THE MAXIMAL FREE RATIONAL QUOTIENT

JASON MICHAEL STARR

Abstract

This short, expository note proves existence of the maximal quotient of a variety by free rational curves.

1. DEFINITION OF A MAXIMAL FREE RATIONAL QUOTIENT

Definition 1.1. Let V be a Deligne-Mumford stack over a field k, and denote the smooth locus by $V^{\mathrm{sm}} \subset V$. A 1-morphism $f: \mathbb{P}_{k}^{1} \rightarrow V^{\mathrm{sm}}$ is a free rational curve to V if $f^{*} T_{V}$ is generated by global sections and has positive degree.

Let S be an irreducible algebraic space, let $\pi_{\bar{X}}: \bar{X} \rightarrow S$ be a proper, locally finitely presented 1-morphism of Deligne-Mumford stacks with integral geometric generic fiber, and let $X \subset \bar{X}$ be a normal dense open substack. Denote by $\pi_{X}: X \rightarrow S$ the restriction of $\pi_{\bar{X}}$.

Definition 1.2. A free rational quotient of π_{X} is a triple $\left(X^{*}, Q^{*}, \phi\right)$ where $X^{*} \subset X$ is a dense open substack, where Q^{*} is a normal algebraic space, finitely presented over S with integral geometric generic fiber, and where $\phi: X^{*} \rightarrow Q^{*}$ is a dominant 1 -morphism of S-stacks satisfying,
(i) the geometric generic fiber F of ϕ is integral, and
(ii) a general pair of distinct points of F is contained in the image of a free rational curve.
A free rational quotient is trivial if $\phi: X^{*} \rightarrow Q^{*}$ is birational, and nontrivial otherwise.
A free rational quotient $\left(X^{*}, Q^{*}, \phi: X^{*} \rightarrow Q^{*}\right)$ is maximal if for every free rational quotient $\left(X_{1}^{*}, Q_{1}^{*}, \phi_{1}: X_{1}^{*} \rightarrow Q_{1}^{*}\right)$ there exists a dense open subset $U \subset Q_{1}^{*}$ and a smooth morphism $\psi: U \rightarrow Q^{*}$ such that $\left.\phi\right|_{\phi_{1}^{-1}(U)}=\psi \circ \phi_{1}$.

Theorem 1.3. There exists a maximal free rational quotient.
It is not true that a maximal free rational quotient is unique, but it is unique up to unique birational equivalence of Q^{*}.

2. Proof of Theorem 1.3

The proof is very similar to the proofs of existence of the rational quotient in [1] and [2]. Existence of the maximal free rational quotient can be deduced from theorems there. However there are 2 special features of this case: The relation of containment in a free rational curve is already a rational equivalence relation, so existence of the quotient is less technical than the general case. Also, unlike the

[^0]general case, there is no need to perform a purely inseparable base-change of S to define the quotient. Of course if \mathcal{O}_{S} contains \mathbb{Q} and if π is smooth and proper, [3, 1.1] implies the free rational quotient is the rational quotient.

If there is no free rational curve in the geometric generic fiber of π_{X}, then the trivial rational quotient $\left(X, X, \operatorname{Id}_{X}: X \rightarrow X\right)$ is a maximal free rational quotient. Therefore assume there is a free rational curve to X whose image is contained in the smooth locus of π_{X} (equivalently, there is a free rational curve in the geometric generic fiber of π_{X}). Use will be made of the flat, proper morphism $C \rightarrow S$ obtained from 2 copies of \mathbb{P}_{S}^{1} by identifying the 0 section in the first copy to the 0 section in the second copy.
Denote by $\operatorname{Hom}_{S}\left(\mathbb{P}_{S}^{1}, X\right)$ the Deligne-Mumford stack constructed in 4]. Define $H \subset \operatorname{Hom}_{S}\left(\mathbb{P}_{S}^{1}, X\right)$ to be the open substack parametrizing free rational curves in fibers of the smooth locus of π_{X}. By hypothesis, H is nonempty.

Let $H_{i} \subset H$ be a connected component. Denote by,

$$
u_{i}: H_{i} \times_{S} \mathbb{P}_{S}^{1} \rightarrow \bar{X}
$$

and by,

$$
u_{i}^{(2)}: H_{i} \times_{S} \mathbb{P}_{S}^{1} \times_{S} \mathbb{P}_{S}^{1} \rightarrow \bar{X} \times_{S} \bar{X},
$$

the obvious 1-morphisms.
Lemma 2.1. The 1-morphism u_{i} is smooth.
Proof. The proof is the same as in the case that π_{X} is a projective morphism, [2, Cor. II.3.5.4].

