let E be a semistable vector bundle on B. Let ε be a
positive real number. There exists a cover f : C → B, invertible sheaves L1, . . . , Lr

on C, and a morphism of OC-modules, φ : f∗E → (L1 ⊕ · · · ⊕ Lr) such that,

(i) the support of coker(φ) is a finite set,
(ii) for every i = 1, . . . , r, the projection f∗E → ⊕j 6=iLj is surjective,
(iii) for every i = 1, . . . , r, µB(Li) ≤ µB(E) + ε.

Proof. Denote r = rank(E). If r equals 1, the theorem is trivial. Thus assume
r > 1. As in the proof of Theorem 5.7, there exists a cover g : C ′ → B and an
invertible sheaf M on C ′ such that 0 < µB(E) − µB(M) < ε/(r − 1). Denote
δ = µB(E) − µB(M) and denote F = g∗E ⊗ M∨. Then µB(F ) equals δ, and
0 < δ < ε/(r − 1).

Let h : C → C ′ be any cover and let h∗F → N be an invertible quotient. The
composition g ◦ h : C → B is a cover. By Kempf’s theorem, [Kem92], which
ultimately relies on the theorem that every stable vector bundle admits a Hermite-
Einstein metric, (g◦h)∗E is semistable. (Note, there are counterexamples in positive
characteristic.) Therefore h∗F is semistable. So µC(L) ≥ µC(h∗F ), i.e., µC′(L) ≥
µC′(F ) = δ. Thus by Lemma 5.5, F is an ample vector bundle on C ′. Thus by
Lemma 5.6, there exists a cover h : C → C ′, invertible OC-modules N1, . . . , Nr,
and a morphism of OC-modules ψ : h∗F → (N1 ⊕ · · · ⊕Nr) satisfying (i), (ii) and
(iii) of Lemma 5.6. Define f = g ◦ h, Li = Ni ⊗ h∗M and φ is the twist of ψ by
Idh∗M . Then φ satisfies (i) and (ii). And for every i = 1, . . . , r,

µB(Li) = µB(Ni) + µB(M) = µC′(Ni)/deg(g) + µB(E)− δ =

µB(E) + rδ/deg(g)− δ ≤ µB(E) + (r − 1)δ/deg(g) < µB(E) + ε.

�

Of course, µr
B(E) equals µB(E). The other values are more interesting.

Corollary 5.11. The slopes µk
B(E) satisfy µ1

B(E) ≥ µ2
B(E) ≥ · · · ≥ µr

B(E) =
µB(E). For each 1 ≤ k < r, µk

B(E) = µB(E) iff f∗E is semistable for every cover
f : C → B.
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Proof. By Corollary 5.9, for every ε > 0, there exists a cover f : C → B and a
rank k quotient f∗E → Ek such that µB(Ek) < µB(E)+ ε. Thus µk

B(E) ≥ µB(E).
Applying the same reasoning to rank k − 1 quotients of rank k quotients of f∗E,
µk−1

B (E) ≥ µk
B(E).

If f∗E is semistable for every cover f : C → B, then every vector bundle quotient of
f∗E has slope ≥ µC(f∗E), and thus has B-slope ≥ µB(f∗E). Therefore µk

B(E) ≤
µB(E), i.e., µk

B(E) = µB(E).

Conversely, suppose there is a cover f : C → B such that f∗E is not semistable.
Then there exists a vector bundle quotient f∗E � F such that µB(F ) < µB(E).
Denote the rank by l. Suppose first that l ≥ k, and define ε = deg(f)(µB(E) −
µB(F )). Then by Corollary 5.9, there exists a cover g : C ′ → C and a rank k
quotient g∗F � G such that µC(G) < µC(F ) + ε. Therefore g∗f∗E � g∗F � G
is a rank k quotient of g∗f∗E and µB(G) < µC(F ) + (µB(E) − µB(F )) = µB(E).
Therefore µk

B(E) > µB(E).

Next suppose that l < k. Denote by K the kernel of f∗E → F . Then rµB(E) =
lµB(F ) + (r − l)µB(K). Define,

ε =
(r − k)ldeg(f)(µB(E)− µB(F ))

(r − l)(k − l)
.

By Corollary 5.9, there exists a cover g : C ′ → C and a rank k−l quotient g∗K � G′

such that µC(G′) < µC(K) + ε. Therefore µB(G′) < µB(K) + ε/deg(f). Define
g∗f∗E → G to be the unique vector bundle whose kernel is contained in g∗K and
such that the image of g∗K → G equals G′. Then,

kµB(G) = lµB(F ) + (k − l)µB(G′) < lµB(F ) + (k − l)µB(K) + (k − l)ε/deg(f) =

lµB(F ) + k−l
r−l (rµB(E)− lµB(F )) + k−l

deg(f)ε =

kµB(E)− (r−k)l
r−l (µB(E)− µB(F )) + (r−k)l

r−l (µB(E)− µB(F )) = kµB(E).

Thus µB(G) < µB(E), and therefore µk
B(E) > µB(E). �
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