MAT 544 Problem Set 1

Problems.

Problem 1. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces. Define a function

$$
d_{X \times Y}:(X \times Y) \times(X \times Y) \rightarrow \mathbb{R}
$$

by $d_{X \times Y}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d_{X}\left(x_{1}, x_{2}\right)+d_{Y}\left(y_{1}, y_{2}\right)$.
(a) Prove that this is a metric space.
(b) Denote by $\pi_{X}: X \times Y \rightarrow X$ and $\pi_{Y}: X \times Y \rightarrow Y$ the two projections. Prove that these functions are continuous, in fact even Lipschitz (hence uniformly continuous).
(c) If X and Y are each complete metric spaces, prove that also $X \times Y$ (with the above metric) is a complete metric space.
(d) Let $\left(Z, d_{Z}\right)$ be a metric space and let $\left(f_{X}: Z \rightarrow X, f_{Y}: Z \rightarrow Y\right)$ be a pair of continuous functions. Prove that there exists a unique continuous function $f: Z \rightarrow X \times Y$ such that f_{X} equals $f \circ \pi_{X}$ and f_{Y} equals $f \circ \pi_{Y}$.
(e) Give an example of metric spaces X and Y and a metric d^{\prime} on $X \times Y$ which is different from $d_{X \times Y}$ and which still satisfies the property from part (d). Conclude that this property does not characterize $d_{X \times Y}$ (however, it does characterize the topology induced by this metric).
Problem 2. Let $\left(X, d_{X}\right)$ be a metric space. Give $X \times X$ the metric from Problem 1. Prove that the function $d_{X}: X \times X \rightarrow \mathbb{R}$ is Lipschitz for this metric.
Problem 3. For a metric space $\left(X, d_{X}\right)$, an element x of X, and a real number $r \geq 0$, the closed unit ball is sometimes defined to be

$$
B_{\leq r}(x):=\left\{x^{\prime} \in X \mid d_{X}\left(x, x^{\prime}\right) \leq r\right\},
$$

i.e., one uses "less than or equal to" rather than "less than" as in the definition of the open unit ball.
(a) For $r>0$, prove that the closure of the open unit ball $B_{r}(x)$ is contained in the closed unit ball $B_{\leq r}(x)$.
(b) Give an example of a subset S of \mathbb{R}^{2} (with the usual Euclidean metric), an element x of S and a real number $r>0$, such that for the subspace metric on S, the closure of $B_{r}(x)$ in S is strictly contained in $B_{\leq r}(x)$.
Problem 4 Define sequence of integers $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ by the recursive relation $a_{0}=2, b_{0}=1$ and for every $n \geq 0$,

$$
a_{n+1}=a_{n}^{2}+2 b_{n}^{2}, \quad b_{n+1}=2 a_{n} b_{n} .
$$

Prove that every $b_{n} \neq 0$ so that $\left(a_{n} / b_{n}\right)_{n \geq 0}$ is a well-defined sequence in \mathbb{Q}, prove that this sequence is Cauchy, and prove that this sequence does not have a limit. Thus the Archimedean ordered field \mathbb{Q} is not complete.

Problem 5 This is Exercise 4.3.14 of Loomis-Sternberg. Let $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ and $\left(Z, d_{Z}\right)$ be metric spaces. Define the metric $d_{X \times Y}$ on $X \times Y$ as in Problem 1. Let $g: X \times Y \rightarrow Z$ be a function such that for every $x \in X$ the function

$$
g_{x}: Y \rightarrow Z, \quad y \mapsto g(x, y)
$$

is continuous and for every $y \in Y$ the function

$$
g_{y}: X \rightarrow Z, \quad x \mapsto g(x, y)
$$

is continuous uniformly over y, i.e., for every x_{0} in X and for every $\epsilon>0$, there exists $\delta>0$ such that

$$
d_{X}\left(x_{0}, x\right)<\delta \Rightarrow d_{Z}\left(g\left(x_{0}, y\right), g(x, y)\right)<\epsilon
$$

for all values $y \in Y$ simultaneously. Prove that g is continuous.