Denote by $W_{i} \subset \bar{X} \times_{S} \bar{X}$ the closed image of $u_{i}^{(2)}$, i.e., W_{i} is the minimal closed substack such that $u_{i}^{(2)}$ factors through W_{i}. For any geometric point x of \bar{X} with residue field $\kappa(x)$, denote by $\left(W_{i}\right)_{x} \subset X \otimes_{\mathcal{O}_{S}} \kappa(x)$ the scheme $\operatorname{pr}_{2}\left(\operatorname{pr}_{1}^{-1}(x) \cap W_{i}\right)$.
Because $H_{i} \times{ }_{S} \mathbb{P}_{S}^{1} \times{ }_{S} \mathbb{P}_{S}^{1}$ is irreducible and reduced, also W_{i} is irreducible and reduced. Because u_{i} is smooth, $\mathrm{pr}_{1}: W_{i} \rightarrow \bar{X}$ is surjective on geometric points. The geometric generic fiber has pure dimension

$$
d_{i}=\operatorname{dim}\left(W_{i} \otimes_{\mathcal{O}_{S}} K(S)\right)-\operatorname{dim}\left(X \otimes_{\mathcal{O}_{S}} K(S)\right)
$$

Of course d_{i} is bounded by $\operatorname{dim}\left(X \otimes \mathcal{O}_{S} K(S)\right)$. Let H_{i} be a connected component such that d_{i} is maximal.
Let H_{j} be any connected component of H. Denote by $V_{i, j}$ the 2-fiber product,

$$
V_{i, j}=\left(H_{i} \times_{S} \mathbb{P}_{S}^{1}\right) \times_{u_{i}, X, u_{j}}\left(H_{j} \times_{S} \mathbb{P}_{S}^{1}\right)
$$

In other words $V_{i, j}$ parametrizes data $\left(\left(\left[f_{i}\right], t_{i}\right),\left(\left[f_{j}\right], t_{j}\right), \theta\right)$ where f_{i}, resp. f_{j}, is an object of H_{i}, resp. H_{j}, where t_{i}, t_{j} are points of \mathbb{P}^{1}, and where $\theta: f_{i}\left(t_{i}\right) \rightarrow f_{j}\left(t_{j}\right)$ is an equivalence of objects. Denote by $F_{i, j}$ the 1-morphism of S-stacks,

$$
F_{i, j}: V_{i, j} \times_{S} \mathbb{P}_{S}^{1} \times_{S} \mathbb{P}_{S}^{1} \rightarrow \bar{X} \times_{S} \bar{X}
$$

that sends a datum $\left(\left(\left(\left[f_{i}\right], t_{i}\right),\left(\left[f_{j}\right], t_{j}\right), \theta\right), t_{i}^{\prime}, t_{j}^{\prime}\right)$ to $\left(f_{i}\left(t_{i}^{\prime}\right), f_{j}\left(t_{j}^{\prime}\right)\right)$. Alternatively $F_{i, j}$ is the 1-morphism whose domain is,

$$
\left(H_{i} \times_{S} \mathbb{P}_{S}^{1} \times_{S} \mathbb{P}_{2}^{1}\right) \times_{u_{i} \circ \mathrm{pr}_{1,3}, X, u_{j} \circ \mathrm{pr}_{1,2}}\left(H_{j} \times_{S} \mathbb{P}_{S}^{1} \times_{S} \mathbb{P}_{S}^{1}\right)
$$

such that $\operatorname{pr}_{1} \circ F_{i, j}$ is $u_{i} \circ \operatorname{pr}_{1,2}$ and such that $\operatorname{pr}_{2} \circ F_{i, j}$ is $u_{j} \circ \operatorname{pr}_{1,3}$.

Proposition 2.2. The image of $F_{i, j}$ is contained in W_{i}.

Proof. Note that $V_{i, j}$ is smooth over S. Moreover, because u_{i} and u_{j} are smooth, $V_{i, j}$ is nonempty. Let $\left(\left(f_{i}, t_{i}\right),\left(f_{j}, t_{j}\right), \theta\right)$ be a point of $V_{i, j}$. There is a reducible, connected genus 0 curve C obtained by identifying t_{i} in one copy of \mathbb{P}^{1} to t_{j} in a second copy of \mathbb{P}^{1}. The morphisms f_{i}, f_{j} and the equivalence θ induce a 1 morphism $f: C \rightarrow X$ whose restriction to the first irreducible component is f_{i} and whose restriction to the second irreducible component is f_{j}. In a suitable sense, $f: C \rightarrow X$ is still a free rational curve, and it deforms to free rational curves $f^{\prime}: \mathbb{P}^{1} \rightarrow X$. After examining these deformations, the proposition easily follows.

