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Introduction

Let k be an algebraically closed field and let V be a normal proper variety over k. We say that V is
separably rationally connected if there exists a smooth rational curve C → V mapping to V which avoids
the singularities of V such that TV |C is ample on C. This definition differs from [8, IV Definition 3.2] in
Kollar’s book; it agrees with his definition if V has a resolution of singularities, see [8, IV Theorem 3.7].
Here is our main theorem; it is Conjecture IV 6.1.1 of [8] and it was proved by Graber, Harris and Starr in
the case that k has characteristic 0, see [5].

Theorem. Let X be an irreducible nonsingular projective curve. Suppose that f : P → X is a proper flat
morphism whose geometric generic fibre is a normal and separably rationally connected variety. Then f has
a section.

The proof of this theorem is at the end of the paper. We briefly indicate the layout of this paper, and the
main ideas.

Graber, Harris and Starr use a topological argument to specialize a family of ramified coverings Yt → X to
a map Y∞ → X so that Y∞ contains an irreducible component mapping isomorphically onto X . We replace
this by an elementary construction which produces, starting with Y → X , a family Yt → X specializing in
the desired manner so that Y0 is a nodal curve whose normalization is Y . This is done in Section 1.

We advise that the reader skip Section 2 on a first reading. Here we show that a proper flat family P → X
of varieties over X with reduced general fibre has a normalized pullback all of whose fibres are reduced. The
pullback morphism Y → X can be taken to be finite generically étale. This is used in Section 3 to show
that it suffices to produce a section of f after such a normalized base change. In Section 4 we produce the
section in this case; here the idea, if not the execution, is similar to that in [5].

Definitions 4.2.1 and 4.2.2 are taken from [5], and so are the main lines of proof, as is the conviction that
such a theorem can be proven (in characteristic p).

Acknowledgements. Part of this research was conducted by A.J. de Jong for the Clay Mathematics
Institute. A.J. de Jong was partially supported by an NSF grant.

1. Making families of curves

Let k be an algebraically closed field. Suppose we are given the following data:
1. A finite morphism π : Y → X of irreducible smooth projective curves over k. We assume that π is

generically étale. The degree of this morphism is denoted d.
2. A finite set of points S ⊂ X(k). We assume that S contains all branch points of the morphism π.

1.1. Proposition. Given data as above there exist a projective surface W and flat morphisms f : W → P
1,

g : W → X with the following properties:

(a) The fibre W0 = f−1(0) is a nodal curve, whose normalization is the curve Y ; the map Y →W0
g
−→ X is

equal to π. The image g(w) of any node w ∈ W0 is not in S. The surface W is nonsingular along W0.
(b) The general fibre Wt = f−1(t) is smooth, and the morphism πt : Wt → X induced by g has degree d.
(c) The formal local structure of the morphism πt : Wt → X in a neighbourhood of π−1

t (x) is isomorphic to
the formal local structure of the morphism π : Y → X in a neighbourhood of π−1(x) for all x ∈ S and all
t ∈ P

1(k), t 6=∞.
1
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(d) There is an irreducible component X ′ of W∞ = f−1(∞) which is mapped birationally to X under g. The
surface W is generically smooth along X ′ and X ′ has multiplicity 1 in W∞. (In other words f is generically
smooth along X ′.)

Proof. We choose an invertible OY -module L of sufficiently high degree. Choose a pair of sections s0, s1 of
L which generate L and let h be the morphism ϕ(s0,s1) : Y → P

1. Let Y ⊂ X × P
1 be the (reduced) image

closed subscheme.

1.2. Lemma. (a) If deg(L) > 2gY − 2 + 2d then for general choice of (s0, s1) the curve Y has at worst
ordinary double points, and Sing(Y ) ∩ S × P

1 = ∅.
(b) The divisor class of Y on X × P

1 is the divisor class of the invertible sheaf pr∗1(Nmπ(L))⊗ pr∗2(O(d)).

Proof. For a point x ∈ X(k) consider the closed subscheme Y2,x = π−1(Spec OX,x/m
2
x) of Y . The bound on

the degree implies that the map Γ(Y,L)→ Γ(Y2,x,L) is surjective. For x ∈ S we choose the pair (s0, s1) such
that the associated morphism Y2,x → P

1 is a closed immmersion. For x 6∈ S the differential dπ identifies the
tangent spaces Ty := Ty(Y2,x) = TyY with TxX (for all y ∈ Y2,x(k)). We choose the pair (s0, s1) such that
the morphism Y2,x → P

1 is either a closed immersion, or identifies at worst two points y, y′ of Y2,x but does
not induce the same map on the tangent spaces Ty = TxX = Ty′ . The reader checks that these conditions
define nonempty open sets Ux (in the space of all pairs), and that the complement of the open Ux for x 6∈ S
has codimension 2. Hence there is a pair satisfying all of these conditions. It is straightforward to check
that such a pair works in (a).

