MAT 544 Problem Set 5

Problems.

Problem 1 Let $\left(S, d_{S}\right)$ be a metric space and let X be a bounded, closed subset of a Banach space $\left(W,\|\bullet\|_{W}\right)$. Let $K: S \times X \rightarrow X$ be as in Corollary 4 on p. 230, i.e., K is continuous and there exists a positive real number $C<1$ such that for every $s \in S$, the map $K_{s}: X \rightarrow X$ by $K_{s}(x)=K(s, x)$ is C-Lipschitz. Denote by $B C(S, X)$ the subset of $B C(S, W)$ parameterizing bounded continuous functions with image in X.
(a) Prove that $B C(S, X)$ is a closed subset of $B C(S, W)$. Combined with Theorem 4.7.5 on p. 218, it follows that $B C(S, X)$ is a complete metric space.
(b) For every $f: S \rightarrow X$ in $B C(S, X)$, define $\tilde{K}(f): S \rightarrow X$ by $s \mapsto K(s, f(s))$. Prove that $\tilde{K}(f)$ is an element of $B C(S, X)$.
(c) Prove that the map $\tilde{K}: B C(S, X) \rightarrow B C(S, X)$ by $f \mapsto \tilde{K}(f)$ is C-Lipschitz. Apply the contraction mapping fixed point theorem to give a second proof of Corollary 4 (in this context).
Nota Bene. Corollary 4 is more general since X need not be a closed bounded subset of a Banach space. If X is a subset of a Banach space W, then it is valid to replace X by the intersection of the closure of X with a bounded ball in W by the estimates in Corollaries $1-3$ together with the theorem from lecture that a uniformly continuous (e.g., Lipschitz) function on a metric space X extends to a continuous function on the completion of the domain (i.e., the closure of X in W). In practice the metric spaces X we work with usually are subsets of Banach spaces.
Problem 2 Let $\left(V,\|\bullet\|_{V}\right)$ be a normed vector space, let $\left(W,\|b u l l e t\|_{W}\right)$ be a Banach space. Let $\tilde{V} \subset V$ and $\tilde{W} \subset W$ be open subsets. Let $K: \tilde{V} \times \tilde{W} \rightarrow W$ be a continuous function such that for every $\vec{v} \in \tilde{V}$, the induced morphism $K_{\vec{v}, \bullet}: \tilde{W} \rightarrow W, \vec{w} \mapsto K(\vec{v}, \vec{w})$ is differentiable. Let C be a positive real number such that $C<1$. Assume that for every $\vec{v} \in S$ and for every $\vec{w} \in W$, $\left\|d\left(K_{\vec{v}, \bullet}\right)_{\vec{w}}\right\|_{\text {op }} \leq C$ so that $K_{\vec{v}, \bullet}$ is C-Lipschitz. Let $\vec{v}_{0} \in \tilde{V}$ and $\vec{w}_{0} \in \tilde{W}$ be elements such that $K_{\vec{v}_{0}, \bullet}\left(\vec{w}_{0}\right)=\vec{w}_{0}$.
(a) Using Corollaries $1-3$ on pp. 229-230 if necessary, prove that there exist real numbers $\delta_{V}>0$ and $\delta_{W}>0$ such that
(i) The ball $S=B_{\delta_{V}}\left(\vec{v}_{0}\right)$ is contained in \tilde{V}, and the closed ball $X=B_{\leq \delta_{W}}\left(\vec{w}_{0}\right)$ is contained in \tilde{W}.
(ii) The continuous map K maps $S \times X$ into X.
(b) Denote by $c_{\vec{w}_{0}}: S \rightarrow X$ the constant function $c_{\vec{w}_{0}}(\vec{v})=\vec{w}_{0}$. Apply Problem 1 to conclude that the sequence $\left(\tilde{K}^{n}\left(c_{\vec{w}_{0}}\right)\right)_{n=0,1,2, \ldots}$ converges in $B C(S, X)$ to the unique continuous function $f: S \rightarrow X$ from Corollary 4.