Let $0: S \rightarrow \mathbb{A}_{S}^{1} \times_{S} \mathbb{P}_{S}^{1}$ be the morphism whose projection to each factor is the zero section. Denote by $Z \subset \mathbb{A}_{S}^{1} \times{ }_{S} \mathbb{P}_{S}^{1}$ the image of 0 . Denote by P the blowing up of $\mathbb{A}_{S}^{1} \times_{S} \mathbb{P}_{S}^{1}$ along Z. The projection morphism $\operatorname{pr}_{\mathbb{A}^{1}}: P \rightarrow \mathbb{A}_{S}^{1}$ is flat and projective. Moreover, the restriction of P over $\mathbb{G}_{m, S} \subset \mathbb{A}_{S}^{1}$ is canonically isomorphic to $\mathbb{G}_{m, S} \times{ }_{S} \mathbb{P}_{S}^{1}$. And the restriction of P over the zero section of \mathbb{A}_{S}^{1} is canonically isomorphic to the curve C over S obtained by identifying 0 in one copy of \mathbb{P}^{1} to 0 in a second copy of \mathbb{P}^{1}.

Denote $S^{\prime}=\mathbb{A}_{S}^{1}$. Denote by $\operatorname{Hom}_{S^{\prime}}\left(P, X_{S^{\prime}}\right)$ the Deligne-Mumford stack constructed in [4. Denote by $H^{\prime} \subset \operatorname{Hom}_{S^{\prime}}\left(P, X_{S^{\prime}}\right)$ the open substack parametrizing morphisms to the smooth locus of $\left(\pi_{X}\right)^{\prime}$ such that the pullback of $T_{\left(\pi_{X}\right)^{\prime}}$ restricts to a globally generated sheaf of positive degree on every irreducible component of every geometric fiber. The morphism $H^{\prime} \rightarrow S^{\prime}$ is smooth for reasons similar to [2, Cor. II.3.5.4].

Let $V_{i, j, k}$ be a connected component of $V_{i, j}$. Define $f_{V, i}: V_{i, j, k} \times{ }_{S} \mathbb{P}_{S}^{1} \rightarrow X$ to be the composition

$$
u_{i} \circ\left(\operatorname{pr}_{H_{i}} \circ \operatorname{pr}_{H_{i} \times{ }_{S} \mathbb{P}_{S}^{1}}, \operatorname{Id}_{\mathbb{P}_{S}^{1}}\right): V_{i, j, k} \times_{S} \mathbb{P}_{S}^{1} \rightarrow H_{i} \times_{S} \mathbb{P}_{S}^{1} \rightarrow X
$$

Define $f_{V, j}: V_{i, j, k} \times{ }_{S} \mathbb{P}_{S}^{1} \rightarrow X$ to be the composition $u_{j} \circ\left(\mathrm{pr}_{H_{j}} \circ \mathrm{pr}_{H_{j} \times S} \mathbb{P}_{S}^{1}, \operatorname{Id}_{\mathbb{P}_{S}^{1}}\right)$. Define $s_{i}: V_{i, j, k} \rightarrow V_{i, j, k} \times{ }_{S} \mathbb{P}_{S}^{1}$ to be the unique $V_{i, j, k}$-morphism such that $\mathrm{pr}_{\mathbb{P}_{S}^{1}} \circ s_{i}=$ $\mathrm{pr}_{\mathbb{P}_{S}^{1}} \circ \operatorname{pr}_{H_{i} \times \times_{S} \mathbb{P}_{S}^{1}}$. Define $s_{j}: V_{i, j, k} \rightarrow V_{i, j, k} \times{ }_{S} \mathbb{P}_{S}^{1}$ similarly.
Replacing $V_{i, j, k}$ by a dense open subset, there exist 2 isomorphisms of $V_{i, j, k}$-schemes,

$$
\alpha_{i}, \alpha_{j}: V_{i, j, k} \times_{S} \mathbb{P}_{S}^{1} \rightarrow V_{i, j, k} \times_{S} \mathbb{P}_{S}^{1},
$$

such that $s_{i}=\alpha_{i} \circ 0$ and $s_{j}=\alpha_{j} \circ 0$ where 0 is the zero section of $V_{i, j, k} \times{ }_{S} \mathbb{P}_{S}^{1} \rightarrow V_{i, j, k}$. There is a unique 1-morphism of S-stacks,

