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MAT 544 Problem Set 5 Solutions

Problems.

Problem 1 Let (S, dS) be a metric space and let X be a bounded, closed subset of a Banach
space (W, ‖ • ‖W ). Let K : S × X → X be as in Corollary 4 on p. 230, i.e., K is continuous
and there exists a positive real number C < 1 such that for every s ∈ S, the map Ks : X → X
by Ks(x) = K(s, x) is C-Lipschitz. Denote by BC(S,X) the subset of BC(S,W ) parameterizing
bounded continuous functions with image in X.

(a) Prove that BC(S,X) is a closed subset of BC(S,W ). Combined with Theorem 4.7.5 on p.
218, it follows that BC(S,X) is a complete metric space.

(b) For every f : S → X in BC(S,X), define K̃(f) : S → X by s 7→ K(s, f(s)). Prove that K̃(f)
is an element of BC(S,X).

(c) Prove that the map K̃ : BC(S,X) → BC(S,X) by f 7→ K̃(f) is C-Lipschitz. Apply the
contraction mapping fixed point theorem to give a second proof of Corollary 4 (in this context).

Nota Bene. Corollary 4 is more general since X need not be a closed bounded subset of a Banach
space. If X is a subset of a Banach space W , then it is valid to replace X by the intersection of
the closure of X with a bounded ball in W by the estimates in Corollaries 1 – 3 together with the
theorem from lecture that a uniformly continuous (e.g., Lipschitz) function on a metric space X
extends to a continuous function on the completion of the domain (i.e., the closure of X in W ). In
practice the metric spaces X we work with usually are subsets of Banach spaces.

Problem 2 Let (V, ‖ • ‖V ) be a normed vector space, let (W, ‖bullet‖W ) be a Banach space. Let
Ṽ ⊂ V and W̃ ⊂ W be open subsets. Let K : Ṽ × W̃ → W be a continuous function such that
for every ~v ∈ Ṽ , the induced morphism K~v,• : W̃ → W , ~w 7→ K(~v, ~w) is differentiable. Let C
be a positive real number such that C < 1. Assume that for every ~v ∈ S and for every ~w ∈ W ,
‖d(K~v,•)~w‖op ≤ C so that K~v,• is C-Lipschitz. Let ~v0 ∈ Ṽ and ~w0 ∈ W̃ be elements such that
K~v0,•(~w0) = ~w0.

(a) Using Corollaries 1 – 3 on pp. 229-230 if necessary, prove that there exist real numbers δV > 0
and δW > 0 such that

(i) The ball S = BδV (~v0) is contained in Ṽ , and the closed ball X = B≤δW (~w0) is contained in
W̃ .

(ii) The continuous map K maps S ×X into X.
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(b) Denote by c~w0 : S → X the constant function c~w0(~v) = ~w0. Apply Problem 1 to conclude that
the sequence (K̃n(c~w0))n=0,1,2,... converges in BC(S,X) to the unique continuous function f : S → X
from Corollary 4.

(c) Finally assume that G : Ṽ × W̃ → W is a continuous function such that every G~v,• is dif-
ferentiable and the derivatives d(G~b,•)~w vary continuously in (~v, vecw). Let ~v0 ∈ Ṽ and ~w0 ∈ W̃
be elements such that G~v0,•(~w0) = 0W . Modify (or simply quote) the arguments in the proof of
Theorem 4.9.3, pp. 230-231, to show that up to replacing Ṽ by a small open ball about ~v0 and up
to replacing W̃ by a small open ball about ~w0, the map K~v,•(~w) := ~w − T−1(G~v,•(~w)) satisfies the
hypothesis in (a). As above, conclude that (K̃n(c~w0))n=0,1,2,... converges in BC(S,X) to the unique
continuous function f : S → X such that G(~v, f(~v)) = 0.

Problem 3 With the same notation as above, let V = W = R and let G : V ×W → W be the
function G(x, y) = (1+x)−(1+y)2, so that G(x0, y0) = 0 for the point (x0, y0) = (0, 0). Compute T
and T−1. Compute K(x, y) and compute K̃(f(x)). Starting with the constant function c0(x) = 0,
compute the first three iterates K̃(c0), K̃(K̃(c0)) and K̃(K̃(K̃(c0))). How do these compare to the
Taylor approximations to

√
1 + x− 1 about x0 = 0?

Problem 4 Let n be a positive integer. Let V and W both be the vector space L(Rn,Rn) of
linear operators on Rn. Denote by IdRn the identity matrix. Let G : V ×W → W be the function
G(X, Y ) = (IdRn + X) ◦ (IdRn + Y ) − IdRn , so that G(X0, Y0) = 0 for the point (X0, Y0) = (0, 0).
Compute T and T−1. Compute K(X, Y ) and compute K̃(f(X)). Starting with the constant
function c0(X) = 0, compute the first three iterates K̃(c0), K̃(K̃(c0)) and K̃(K̃(K̃(c0))). How do
these compare to the “Taylor approximations” to (IdRn +X)−1 about X0 = 0?