(c) Finally assume that $G: \tilde{V} \times \tilde{W} \rightarrow W$ is a continuous function such that every $G_{\vec{v}, \bullet}$ is differentiable and the derivatives $d\left(G_{\vec{b}, \bullet}\right)_{\vec{w}}$ vary continuously in $(\vec{v}$, vecw $)$. Let $\vec{v}_{0} \in \tilde{V}$ and $\vec{w}_{0} \in \tilde{W}$ be elements such that $G_{\vec{v}_{0}}, \bullet\left(\vec{w}_{0}\right)=0_{W}$. Modify (or simply quote) the arguments in the proof of Theorem 4.9.3, pp. 230-231, to show that up to replacing \tilde{V} by a small open ball about \vec{v}_{0} and up to replacing \tilde{W} by a small open ball about \vec{w}_{0}, the map $K_{\vec{v}, \bullet}(\vec{w}):=\vec{w}-T^{-1}\left(G_{\vec{v}, \bullet}(\vec{w})\right)$ satisfies the hypothesis in (a). As above, conclude that $\left(\tilde{K}^{n}\left(c_{\vec{w}_{0}}\right)\right)_{n=0,1,2, \ldots}$ converges in $B C(S, X)$ to the unique continuous function $f: S \rightarrow X$ such that $G(\vec{v}, f(\vec{v}))=0$.
Problem 3 With the same notation as above, let $V=W=\mathbb{R}$ and let $G: V \times W \rightarrow W$ be the function $G(x, y)=(1+x)-(1+y)^{2}$, so that $G\left(x_{0}, y_{0}\right)=0$ for the point $\left(x_{0}, y_{0}\right)=(0,0)$. Compute T and T^{-1}. Compute $K(x, y)$ and compute $\tilde{K}(f(x))$. Starting with the constant function $c_{0}(x)=0$, compute the first three iterates $\tilde{K}\left(c_{0}\right), \tilde{K}\left(\tilde{K}\left(c_{0}\right)\right)$ and $\tilde{K}\left(\tilde{K}\left(\tilde{K}\left(c_{0}\right)\right)\right)$. How do these compare to the Taylor approximations to $\sqrt{1+x}-1$ about $x_{0}=0$?
Problem 4 Let n be a positive integer. Let V and W both be the vector space $L\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ of linear operators on \mathbb{R}^{n}. Denote by $\mathrm{Id}_{\mathbb{R}^{n}}$ the identity matrix. Let $G: V \times W \rightarrow W$ be the function $G(X, Y)=\left(\operatorname{Id}_{\mathbb{R}^{n}}+X\right) \circ\left(\operatorname{Id}_{\mathbb{R}^{n}}+Y\right)-\operatorname{Id}_{\mathbb{R}^{n}}$, so that $G\left(X_{0}, Y_{0}\right)=0$ for the point $\left(X_{0}, Y_{0}\right)=(0,0)$. Compute T and T^{-1}. Compute $K(X, Y)$ and compute $\tilde{K}(f(X))$. Starting with the constant function $c_{0}(X)=0$, compute the first three iterates $\tilde{K}\left(c_{0}\right), \tilde{K}\left(\tilde{K}\left(c_{0}\right)\right)$ and $\tilde{K}\left(\tilde{K}\left(\tilde{K}\left(c_{0}\right)\right)\right)$. How do these compare to the "Taylor approximations" to $\left(\operatorname{Id}_{\mathbb{R}^{n}}+X\right)^{-1}$ about $X_{0}=0$?
Problem 5 Find an example of a continuously differentiable function $G: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ such that $G(0,0)=0$, yet with $\left(d G_{0, \bullet}\right)_{0}$ noninvertible and such that there is no continuous function $f:\left(-\epsilon_{V}, \epsilon_{V}\right) \rightarrow\left(-\epsilon_{W}, \epsilon_{W}\right)$ with $G(x, f(x))=0$.