$$
f_{i, j, k}: V_{i, j, k} \times{ }_{S} C \rightarrow X
$$

such that the restriction of $f_{i, j, k}$ to the first irreducible component of $V_{i, j, k} \times{ }_{S} C$ is $f_{V, i} \circ \alpha_{i}$, and the restriction to the second irreducible component is $f_{V, j} \circ \alpha_{j}$. The image of $f_{i, j, k}$ is contained in the smooth locus of π_{X}, and the restriction of $f_{i, j, k}^{*} T_{\pi_{X}}$ to each irreducible component is generated by global sections relative to $V_{i, j, k}$. Denote by,

$$
f_{i, j, k}^{(2)}: V_{i, j, k} \times_{S} C \times_{S} C \rightarrow \bar{X} \times_{S} \bar{X}
$$

the obvious 1-morphism.
By definition of H^{\prime} there is a 1-morphism,

$$
q: V_{i, j, k} \rightarrow S \times_{0, S^{\prime}} H^{\prime}
$$

such that the pullback by q of the universal morphism is 2-equivalent to $f_{i, j, k}$. Because $V_{i, j, k}$ is connected, the image of q is contained in a connected component H_{l}^{\prime} of H^{\prime}. By definition of H there is a 1-morphism of S-stacks,

$$
r: \mathbb{G}_{m, S} \times{ }_{S^{\prime}} H_{l}^{\prime} \rightarrow H
$$

such that the restriction to $\mathbb{G}_{m, S} \times{ }_{S^{\prime}} H_{l}^{\prime}$ of the universal morphism over H_{l}^{\prime} is 2-equivalent to the pullback by r of the universal morphism over H. Denote by H_{l} the connected component of H dominated by r. The morphism r dominates a connected component $H_{l} \subset H$. There exists a 1-isomorphism,

$$
i: \mathbb{G}_{m, S} \times{ }_{S^{\prime}} H_{l}^{\prime} \rightarrow \mathbb{G}_{m, S} \times{ }_{S} H_{l}
$$

unique up to unique 2-equivalence, such that $\mathrm{pr}_{\mathbb{G}_{m}} \circ i=\mathrm{pr}_{\mathbb{G}_{m}}$ and such that $\mathrm{pr}_{H_{l}} \circ i$ is 2 -equivalent to r.

Denote by,

$$
v_{l}: H_{l}^{\prime} \times{ }_{S^{\prime}} P \rightarrow \bar{X}
$$

and by,

$$
v_{l}^{(2)}: H_{l}^{\prime} \times{S^{\prime}} P \times_{S^{\prime}} P \rightarrow \bar{X} \times_{S} \bar{X},
$$

the obvious morphisms. Denote by $W_{l}^{\prime} \subset \bar{X} \times_{S} \bar{X}$ the minimal closed substack through which $v_{l}^{(2)}$ factors. Because $\operatorname{pr}_{S^{\prime}}: H_{l}^{\prime} \times{ }_{S^{\prime}} P \times_{S^{\prime}} P \rightarrow S^{\prime}$ is flat, the preimage of $\mathbb{G}_{m, S} \subset S^{\prime}$ is dense. Thus W_{l}^{\prime} is the image of the restriction of $v_{l}^{(2)}$ over $\mathbb{G}_{m, S}$. The restriction of $v_{l}^{(2)}$ is 2-equivalent to $u_{l}^{(2)} \circ\left(r, \operatorname{Id}_{\mathbb{P}^{1}}, \operatorname{Id}_{\mathbb{P}^{1}}\right)$. Therefore the image of $v_{l}^{(2)}$ equals the image of $u_{l}^{(2)}$, i.e., $W_{l}^{\prime}=W_{l}$.

On the other hand, the pullback of $v_{l}^{(2)}$ to $V_{i, j, k} \times{ }_{S} C \times{ }_{S} C$ is 2-equivalent to $f_{i, j, k}^{(2)}$. There are 2 irreducible components of C, and thus 4 irreducible components of $C \times{ }_{S} C$. Restrict $f_{i, j, k}^{(2)}$ to the irreducible component of $C \times{ }_{S} C$ that is the product of the first irreducible component of C and the first irreducible component of C. This is 2-equivalent to the pullback of $u_{i}^{(2)}$, hence W_{l} contains W_{i}. Because W_{l} is an integral stack of dimension at most d_{i} containing the d_{i}-dimensional stack W_{i}, W_{l} equals W_{i}.

Finally, restrict $f_{i, j, k}^{(2)}$ to the irreducible component of $C \times{ }_{S} C$ that is the product of the first irreducible component of C and the second irreducible component of C. This is 2-equivalent to the pullback of $F_{(i, j)}$, hence $W_{i}=W_{l}$ contains the image of $F_{(i, j)}$.