To verify (b) we have to compute Y ∩ {x} × P
1 as a divisor on P

1 and Y ∩X × {t} as a divisor on X . The
first divisor clearly has degree d as desired. The second is the image in X of a fibre of the map ϕ : Y → P

1.
The divisor class of the fibre is c1(L) and the divisor class of the image is c1(Nmπ(L)). �

Let D ⊂ X be the divisor D =
∑

x∈S x. Pick a large number N divisible by d and let L = OY (N
d π

−1(D)).

Then Nmπ(L) ∼= OX(ND). By the lemma we have following rational equivalence of divisors on X × P
1:

[Y ] ≡
d∑

j=1

[X × {σj}] +
∑

x∈S

N [{x} × P
1].

Here σ1, . . . , σd ∈ P
1(k) are pairwise distinct points chosen such that X × {σj} ∩ Sing(Y ) = ∅ for all

j = 1, . . . , d.

The above rational equivalence implies that there exists a pencil of curves Dt on X × P
1 with the following

properties: (i) D0 = Y has at worst nodes as singularities, (ii) D∞ =
∑
X×{σj}+

∑
x∈S N{x}×P

1 misses

the nodes of D0. Let W be the blow up of the surface X × P
1 in the zero dimensional closed subscheme

D0 ∩D∞. Then we obtain the right half of the following diagram (the left half will be explained below)

∐
x∈S Zx × P

1 −−−−→ W
f

−−−−→ P
1

π|Zx

y g

y

X −−−−→ X

such that Dt = f−1(t) (scheme theoretically) and such that g is the composition W → X × P
1 → X .

Properties (i), (ii) imply that the general fibre of f is smooth and that W is smooth along D0 = f−1(0) = Y .
Further, the morphism f is also smooth generically along the irreducible components X × {σj} of the fibre
D∞. Note that these components are mapped isomorphically to X under the morphism g. Thus (a), (b)
and (d) are satisfied; it remains to show (c).
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For x ∈ S we let Zx ⊂ Y be the scheme

Zx = π−1(Spec OX,x/m
N
x ) = Y ×X Spec (OX,x/m

N
x ).

The morphism (π × h) : Y → Y induces a closed immersion of Zx into Y . Our choice of D∞ =
∑
X ×

{σj}+
∑

x∈S N{x} × P
1 insures that (π × h)(Zx) ⊂ D∞ and hence we may think of Zx as a subscheme of

Dt for all t ∈ P
1(k). We conclude there exists a morphism Zx × P

1 →W which for every t ∈ P
1 induces the

closed immersion Zx → Dt we just described. It fits into the commutative diagram displayed above.

Note that for t 6=∞ the morphism πt = g|Dt
: Dt → X is finite. Upon comparing lengths we see that

Zx = π−1
t (Spec OX,x/m

N
x ).

In particular this implies that Dt is smooth along Zx (by looking at tangent spaces). Thus Lemma 1.4 (a)
below applies and we deduce that the formal local structure of the morphism πt : Dt → X in a neighbourhood
of π−1

t (x) is isomorphic to the formal local structure of the morphism Y → X in a neighbourhood of π−1(x)
for all x ∈ S and all t ∈ P

1(k), t 6=∞. �

1.3. Corollary. Suppose that π : Y → X is a finite generically étale morphism of projective nonsingular
curves over k and that S ⊂ X(k) is a finite set of points. There exists a projective surface W and morphisms
f : W → C, g : W → X such that the following conditions hold:
(a) f is semi-stable family of curves with smooth general fibre.
(b) There is a point 0 ∈ C(k) such that W0 = f−1(0) has the following description: W0 = Y ∪

⋃
Li, where

g|Y = π, g(Li) is a point of X not in S, Li
∼= P

1 and Y ∩ Li = {yi1, yi2} where (of course) π(yi1) = π(yi2)
in X.
(c) There is a point ∞ ∈ C(k) and an irreducible component X ′ of the fibre W∞ which is mapped isomor-
phically to X under g.

Proof. Enlarge S so that it contains the branch points of the morphism π and apply the proposition. Apply
base change by the map δ : P

1 → P
1, s 7→ t = s2/(s+ 1) and blow up the resulting ordinary double points

of W ×P1,δ P
1 above s = 0 to obtain the lines Li. Finally, apply the semi-stable reduction theorem to make

f semistable. Details left to the reader. �

We end this section by stating the lemma that was used above. The lemma is basically a restatement of
Krasner’s lemma, see [3, Section 3.4.2].