Problem 5 Find an example of a continuously differentiable function G : R × R → R such
that G(0, 0) = 0, yet with (dG0,•)0 noninvertible and such that there is no continuous function
f : (−εV , εV )→ (−εW , εW ) with G(x, f(x)) = 0.

Solutions to Problems.

Solution to (1)

Solution to (a) The simplest argument uses sequences. Let (fn)n=1,2,... be a sequence of elements
of BC(S,X) which converges to f in BC(S,W ) with respect to the uniform norm. Because the
sequence converges uniformly, for every s ∈ S, the sequence (fn(s))n=1,2,... converges to f(s) with
respect to the norm on W . Since this is a sequence of elements in X, and since X is closed, the
limit f(s) is also in X. Thus for every s ∈ S, f(s) is in X, i.e., f is in BC(S,X).

Solution to (b) There are three things that need to be checked: that K̃(f) is continuous, that
K̃(f) maps S into X, and that f is bounded. Since K is continuous and since f is continuous, also
K(s, f(s)) is continuous. Since the image of K is in X, for every s ∈ S, K(s, f(s)) is in X. Finally,
since X is bounded, every function into X is bounded. Hence K̃(f) is in BC(S,X).

Solution to (c) Let f1, f2 be elements of BC(S,X). By definition of the uniform norm,

‖K̃(f1)− K̃(f2)‖un = lub{‖Ks(f1(s))−Ks(f2(s))‖W : s ∈ S}.
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Since Ks is C-Lipschitz by hypothesis, we have

‖Ks(f1(s))−Ks(f2(s))|W ≤ C‖f1(s)− f2(s)‖W ≤ C‖f1 − f2‖un.

Since C‖f1 − f2‖un is an upper bound for every s ∈ S, we conclude that it is greater than or equal
to the least upper bound, i.e.,

‖K̃(f1)− K̃(f2)‖un ≤ C‖f1 − f2‖un.

Therefore K̃ is C-Lipschitz. Since C < 1, it follows that K̃ is a contraction. And by (a), BC(S,X)
is a complete metric space. Therefore by the contraction mapping fixed point theorem, there exists
a unique fixed point f in BC(S,X), i.e., there exists a unique continuous function f : S → X such
that K̃(f) = f . This precisely says that for every s ∈ S, Ks(f(s)) = f(s), i.e., f(s) is a fixed point
of Ks. Of course we know that this fixed point is unique, so f(s) is the fixed point of Ks. Since f
is in BC(S,X), it is continuous. So we conclude that the function f : S → X sending every s to
the unique fixed point f(s) of Ks is a continuous function.

Solution to (2)

Solution to (a) Because W̃ is open and ~w0 is in W̃ , there exists a real number r > 0 such that
the open ball Br(~w0) is in W̃ . Therefore for any positive real δW < r, say δW := r/2, the closed
ball B≤δW (~w0) is in W̃ . Since K is continuous, in particular the function K•, ~w0 : Ṽ → W by
~v 7→ K(~v, ~w0) is also continuous. And K•, ~w0(~v0) equals K(~v0, ~w0), which equals ~w0 by hypothesis.
Therefore there exists a real number δV > 0 such that for every ~v ∈ BδV (~v0), K(~v, ~w0) = K•, ~w0(~v)
is in the ball B(1−C)δW (~w0), i.e.,

dW (K(~v, ~w0), ~w0) < (1− C)δW .

Also K~v,• is C-Lipschitz. So for every ~w ∈ B≤δW (~w0), also we have

dW (K(~v, ~w), K(~v, ~w0)) ≤ CdW (~w, ~w0) ≤ CδW .

Thus by the triangle inequality, for every ~v ∈ BδV (~v0) and for every ~w ∈ B≤δW (~w0),

dW (K(~v, ~w), ~w0) ≤ dW (K(~v, ~w), K(~v, ~w0)) + dW (K(~v, ~w0), ~w0) < CδW + (1− C)δW = δW .

Thus K(~v, ~w) is in B≤δW (~w0). Therefore, for S = BδV (~v0) and for X = B≤δW (~w0), K maps S ×X
into X.

Solution to (a) By Problem 1, the map K̃ : BC(S,X)→ BC(S,X) is a contraction. Therefore,
by the contraction mapping fixed point theorem, for any function f0 ∈ BC(S,X), the sequence
(K̃n(f0))n=0,1,2,... converges in BC(S,X) to the unique fixed point. And again by Problem 1, that
fixed point is the continuous function f : S → X from Corollary 4.