Lemma 2.3. The geometric generic fiber of $p r_{1}: W_{i} \rightarrow \bar{X}$ is integral.
Proof. Denote by K the algebraic closure of the function field of \bar{X}. Since u_{i} : $H_{i} \times{ }_{S} \mathbb{P}_{S}^{1} \rightarrow \bar{X}$ is smooth, the geometric generic fiber $\left(H_{i} \times{ }_{S} \mathbb{P}_{S}^{1}\right) \otimes_{\mathcal{O}_{\bar{x}}} K$ is smooth over K. There is an induced 1-morphism,
$\left(u_{i}^{(2)}\right)_{K}:\left(H_{i} \times_{S} \mathbb{P}_{S}^{1} \otimes_{\mathcal{O}_{\bar{X}}} K\right) \times_{\operatorname{Spec}(K)} \mathbb{P}_{K}^{1} \rightarrow\left(\bar{X} \times_{S} \bar{X}\right) \otimes_{\operatorname{pr}_{1}, \bar{X}} \operatorname{Spec}(K) \cong \bar{X} \otimes_{\mathcal{O}_{S}} K$
Formation of the closed image is compatible with flat base change. Therefore the closed image of $\left(u_{i}^{(2)}\right)_{K}$ is $W_{i} \otimes_{\mathrm{pr}_{1}, \bar{X}} \operatorname{Spec}(K)$. In particular, $W_{i} \otimes_{\mathrm{pr}_{1}, \bar{X}} \operatorname{Spec}(K)$ is reduced since the closed image of a reduced stack is reduced.

The proof that the geometric generic fiber is irreducible is essentially the same as the proof of Proposition 2.2 . Let $W^{\prime} \subset W_{i} \otimes_{\mathrm{pr}_{1}, \bar{X}} \operatorname{Spec}(K)$ be an irreducible component. To prove that $W^{\top}=W_{i} \otimes_{\mathrm{pr}_{1}, \bar{X}} \operatorname{Spec}(K)$, it suffices to prove that it contains the image of $\left(u_{i}^{(2)}\right)_{K}$. Let $x \in \bar{X} \otimes_{\mathcal{O}_{S}} K$ be the K-point corresponding to the diagonal; x is contained in Image $\left(u_{i}^{(2)}\right)_{K}$. Let y_{1} be a K-point of $W^{\prime} \cap \operatorname{Image}\left(u_{i}^{(2)}\right)_{K}$ and let y_{2} be a K-point of Image $\left(u_{i}^{(2)}\right)_{K}$. There are free K-morphisms, f_{1}, f_{2} : $\mathbb{P}_{K}^{1} \rightarrow X \otimes_{\mathcal{O}_{S}} K$ such that $f_{1}(0)=f_{2}(0)=x$ and $f_{1}(\infty)=y_{1}, f_{2}(\infty)=y_{2}$. This defines a morphism from $C \otimes_{\mathcal{O}_{S}} K$ to $X \otimes_{\mathcal{O}_{S}} K$. As in the proof of Proposition 2.2. deformations of this morphism are free rational curves that come from a connected component H_{l} of H. By construction, there is an irreducible component of $W_{l} \otimes_{\mathrm{pr}_{1}, X} \operatorname{Spec}(K)$ that contains W and y_{2}. Since the dimension of W_{l} is at most d_{i}, this irreducible component equals W. Therefore $y_{2} \in W$, i.e., $W=W_{i} \otimes_{\operatorname{pr}_{1}, X} \operatorname{Spec}(K)$.

Consider the projection $\mathrm{pr}_{1}: W_{i} \rightarrow \bar{X}$. By [5, Thm. 3.2], there exists a dense open subset $X^{\text {flat }} \subset X$ over which W_{i} is flat. Denote $W_{i}^{\text {flat }}=W_{i} \times_{\operatorname{pr}_{1}, X} X^{\text {flat }}$. By Lemma 2.3, there is a dense open substack $X^{0} \subset X^{\text {flat }}$ such that every geometric fiber of $W_{i} \times{ }_{\mathrm{pr}_{1}, X} X^{0} \rightarrow X^{0}$ is integral. Denote $W_{i}^{0}=W_{i} \times{ }_{\mathrm{pr}_{1}, \bar{X}} X^{0}$.