1.4. Lemma. (a) Let π : Y → X be a finite morphism of smooth curves and assume that π is generically
étale. Let x ∈ X. There exists an integer N0 such that for every N ≥ N0 we have the following: If Y ′ → X
is another finite morphism of smooth curves and if there exists an isomorphism

Y ×X Spec OX,x/m
N
x
∼= Y ′ ×X Spec OX,x/m

N
x

over OX,x then there exists an isomorphism

Y ×X Spec ÔX,x
∼= Y ′ ×X Spec ÔX,x

over OX,x.

(b) Let X be a smooth curve over k and let ÔX,x ⊂ R be a finite generically étale extension of complete
discrete valuation rings. There exists an integer N0 such that for every N ≥ N0 we have: If Y → X is a
finite morphism of smooth curves, and y ∈ Y (k) is over x such that

OY,y/m
N
x OY,y

∼= R/mN
x
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over OX,x then ÔY,y
∼= R over OX,x.

Proof. Part (a) follows from part (b) by writing Y ′ ×X Spec ÔX,x as a disjoint union of branches. Part

(b) follows from Krasner’s Lemma in the following way. We can write R = ÔX,x[T ]/(f(T )). For any pair

(y, Y ′) as in (b) we can choose an isomorphism ÔY ′,y = ÔX,x[T ′]/(f ′(T ′)) such that f ′(T )− f(T ) ∈ m
N
x . In

other words, the class of T ′ in ÔY ′,y is a solution of f(X) = 0 up to order N . Krasner’s Lemma says that,

provided N0 is large enough, this implies that there is a root of f(X) = 0 in ÔY ′,y. The corresponding map

of R to ÔY ′,y is the desired isomorphism. �

2. Obtaining reduced fibres after normalized base change

Suppose that f : P → X is a flat morphism of a normal variety P to an irreducible smooth projective curve
X over k. We will assume that the following equivalent conditions hold: (a) the geometric generic fibre is
reduced, (b) the general fibre is reduced, and (c) the smooth locus of the morphism f is dense in P .

We note that for x ∈ X(k) the fibre Px = f−1(x) is a scheme satisfying S1 (every local ring of dimension
≥ 1 had depth ≥ 1). Thus Px is reduced if and only if Px is generically reduced, i.e., all local rings of Px at
generic points are fields.

Let π : Y → X be a finite morphism of another irreducible smooth curve Y to X . Set

PY = (P ×X Y )normalized.

In this section we present a technical result that is similar to Lemma 2.3 in [7] and which follows in a
straightforward manner from the results in [4]. Namely we prove there is at least one finite generically étale
morphism Y → X such that PY → Y has reduced fibres, i.e., such that the smooth locus of PY → Y is
dense in every fibre.

2.1. Proposition. With the assumptions and notations as above. There exists a π : Y → X such that all
fibres of PY → Y are reduced and such that π is generically étale.

Proof. First we examine this question when X = Spec R is the spectrum of a complete discrete valuation ring
R with algebraically closed residue field k. Indeed, let P be an irreducible scheme, and let P → Spec R be
a flat morphism of finite type with geometrically reduced generic fibre. It follows by unwinding [4, Theorem
2.1’, page 368] that there exists a finite generically étale extension R ⊂ R′ and a commutative diagram

P ′ −−−−→ P ⊗R R
′ −−−−→ P

y
y

y

Spec R′ −−−−→ Spec R′ −−−−→ Spec R.

where P ′ → P ⊗RR
′ is finite and an isomorphism over the generic point of Spec R′, and where the morphism

P ′ → Spec R′ is flat with reduced geometric fibres. This implies that the normalization (P⊗RR
′)normalized of

P⊗RR
′ dominates P ′. Since the special fibre of P ′ → Spec R′ is reduced we see that (P⊗RR

′)normalized → P ′

is an isomorphism above the generic points of the special fibre of P ′ and hence we see that (P⊗RR
′)normalized

has reduced special fibre by the discussion before the proposition as desired. We note that any further
extension R ⊂ R′ ⊂ R′′ (assumed generically étale) will do the job as well.