Solution to (b) With the choice of S and X from (a), and using that K is C-Lipschitz by the mean
value theorem, K satisfies the hypotheses of Problem 1. Thus, by that problem, (K̃n(c~w0))n=0,1,2,...

converges in BC(S,X) to the unique continuous function f : S → X from Corollary 4.
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Solution to (c) The argument for this is as in the proof of Theorem 4.9.3, pp. 230-231. Since
d(K~v0,•)~w0 is 0 by construction, and thus has operator norm 0, and since the derivative map is
continuous, so that also the operator norms of the derivatives vary continuously, for any specified
real number C > 0 (in particular, for C with 0 < C < 1), for all ~v in a sufficiently small ball
about ~v0 and for all ~w in a sufficiently small ball about ~w0, the operator norm of d(K~v,•)~w is ≤ C.
Combined with the mean value theorem, this implies that K~v,• is C-Lipschitz on this small ball.
Now apply (a) and Problem 1.

Solution to (3) For fixed x ∈ R, the function Gx,•(y) = (1 +x)− (1 +y)2 is a polynomial function
in y. The usual single variable derivative is the partial derivative,

∂G

∂y
= −2(1 + y).

The derivative linear transformation d(Gx,•)y : W → W is the linear transformation ∆y 7→ −2(1 +
y)∆y. In particular, T := d(G0,•)0 is the linear transformation ∆y 7→ −2∆y. So the inverse linear
transformation is T−1(∆y) = (−1/2)∆y. Therefore we have

K(x, y) = y − T−1(G(x, y)) = y − −1

2
((1 + x)− (1 + y)2) = y +

1

2
(x− 2y − y2) =

1

2
(x− y2).

Therefore for a function fn(x), the function fn+1 := K̃(fn) is

fn+1(x) =
1

2
(x− (fn(x))2).

Starting with f0(x) = c0(x) = 0, this gives first

f1(x) =
1

2
(x− 02) =

1

2
x,

next

f2(x) =
1

2

(
x−

(
1

2
x

)2
)

=
1

2
x− 1

8
x2,

and finally

f3(x) =
1

2

(
x−

(
1

2
x− 1

8
x2
)2
)

=
1

2
x− 1

8
x2 +

1

16
x3 − 1

128
x4.

On the other hand, the Taylor series of f(x) =
√

1 + x− 1 is

0 +
1

2
x− 1

8
x2 +

1

16
x3 − 5

128
x4 + . . .

So the degree n Taylor approximation of fn(x) equals the degree n Taylor approximation of f(x)
for each n = 0, 1, 2, 3.
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Solution to (4) There are a number of elementary results from multivariable calculus which are
useful for computing derivatives. One is that every constant function is differentiable with zero
derivative. Another is that the sum of two differentiable functions is differentiable and the derivative
of the sum equals the sum of the derivatives. A final result, used previously, is that every bounded
linear transformation is differentiable with derivative equal to that same linear transformation. In
particular,

GX,•(Y ) = (IdRn +X) ◦ Y +X

is the sum of the linear transformation (IdRn + X) ◦ Y and the constant function X. Thus the
derivative is the sum of the derivatives, the first of which is (IdRn +X)◦Y and the second of which
is 0. Thus we have

d(GX,•)Y (∆Y ) = (IdRn +X) ◦∆Y.

In particular, the derivative at (X0, Y0) = (0, 0) is

T (∆Y ) = d(GX0,•)Y0(∆Y ) = (IdRn + 0) ◦∆Y = ∆Y.

In other words, T is the identity transformation. So the inverse linear transformation T−1 is also
the identity transformation. Therefore we have

K(X, Y ) = Y − T−1(G(X, Y )) = Y −G(X, Y ) = Y − (X + Y +X ◦ Y ) = −X −X ◦ Y.

Therefore for a function fn(X), the function fn+1 := K̃(fn) is

fn+1(X) = −X −X ◦ fn(X).

Starting with f0(X) = c0(X) = 0, this gives first

f1(X) = −X −X ◦ 0 = −X − 0 = −X,

next
f2(X) = −X −X ◦ (−X) = −X +X2,

and finally
f3(X) = −X −X ◦ (−X +X2) = −X +X2 −X3.

On the other hand, the Taylor series of f(X) = (IdRn +X)−1 − IdRn is

0−X +X2 −X3 +X4 + · · ·+ (−1)nXn + . . .

So the degree n Taylor approximation of f(x) equals fn(X) for each n = 0, 1, 2, 3.

Solution to (5) There are many examples. One such is G(x, y) = x − y2. Of course the partial
derivative with respect to y at (0, 0) is

∂G

∂y

∣∣∣∣
(0,0)

= (−2y|(0,0) = 0.

Moreover, for every x < 0, there is no choice of y such that y2 = x. So there is no function,
continuous or otherwise, defined on (−εW , 0) with G(x, f(x)) = 0.
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