Let $H_{j} \subset H$ be a connected component and denote by $G_{i, j}$ the unique 1-morphism,

$$
G_{i, j}:\left(H_{j} \times_{S} \mathbb{P}_{S}^{1} \times_{S} \mathbb{P}_{S}^{1}\right) \times_{u_{j} \mathrm{opr}_{1,3}, \bar{X}, \mathrm{pr}_{1}} W_{i} \rightarrow \bar{X} \times_{S} \bar{X}
$$

such that,

$$
\operatorname{pr}_{1} \circ G_{i, j}=u_{j} \circ \operatorname{pr}_{1,2} \circ \operatorname{pr}_{H_{j} \times \mathbb{P}^{1} \times \mathbb{P}^{1}}
$$

and such that,

$$
\mathrm{pr}_{2} \circ G_{i, j}=\mathrm{pr}_{2} \circ \mathrm{pr}_{W_{i}} .
$$

Corollary 2.4. (i) The image of $G_{i, j}$ is contained in W_{i}.
(ii) For every geometric point $s \in S$, for every free morphism $f: \mathbb{P}_{s}^{1} \rightarrow X_{s}$ and for every point $x \in X_{s}$ such that $f\left(\mathbb{P}^{1}\right) \cap\left(W_{i}\right)_{x}$ is nonempty, $f\left(\mathbb{P}^{1}\right)$ is contained in $\left(W_{i}\right)_{x}$.
(iii) The image of the "composition morphism",

$$
c: W_{i} \times_{p r_{2}, \bar{X}, p r_{1}} W_{i}^{0} \rightarrow \bar{X} \times_{S} \bar{X}
$$

is contained in W_{i}.
(iv) For every geometric point $s \in S$, for every pair of closed points $(x, y) \in$ $\bar{X}_{s} \times X_{s}^{0}$, if $y \in\left(W_{i}\right)_{x}$ then $\left(W_{i}\right)_{y} \subset\left(W_{i}\right)_{x}$.
(v) For every geometric point $s \in S$, for every pair of closed points $(x, y) \in$ $X_{s}^{0} \times X_{s}^{0}, y_{i} \in\left(W_{i}\right)_{x}$ iff $x \in\left(W_{i}\right)_{y}$ iff $\left(W_{i}\right)_{x}=\left(W_{i}\right)_{y}$.
Proof. (i): First of all, the projection morphism,

$$
\operatorname{pr}_{W_{i}}:\left(H_{j} \times_{S} \mathbb{P}_{S}^{1} \times_{S} \mathbb{P}_{S}^{1}\right) \times_{\bar{X}} W_{i} \rightarrow W_{i}
$$

is smooth. Therefore every connected component of the domain is integral and dominates W_{i}. So to prove W_{i} contains the image of $G_{i, j}$ it suffices to first basechange by,

$$
u_{i}^{(2)}: H_{i} \times_{S} \mathbb{P}_{S}^{1} \times_{S} \mathbb{P}_{S}^{1} \rightarrow W_{i}
$$

The base-change of $G_{i, j}$ by $u_{i}^{(2)}$ is 2-equivalent to $F_{i, j}$. By Proposition 2.2 the W_{i} contains the image of $F_{i, j}$. Therefore W_{i} contains the image of $G_{i, j}$.
(ii): By construction, $W_{i} \subset \bar{X} \times_{S} \bar{X}$ is symmetric with respect to permuting the factors. Let $t^{\prime} \in \mathbb{P}^{1}$ be a point such that $x^{\prime}=f\left(t^{\prime}\right)$ is in $\left(W_{i}\right)_{x}$. Let H_{j} be the connected component of H that contains $[f]$. Then the subset,

$$
\left\{\left(\left([f], t, t^{\prime}\right),\left(x^{\prime}, x\right)\right) \in\left(H_{j} \times_{S} \mathbb{P}_{S}^{1} \times{ }_{S} \mathbb{P}_{S}^{1}\right) \times W_{i} \mid t \in \mathbb{P}_{s}^{1}\right\}
$$

is contained in,

$$
\left(H_{j} \times_{S} \mathbb{P}_{S}^{1} \times_{S} \mathbb{P}_{S}^{1}\right) \times \bar{X} W_{i}
$$