Let x1, . . . , xr ∈ X(k) be the points of X such that Pxi
= f−1(xi) is not reduced. Let Ri be the complete

local ring of xi on X . Choose Ri ⊂ R′
i as above. By the remark at the end of the last paragraph we way

choose the extensions Ri ⊂ R′
i such that the field extensions Ki = f.f.(Ri) ⊂ f.f.(R′

i) = Li have a degree d
independent of i.
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Let K = k(X). We claim that there exists a separable field extension K ⊂ L of degree d such that
L ⊗K Ki is isomorphic to Li. To see this we write Li = Ki(αi) and we let fi ∈ Ki[X ] be the minimal
polynomial of αi over Ki. We choose a polynomial f(X) ∈ K[X ] which approximates fi simultaneously for
all i and we set L = K[X ]/(f). By Krasner’s lemma we’ll have L⊗K Ki

∼= Li if the approximation is good
enough, see our Lemma 1.4 (b). �

2.2. Remark. In the preprint version of this paper an alternative proof of this result was given using Lemma
2.3 in [7], avoiding the reference [4]. The strategy there was to show that the result with π possibly inseparable
actually implies the a priori stronger result with π generically separable. We refer the interested reader to
the web page of the first author for a web-based version of this argument.

3. The reduction to the case of reduced fibres

Suppose that f : P → X is a proper flat morphism of a normal scheme P to an irreducible smooth projective
curve X over k. We will assume that the following equivalent conditions hold: (a) the geometric generic
fibre is reduced, (b) the general fibre is reduced, and (c) the smooth locus of the morphism f is dense in P .
Consider the question: Does f have a section? In this section we will show that the answer is affirmative
if and only if f has a section after normalized base change PY to those Y → X such that PY has reduced
fibres over Y .

3.1. Theorem. Assumptions and notations as above.
(i) In case k uncountable. Assume that PY → Y has a section whenever π : Y → X has the following two
properties: (a) π is generically étale, and (b) PY → Y has reduced fibres. Then P → X has a section.
(ii) In case k countable. Suppose that for some uncountable algebraically closed extension K of k the as-
sumptions of (i) hold for PK → XK over K. Then P → X has a section.

Proof. Case (ii) can be deduced from (i) by a specialization argument. Namely, by (i) we obtain a section
σK : XK → PK over some (uncountable) extension k ⊂ K. Clearly σK can be defined over a finitely
generated extension of k, i.e., over the function field of some variety T over k. By shrinking T we may
assume we have a section of P × T → X × T and by choosing a k-rational point in T we obtain our section
of P → X .

Next we prove (i). By Proposition 2.1 there is at least one π : Y → X generically étale such that PY → Y
has reduced fibres. Let πt : Wt → X be the family of morphisms of curves constructed in Proposition 1.1
using as S = {x1, . . . , xr} the set of branch points of the morphism Y → X . By construction, for t 6= ∞
the formal local structure of the morphism πt : Wt → X in a neighbourhood of π−1

t (xi) is isomorphic to the
formal local structure of the morphism π : Y → X in a neighbourhood of π−1(xi). This clearly implies that
the normalization Pt of P ×X Wt has reduced fibres.

By assumption each of the morphisms Pt → Wt has a section σt, and so P ×X Wt → Wt has a section σt.
The relative Hilbert scheme Hilb of P ×X W over P

1 is locally of finite type over k and has a countable
number of irreducible components. Since k is uncountable, we see that infinitely many of the points σt(Wt)
of Hilb will be in the same irreducible component Z ⊂ Hilb which dominates P

1. We deduce that there is a
section σ of P ×X WL →WL where k(t) ⊂ L is a finite extension (by taking an L-valued point of Z). Let C
be the smooth projective curve over k whose function field is L and let c ∈ C(k) be a point which lies over
t =∞ (under the map C → P

1 coming from k(t) ⊂ L). Note that there is a component X ′ of the fibre of

W ×f,P1 C −→ C

over c which is mapped birationally to X under the composite W ×P1 C → W → X , and along which
W ×P1 C is generically smooth (this corresponds to the component X ′ of Proposition 1.1 (d)). Think of σ
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as a rational map fitting into the following commutative diagram:

C ←−−−− W ×P1 C
σ

−−−−→ P
y

y
y

P
1 f
←−−−− W

g
−−−−→ X

By construction σ extends to a neighbourhood of the generic point ofX ′ and this gives a k(X ′) = k(X)-valued
point of P over X as desired. �

4. The case of reduced fibres

Let X be an irreducible nonsingular projective curve over k, and let P → X be a flat morphism. We will
assume the following assumptions hold:

4.0.1. P is a normal projective variety.

4.0.2. All fibres of f are reduced and connected.

4.0.3. The following equivalent conditions hold: (a) the geometric generic fibre of f is normal, (b) there is
a nonempty Zariski open set U ⊂ X such that for each x ∈ U(k) the fibre Px = f−1(x) is normal, and (c)
there is a nonempty Zariski open set U ⊂ X such that the nonsmooth locus of PU → U has codimension
≥ 2 in the fibres.

