Name:
Problem 1: /60

Problem 1 (60 points) Let V be the vector space \mathbb{R}, and let \vec{v}_{0} be 0 . Let W be the vector space \mathbb{R}^{2}, and let \vec{w}_{0} be $\overrightarrow{0}$. Let $G: V \times W \rightarrow W$ be the following continuously differentiable function,

$$
\left(x,\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]\right) \mapsto\left[\begin{array}{l}
y_{1}+y_{2}+y_{1}^{2}-x \\
y_{1}-y_{2}-y_{2}^{2}+x
\end{array}\right] .
$$

For every $\vec{v} \in V$, denote by $G_{\vec{v}}: W \rightarrow W$ the function $\vec{w} \mapsto G(\vec{v}, \vec{w})$. It is true that $G_{\vec{v}_{0}}\left(\vec{w}_{0}\right)$ equals 0 and $T:=d\left(G_{\vec{v}_{0}}\right)_{\vec{w}_{0}}$ is an invertble linear transformation.
An associated contraction is a triple $(\tilde{V}, \tilde{W}, K)$ of an open ball centered at $\vec{v}_{0}, \vec{v}_{0} \in \tilde{V} \subset V$, a positive radius, bounded, closed ball centered at $\vec{w}_{0}, \vec{w}_{0} \in \tilde{W} \subset W$, and a continuously differentiable function $K: \tilde{V} \times \tilde{W} \rightarrow \tilde{W}$ with $d\left(K_{\vec{v}_{0}}\right)_{\vec{w}_{0}}=0$ and such that for every $\vec{v} \in \tilde{V}, K_{\vec{v}}: \tilde{W} \rightarrow \tilde{W}$ is a contraction whose unique fixed point \vec{w} is the unique element of \tilde{W} such that $G_{\vec{v}}(\vec{w})$ equals 0 . An implicit function is a continuously differentiable function $f: \tilde{V} \rightarrow \tilde{W}$ such that for every $\vec{v} \in \tilde{V}$ and $\vec{w} \in \tilde{W}$, we have $G(\vec{v}, \vec{w})$ equals 0 if and only if $\vec{w}=f(\vec{v})$.
Do all of the following.
(i) (10 points) Compute the linear transformation $T=d\left(G_{\vec{v}_{0}}\right)_{\vec{w}_{0}}$.
(ii) (10 points) Compute the inverse linear transformation T^{-1}.
(iii) (20 points) Write down a continuously differentiable function $K: V \times W \rightarrow W$ such that for some choice of \tilde{V} and \tilde{W} (which you do not need to find) the triple $(\tilde{V}, \tilde{W}, G)$ is an associated contraction. Write out each component of your answer; do not leave matrix multiplications unevaluated. Also simplify as much as possible (gather like terms and do all appropriate cancellations).
(iv) (20 points) Starting with the constant function $f_{0}: \tilde{V} \rightarrow \tilde{W}$ given by $f_{0}(x)=\vec{w}_{0}$, compate explicitly the iterates f_{1} and f_{2} in the approximating sequence determined by K which uniformly converges to the implicit function f.
(i) For a differentiable function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by $\left[\begin{array}{c}x_{1}^{\prime} \\ \frac{x_{2}}{2} \\ y_{m}\end{array}\right] \leftrightarrow\left[\begin{array}{c}g_{1}\left(y_{1}, y_{2}, \ldots, y_{n}\right) \\ \vdots \\ g_{m}\left(y_{1}, y_{2}, \ldots, y_{2}\right)\end{array}\right]$, the total derivative at $\vec{w}_{0}=\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{p}\end{array}\right]$ is given by (left) multiplication by the Jacobian matrix
 so $\left[\frac{\partial g_{i}}{\partial y_{j}}\right]=\left[\begin{array}{cc}1+2 y_{1} & 1 \\ 1 & -1-2 y_{2}\end{array}\right]$, and $d\left(\sigma_{0}\right)_{\omega_{0}}=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$
(ii) Either by Cramer's Rule, row reduction of [$\left.T: I d_{2 z r}\right]$ to $\left[J_{p_{x e}} \vdots T^{-1}\right]$, or goess-and-chrel, $T^{-1}=\frac{1}{2}\left[\begin{array}{ll}1 & 1 \\ 1 & -1\end{array}\right]$.