Therefore by (i), W_{i} contains the image under $G_{i, j}$. Because W_{i} is symmetric, this implies that $\left(W_{i}\right)_{x}$ contains $f\left(\mathbb{P}^{1}\right)$,
(iii): The 1-morphism c satisfies $\operatorname{pr}_{1} \circ c=\operatorname{pr}_{1} \circ \operatorname{pr}_{1}$ and $\mathrm{pr}_{2} \circ c=\mathrm{pr}_{2} \circ \mathrm{pr}_{2}$, up to 2-equivalence. Because $\mathrm{pr}_{1}: W_{i}^{\text {flat }} \rightarrow \bar{X}$ is flat and the geometric fibers are integral also the projection,

$$
\operatorname{pr}_{1}: W_{i} \times_{\mathrm{pr}_{2}, \bar{X}, \mathrm{pr}_{1}} W_{i}^{\text {flat }} \rightarrow W_{i}
$$

is flat and the geometric fibers are integral. In particular the domain is integral. Hence to prove W_{i} contains the image of c it suffices to first base-change by,

$$
u_{i}^{(2)}: H_{i} \times_{S} \mathbb{P}_{S}^{1} \times_{S} \mathbb{P}_{S}^{1} \rightarrow W_{i}
$$

After base-change, this morphism factors through $G_{i, i}$. By (i), the W_{i} contains the image of $G_{i, i}$. Therefore W_{i} contains the image of c.
(iv) and (v): Item (iv) follows immediately from (iii), and Item (v) follows from (iv) and symmetry of W_{i}.

Lemma 2.5. Let k be a field, let $g: Y \rightarrow Z$ be a morphism of smooth DeligneMumford stacks over k, and let $f: \mathbb{P}_{k}^{1} \rightarrow Y$ be a free morphism such that $f\left(\mathbb{P}^{1}\right)$ is contained in a fiber of g. Denote by $Y^{s m}$ the smooth locus of g. If $f\left(\mathbb{P}^{1}\right) \cap Y^{s m}$ is nonempty, then $f\left(\mathbb{P}^{1}\right) \subset Y^{s m}$.

Proof. There is a morphism of locally free sheaves on \mathbb{P}_{k}^{1},

$$
d g: f^{*} T_{Y} \rightarrow g^{*} f^{*} T_{Z}
$$

Because $f\left(\mathbb{P}^{1}\right) \cap Y^{\mathrm{sm}}$ is nonempty, the cokernel of $d g$ is torsion. Because $f\left(\mathbb{P}^{1}\right)$ is contained in a fiber of $g, g^{*} f^{*} T_{Z} \cong \mathcal{O}_{\mathbb{P}_{k}^{1}}^{r}$ for some nonnegative integer r. Because $f^{*} T_{Y}$ is generated by global sections, also the image of $d g$ is generated by global sections. But the only coherent subsheaf of $\mathcal{O}_{\mathbb{P}_{k}^{1}}^{r}$ whose cokernel is torsion and that is generated by global sections is all of $\mathcal{O}_{\mathbb{P}_{k}^{1}}^{r}$. Therefore $d g$ is surjective, i.e., $f\left(\mathbb{P}^{1}\right) \subset Y^{\mathrm{sm}}$.

By [5. Thm. 1.1], the Hilbert functor of $\bar{X} \rightarrow S$ is represented by an algebraic space that is separated and locally finitely presented, $\operatorname{Hilb}_{\bar{X} / S}$. And $W_{i}^{\text {flat }} \subset X^{\text {flat }} \times_{S} \bar{X}$ is a closed substack that is proper, flat and finitely presented over $X^{\text {flat }}$. Therefore there is a 1 -morphism of S-stacks,

$$
\phi^{\text {flat }}: X^{\text {flat }} \rightarrow \operatorname{Hilb}_{\bar{X} / S},
$$

such that $W_{i}^{\text {flat }}$ is the pullback by $\phi^{\text {flat }}$ of the universal closed substack. Denote by $X^{*} \subset X$ the maximal open substack over which $\phi^{\text {flat }}$ extends to a morphism. Denote by $Q^{*} \rightarrow \operatorname{Hilb}_{X / S}$ the Stein factorization of $X^{*} \rightarrow \operatorname{Hilb}_{X / S}$, i.e., the integral closure of the image in the function field of the coarse moduli space $\left|X^{*}\right|$. Denote by $\phi: X^{*} \rightarrow Q^{*}$ the induced morphism.

Proposition 2.6. The morphism $\phi: X^{*} \rightarrow Q^{*}$ is a free rational quotient.
Proof. By construction, Q^{*} is normal, $Q^{*} \rightarrow S$ is a finitely presented morphism whose geometric generic fiber is integral, and ϕ is a dominant 1-morphism whose geometric generic fiber is integral. It remains to prove Definition 1.2 (ii).
By [5], Hilb \bar{X} / S satisfies the valuative criterion of properness (but it is not necessarily proper since it is not necessarily quasi-compact). And X is normal. Therefore every irreducible component of $X-X^{*}$ has codimension ≥ 2 in X; more precisely, the geometric generic fiber over S has codimension ≥ 2 in the geometric generic fiber of X over S. For reasons similar to [2, Prop.II.3.7], X^{*} contains $f\left(\mathbb{P}^{1}\right)$ for every H_{j} and general $[f] \in H_{j}$.