4.0.4. There exists a nonempty Zariski dense open set V ⊂ P contained in the smooth locus of f with the
following property: for every point x ∈ X(k) and every finite set of closed points p1, . . . , pn ∈ V ∩ f−1(x),
there exists a smooth rational curve P

1 ∼= C → V ∩ f−1(x) = Vx mapping to Vx containing each pi and such
that TP/X |C is an ample vector bundle.

This last condition means that the general fibre Px of f is rationally connected. The version of this we give
above is equivalent to the following apparently weaker condition:

4.0.4’. There exists a closed point x ∈ X and a smooth rational curve P
1 → Px mapping into the smooth

locus of Px = f−1(x) such that TP/X |C is an ample vector bundle.

It follows from the proof of [8, Theorem IV.3.9.4] that, under the hypothesis 4.0.4’, a Zariski dense open
subset V ⊂ P as in 4.0.4 exists. Thus 4.0.4 and 4.0.4’ are equivalent conditions, but 4.0.4 is the form which
is more useful to us. Namely, it will be used in the proof of the following theorem.

4.1. Theorem. In the situation above f has a section.

We do not immediately start the proof of the theorem. Instead we first give a definition. Note that the open
subset V ⊂ P of condition 4 will be fixed throughout the discussion.

4.2. Definition. Let Y be an irreducible nonsingular projective curve over k.

4.2.1. A morphism Φ : Y → P is pre-flexible (relative to f) if Φ(Y ) is contained in the smooth locus of f ,
Φ(Y ) ∩ V 6= ∅, and f ◦ Φ : Y → X is generically étale.

4.2.2. A pre-flexible curve Φ : Y → P is flexible if H1(Y,Φ∗TP/X ) = 0.

4.2.3. A flexible curve with links is a morphism Φ : Y → P from a connected, projective, nodal curve
Y = Y0 ∪L1 ∪ . . .∪Lr such that Φ|Y0

is flexible, such that each link Li is a smooth rational curve, the links
Li are pairwise disjoint, and each Li intersects Y0 in two distinct smooth points pi, qi ∈ Y0, and such that
Φ|Li

is a closed immersion of Li as a rational curve in a fibre of P → X such that TP/X |Li
is ample.
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4.3. Lemma. There exists a pre-flexible curve Φ : Y → P .

Proof. Conditions 2 and 3 imply that the complement of the smooth locus of f has codimension ≥ 2 in P .
Let p ∈ V be a point. Let Y be a connected component of the intersection of dimP − 1 general hyperplanes
in P which pass through p. By Bertini’s theorem and the codimension estimate Y is a smooth projective
curve contained in the smooth locus of f . It clearly meets V and the generic étaleness follows by choosing
the hyperplanes suitably. �

4.4. Lemma. There exists a flexible curve Φ : Y → P .

Proof. By the lemma above we know there exists a pre-flexible curve Φ0 : Y0 → P . Let n1 ≥ 0 be an
integer such that for every invertible sheaf L on Y0 with deg(L) ≥ n1, we have H1(Y,Φ∗

0TP/X ⊗L) = 0. Let

n2 = h1(Y,Φ∗
0TP/X). Choose an integer n ≥ n1 + n2 and choose distinct points p1, . . . , pn ∈ Φ−1

0 (V ). Let
C1, . . . , Cn ⊂ V be curves as in condition (4) which contain p1, . . . , pn. Form the comb Y0 ∪ C1 ∪ . . . ∪ Cn

where each tooth Ci is connected to the handle Y0 at the point pi, see [8, II Definition 7.7] for the definition
of the concept “comb”. Define Ψ : (Y0 ∪ C1 ∪ . . . ∪ Cn) → P by Ψ|Y0

= Φ0 and Ψ|Ci
is the inclusion map.