There is a dense open subspace $Q^{0} \subset Q^{*}$ over which ϕ is flat and the geometric fibers are integral. Replace X^{0} by $X^{0} \cap \phi^{-1}\left(Q^{0}\right)$. By Corollary 2.4 (v), the subscheme $X^{0} \times Q^{*} X^{0}$ equals $W_{i} \cap\left(X^{0} \times_{S} X^{0}\right)$. In particular, for every $x \in X^{0}$ the fiber of ϕ containing x is $\left(W_{i}\right)_{x}$. Therefore for a general fiber of ϕ, for a general pair of points in the fiber, there is a free rational curve in H_{i} whose image is contained in the fiber and contains the two points. By Lemma 2.5, the image is contained in the smooth locus of ϕ, i.e. this is a free rational curve in the fiber. This proves Definition 1.2 (ii).

Proposition 2.7. The morphism $\phi: X^{*} \rightarrow Q^{*}$ is a maximal free rational quotient.
Proof. Let $\phi_{1}: X_{1}^{*} \rightarrow Q_{1}^{*}$ be a free rational quotient. If this is a trivial free rational quotient, the morphism ψ is trivial. Therefore assume it is a nontrivial free rational quotient.

There exists a dense open $U \subset Q_{1}^{*}$ such that,

$$
\chi: U^{\prime} \rightarrow U
$$

is faithfully flat and quasi-compact and the geometric fibers are integral, where $U^{\prime}=X^{0} \cap \phi_{1}^{*}(U)$ and where χ is the restriction of ϕ_{1}. By faithfully flat descent, to construct $\psi: U \rightarrow Q^{*}$, it is equivalent to construct a morphism $\psi^{\prime}: U^{\prime} \rightarrow Q^{*}$ satisfying a cocycle condition: indeed, the morphism ψ is equivalent to the graph of ψ, which is equivalent to a certain kind of quasi-coherent sheaf on $U \times Q^{*}$, so faithfully flat descent for quasi-coherent sheaves applies to $(\chi, 1): U^{\prime} \times Q^{*} \rightarrow U \times Q^{*}$.

Define ψ^{\prime} to be the restriction of ϕ. For each geometric point x in U^{\prime}, define Y_{x} to be the fiber of χ containing x. The cocycle condition for ψ^{\prime} is that the fiber product $U^{\prime \prime}=U^{\prime} \times_{\chi, U, \chi} U^{\prime}$ is contained in $U^{\prime} \times_{\psi^{\prime}, Q^{*}, \psi^{\prime}} U^{\prime}$. Now $U^{\prime \prime} \rightarrow U^{\prime}$ is a flat morphism whose geometric fibers are integral. Thus $U^{\prime \prime}$ is integral. So it suffices to prove it is set-theoretically contained in W_{i}, i.e., for a general geometric point x of $U^{\prime}, U_{x}^{\prime \prime} \subset\left(W_{i}\right)_{x}$.
By hypothesis, there is a dense subset of $U_{x}^{\prime \prime}$ consisting of points y contained in a free morphism $f: \mathbb{P}^{1} \rightarrow X$ such that $f(0)=x$ and $f(\infty)=y$. By Corollary 2.4 (ii), $f\left(\mathbb{P}^{1}\right) \subset\left(W_{i}\right)_{x}$, in particular $y \in\left(W_{i}\right)_{x}$. Therefore $U_{x}^{\prime \prime} \subset\left(W_{i}\right)_{x}$.

References

[1] O. Debarre. Higher-dimensional algebraic geometry. Universitext. Springer-Verlag, New York, 2001.
[2] J. Kollár. Rational curves on algebraic varieties, volume 32 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 1996.
[3] J. Kollár, Y. Miyaoka, and S. Mori. Rational connectedness and boundedness of Fano manifolds. J. Differential Geom., 36(3):765-779, 1992.
[4] M. Olsson. Hom stacks and restriction of scalars. preprint, 2005.
[5] M. Olsson and J. Starr. Quot functors for Deligne-Mumford stacks. Comm. Algebra, 31(8):4069-4096, 2003. Special issue in honor of Steven L. Kleiman.

Department of Mathematics, Massachusetts Institute of Technology, Cambridge MA 02139

E-mail address: jstarr@math.mit.edu

[^0]: Date: February 27, 2006.