By [8, III Theorem 7.9], there exists a subcomb, say Y0 ∪ C1 ∪ . . . Cm and a smoothing of the restriction
of Ψ such that m ≥ n − n2 ≥ n1. The condition that a curve be contained in the nonsingular locus of f
and intersect V is open in the parameter space, so for a general member Φ : Y → P of the 1-parameter
smoothing of Ψ : Y0 ∪ C1 ∪ . . . ∪ Cm → P , Φ is pre-flexible. By [8, III Lemma 7.16.1], if Φ is a general
deformation, then H1(Y,Φ∗TP/X) = 0. Thus Φ : Y → P is a flexible curve. �

4.5. Definition. Suppose that π : Y → X is a morphism from a connected, projective, nodal curve to X .
A W-diagram is a diagram:

X∞, Y −−−−→ W
g

−−−−→ X
y h

y

b∞, b −−−−→ B

where B is a smooth curve, h is a proper, flat family of nodal curves with smooth general fibre such that
h−1(b) ∼= Y for some b ∈ B(k), g|Y = π, and there is a point b∞ ∈ B(k) and an irreducible component
X∞ ⊂ h−1(b∞) with g|X∞

: X∞ → X an isomorphism.

4.6. Lemma. There exists a morphism Φ : Y → P which is a flexible curve with links and such that there
exists a W-diagram for π = f ◦ Φ.

Proof. By Lemma 4.4, we know that there exists a flexible curve Φ0 : Y0 → P . By Proposition 1.1, we know
that there exists a curve with links Y = Y0 ∪L1 ∪ . . .∪Lr such that there exists a W-diagram for π : Y → X
where π|Y0

= f ◦ Φ0 and where each π|Li
is a constant morphism. Moreover, we can choose Y so that the

sets Li ∩ Y0 all miss the finitely many points of Y0 − Φ−1
0 (V ). By condition (4), we can find embeddings

Φi : Li → P as in condition (4) passing through Φ0(pi) and Φ0(qi). Define Φ : Y → P by Φ|Y0
= Φ0 and

each Φ|Li
= Φi. �

4.7. Lemma. Suppose C is a smooth curve, α : A → C, β : B → C are projective, flat morphisms and
γ : A→ B is a morphism of C-schemes which is an isomorphism over some point c ∈ C. Then there exists
a Zariski open set c ∈ U ⊂ C such that γ : α−1(U)→ β−1(U) is an isomorphism.

Proof. Even though this result is well-known, we could not find a reference. Therefore we will include a
proof. Without loss of generality we may assume that C is affine. Choose an ample invertible sheaf L on B.
The pullback γ∗L is ample on β−1(c). By [EGA, III, part 1, Theorem 4.7.1], γ∗L is ample when we shrink
C. There exists an integer N such that for n ≥ N , we have that both Ln and γ∗Ln are very ample and have
no higher cohomologies. By cohomology and basechange, the graded algebras S(A,Ln) and S(B, γ∗Ln) are
flat OB-algebras. Moreover the pullback map γ∗ : S(B,L)→ S(A, γ∗Ln) is an isomorphism when we tensor
with OC/mcOC . Thus by Nakayama’s lemma applied to the finitely-generated graded pieces (and using the
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fact that both algebras are generated and presented in finite degrees), we can find an open subset U ⊂ C
such that γ∗ is an isomorphism over U . So γ is an isomorphism over U . �

Proof of Theorem 4.1. By Lemma 4.6, we know there exists a Φ : Y → P which is a flexible curve with
links such that there is a W-diagram for π : Y → X . We use the notation of Lemma 4.6 for Y and the
notation of Definition 4.5 for the W-diagram. Let Z ⊂W ×P be the scheme theoretic preimage of the graph
Γg ⊂ W ×X under (1, f) : W × P → W ×X . We think of Z as a B-scheme using h ◦ pr1 : Z → B. Then
the graph ΓΦ ⊂ Zb can be considered as a point in the relative Hilbert scheme [ΓΦ] ∈ Hilb(Z/B)(k) over the
point b ∈ B(k). Since f : P → X is smooth along Φ(Y ), we see that (1, f) : W × P → W × X is smooth
along ΓΦ, and that Zb → (Γg)b = Γπ is smooth along ΓΦ. Since ΓΦ is a section of the last mentionned
morphism, it is a locally complete intersection. By [8, I Lemma 2.12.1], ΓΦ ⊂ Zb is locally unobstructed.
Here is a diagram to illustrate the above; all squares but the right one are cartesian.

ΓΦ −−−−→ Zb −−−−→ Z −−−−→ W × P −−−−→ P

∼=

y
y

y
y f

y

Γπ

∼=
−−−−→ (Γg)b −−−−→ Γg −−−−→ W ×X −−−−→ X

By [8, I Proposition 2.14.2], the obstruction group of ΓΦ ⊂ Zb is H1(Y,HomY (I/I2,OY )) where we iden-
tify ΓΦ with Y and where I/I2 is the conormal bundle of ΓΦ ⊂ Zb. From the diagram we infer that
HomY (I/I2, OY ) is isomorphic to Φ∗TP/X . Consider the short exact sequence

0 −−−−→ ⊕r
i=1Φ

∗TP/X |Li
(−pi − qi) −−−−→ Φ∗TP/X −−−−→ Φ∗

0(TP/X ) −−−−→ 0.

Because Φ0 : Y0 → P is flexible, H1(Y0,Φ
∗
0TP/X) = 0. Because each Φ∗TP/X is ample on Li, every line

bundle summand has degree ≥ 1, so that every line bundle summand of Φ∗TP/X(−pi − qi) has degree ≥ −1

and H1(Li,Φ
∗
i TP/X(−pi − qi)) = 0. Thus by the long exact sequence in cohomology associated to the short

exact sequence above, we conclude that the obstruction space of ΓΦ ⊂ Zb is zero. Therefore the morphism
Hilb(Z/B) → B is smooth at [ΓΦ], see [8, I Theorem 2.10]. Therefore we can find a map D → Hilb(Z/B)
of a smooth, connected curve D into the Hilbert scheme and a point d ∈ D mapping to [ΓΦ] such that the
composite map D → B is étale at d. Since the Hilbert scheme satisfies the valuative criterion of properness
over B we may also assume that D → B is finite, hence there is a point d∞ ∈ D(k) which maps to b∞ in B.
The base change by (D, d, d∞) → (B, b, b∞) of the W-diagram of π : Y → X leads to a W-diagram. Thus,
by replacing the W-diagram of π : Y → X by the base-change, we may assume that Hilb(Z/B) → B has a
section passing through [ΓΦ], i.e., there is a closed subscheme Γ ⊂ Z flat over B with Γb = ΓΦ. By Lemma
4.6, the composition Γ ↪→ Z → W is an isomorphism over an open subset U , b ∈ U ⊂ B, i.e. Γ → W is
birational. Let Γ′ → Γ be the normalization, so Γ′ → W is still birational. And the indeterminacy locus
of a birational morphism of normal varieties has codimension ≥ 2. Therefore, X∞ is not contained in the
indeterminacy locus, i.e. there exists a curve X ′ ⊂ Γ′ which maps isomorphically to X∞. By construction,
the composite map Γ′ → Z → P → X equals the composite map Γ′ →W → X . Thus the image of X ′ in P
is a curve which maps isomorphically to X , i.e. f : P → X has a section. This ends the proof of Theorem
4.1. �

Proof of the main Theorem. Assumption and notations as in the theorem. First we normalize P to get a
normal variety. So Theorem 3.1 applies. Hence it suffices to prove the theorem in those case where all fibres
of P → X are reduced. (This reduction changes the field of definition, but no matter.) If the original P
was projective then conditions 4.0.1, 4.0.2 and 4.0.3 above are satisfied. Condition 4.0.4’ follows from the
existence of the rational curve in the geometric generic fibre. Hence Theorem 4.1 applies and we’re done.

The nonprojective case. The main theorem claims the same result for any proper P → X and the argument
above only works if P is projective. Why do we not apply Chow’s lemma and reduce to the projective case?
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Here is one reason: Suppose that P ′ → P is a projective birational morphism such that P ′ is projective and
normal. To apply the previous argument we need the geometric generic fibre P ′

η̄ of P ′ → X to be normal.
Unfortunately we do not know how to produce P ′ → P with this property.

Finally, here is our proof in the general proper case circumventing this difficulty. As before we first normalize
P to get a normal variety. So Theorem 3.1 applies. Hence we may assume all fibres of P → X are reduced.
Note that 4.0.1, 4.0.2, 4.0.3 and 4.0.4 hold except for the projectivity in 4.0.1. The only place this was
used in the proof of Theorem 4.1 is in the proof of Lemma 4.3. Thus we give an additional argument to
prove the existence of a pre-flexible curve in the proper nonprojective case. The idea is to use 4.0.4 to
construct a surface Σ→ X with rational fibres, a morphism Σ→ P over X , and to construct the pre-flexible
curve as a divisor on Σ. We will use the following notations: V ⊂ P denotes the open mentioned in 4.0.4,
Sm(P/X) ⊂ P denotes the open subset of points of P where the morphism f : P → X is smooth. Note that
Sm(P/X) is dense in every fibre of f .

We claim that there exists a 1-dimensional closed subscheme T ⊂ P with the following properties: (a)
T is the scheme theoretic union of irreducible reduced curves flat and generically étale over X (in other
words, T → X is finite, flat and generically étale), (b) each irreducible component of T meets V , and (c)
for every x ∈ X(k), the intersection Tx ∩ Sm(P/X) is not empty. We leave it to the reader to construct T .
(Hints: Start with some irreducible curve meeting V , generically étale over X , and not contained in a fibre
of P → X . Then (a) and (b) hold and (c) holds except for a finite number of points xi ∈ X(k). For each i
add an irreducible component Ti passing through a nonsingular point of the fibre Pxi

, generically étale over
X with Ti ∩ V 6= ∅.)

Pick a point x ∈ X(k) such that Tx ⊂ V , and such that Tx is a reduced set of points (i.e., such that T → X
is étale at all points of Tx). Pick a smooth rational curve C ⊂ Vx such that Tx ⊂ C and such that TP/X |C
is ample. Think of Tx as a divisor on C. We claim we may assume that TP/X |C ⊗OC(−Tx) is ample. The
proof of [8, IV Theorem 3.9.4] shows that TP/X |C ⊗ OC(−N) can be made ample for any N . (Note that

the open V corresponds to the open X0 in the statement of [8, IV 3.9.4].) Here is a direct argument. Pick
general points ci, i = 1, . . . ,m, m >> 0 on C, and pick a rational curve Ci → Px passing through ci such
that TP/X |Ci

is ample. The union C ∪
⋃
Ci is a comb. The results of [8, Section II 7] say that a subcomb

can be smoothed fixing Tx and free over Tx union two auxiliary points. This freeness implies the claim (see
[8, II 3.1]).

Let HilbP/X be the relative Hilbert scheme of P over X . This is in general just an algebraic space and not
a scheme, see [2]. For a scheme Y over X a Y -valued point of HilbP/X corresponds to a closed subscheme
Z ⊂ P ×X Y flat and of finite presentation over Y . There is a closed algebraic subspace HilbT⊂P/X which
parametrizes only those closed subschemes Z ⊂ P ×X Y which contain the closed subscheme T ×X Y . The
curve C we constructed above defines a point [C] ∈ HilbT⊂P/X (k) lying over x ∈ X(k).

The ampleness above means that the morphism HilbT⊂P/X → X is smooth at the point [C]. Namely, the

obstruction space for the corresponding deformation problem is equal to H1(C,NCPx ⊗OC(−Tx)). This is
a quotient of the cohomology group H1(C, TP/X |C ⊗O(−Tx)) which is zero.

Thus we can find an (irreducible) étale neighbourhood (Y, y) of (X, x) and a map ψ : Y → HilbT⊂P/X such
that ψ(y) = [C]. However, since the Hilbert scheme satisfies the valuative criterion of properness, we can
extend ψ to a morphism ψ̄ : Y → HilbT⊂P/X on a nonsingular projective completion Y of Y . This means

we have a closed subscheme Z ⊂ P ×X Y fitting into a commutative diagram:

T ×X Y −−−−→ Z −−−−→ P ×X Y −−−−→ P
y

y
y

y

Y −−−−→ Y −−−−→ Y
π

−−−−→ X
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The morphism π is finite and generically étale. The morphism Z → Y is flat and proper and the fibre of
Z → Y over y is C.

We choose a resolution of singularities Σ → Z; then Σ is a proper smooth surface over k hence projective
(see [6, II 4.2]). Clearly, Σ → Y is a ruled surface; its fibre over the point y is the curve C. Let U ⊂ Σ be
the inverse image of Sm(P/X). By our choice of C we have: (a) the general fibre of Σ→ Y is contained in
U . Namely, the fibre Σy = C is contained in U . By our choice of T we have: (b) all fibres of U → Y are

nonempty. Namely, for each y ∈ Y (k) there is some t ∈ T (k) over π(y) which is in Sm(P/X).

We claim that there exists a finite generically étale morphism of irreducible nonsingular projective curves

Ỹ → Y and an Y -morphism Ỹ → U ⊂ Σ. This is a generality on ruled surfaces and open subsets satisfying
(a), (b) which follows easily from the lemma below. Granted this generality, we see that the composition

Ỹ → Σ→ P is the pre-flexible curve as desired. �

4.8. Lemma. Let Σ → X be a nonsingular ruled surface over an irreducible nonsingular projective curve.
Assume given irreducible components Ci, i = 1, . . . , r of the singular fibres such that no fibre is covered
completely by the Ci. Then there exists a projective surface Σ′ over X and a birational morphism Σ→ Σ′

over X which contracts all the curves Ci.

Proof. We leave it to the reader that condition (b) of [1, Theorem 2.3] holds, and then [1, Theorem 2.3]
implies the lemma. If the characteristic of k is p > 0 (which is the case of interest here) then one can also
apply [1, Theorem 2.9] directly. �
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