Name:
Problem 1, continued
(iii) The formula for the contraction is $K_{\vec{v}}(\vec{w})=\vec{w}-T^{-1} \circ G_{\vec{v}}(\vec{w})$.

$$
T^{-1} \circ G_{\vec{v}}(\vec{w})=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
y_{1}+y_{2}+y_{1}^{2}-x \\
y_{1}-y_{2}-y_{2}^{2}-x
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
2 y_{1}+y_{1}^{2}-y_{0}^{2} \\
2 y_{2}+y_{1}^{2}+y_{2}^{2}-2 x
\end{array}\right]=\left[\begin{array}{l}
y_{1}+\overrightarrow{y_{2}}\left(y_{1}^{2}-y_{2}^{2}\right) \\
y_{2}+\frac{1}{2}\left(y_{1}^{2}+y_{2}^{2}\right)-x
\end{array}\right] \text {. }
$$

So $\left.K_{\vec{v}}(\vec{w})=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]-\left[\begin{array}{l}y_{1}+\frac{1}{2}\left(y_{1}^{2}-y_{2}^{2}\right) \\ y_{2}+\frac{1}{2}\left(y_{1}^{2}+y_{2}^{2}\right)-x\end{array}\right]=\left[\begin{array}{c}\frac{1}{2}\left(y_{2}^{2}-y_{1}^{2}\right) \\ -\frac{1}{2}\left(y_{2}^{2}+y_{1}^{2}\right)+x\end{array}\right]\right]$
(iv) The approximating sequence is given by $f_{n+1}(x)=K_{x}\left(f_{n}(x)\right)=\ldots$ Explicitly, if $f_{n}(x)$ equals $\left[\begin{array}{l}f_{n, 1}(x) \\ f_{n, 2}(x)\end{array}\right]$, then (iii) gives $=\left(k_{x}\right)^{n}\left(f_{0}(x)\right)$.
$\left[\begin{array}{l}f_{n+1,1}(x) \\ f_{n+1,2}(x)\end{array}\right]=\left[\begin{array}{c}\frac{1}{2}\left(\left(f_{n, 2}(x)\right)^{2}-\left(f_{n,(x)}\right)^{2}\right)^{2} \\ \frac{-1}{2}\left(\left(f_{n, 2}(x)\right)^{2}+\left(f_{0,1}(x)\right)^{2}\right)+x\end{array}\right]$. Starting from $f_{0}(x)=\left[\begin{array}{l}0 \\ 0\end{array}\right]$, this gives

$$
\left[\begin{array}{l}
f_{1,}(x) \\
f_{1,2}(x)
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}\left(0^{2}-0^{2}\right) \\
-\frac{1}{2}\left(0^{2}+0^{2}\right)+x
\end{array}\right]=\left[\begin{array}{c}
0 \\
x
\end{array}\right],\left[\begin{array}{l}
f_{2,1}(x) \\
f_{2,2}(x)
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}\left(x^{2}-0^{2}\right) \\
-\frac{1}{2}\left(x^{2}+0^{2}\right)+2
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} x^{2} \\
x-\frac{1}{2} x^{2}
\end{array}\right] .
$$

Name: \qquad Problem 2:

Problem 2(80 points) Consider the following and order, constant coefficient, initial value problem

$$
\frac{d^{2} x}{d t^{2}}-2 \frac{d x}{d t}+x=0, \quad x\left(t_{0}\right)=b_{0}, \quad \frac{d x}{d t}\left(t_{0}\right)=b_{1}
$$

(a) (10 points) Find a 2×2-matrix A with real entries such that for every $\left(b_{0}, b_{1}\right)^{\dagger} \in \mathbb{R}^{2}$, the solution of the 1 st order IVP

$$
\frac{d \vec{x}}{d t}=A \vec{x}, \quad \vec{x}\left(t_{0}\right)=\left[\begin{array}{c}
b_{0} \\
b_{1}
\end{array}\right], \quad \vec{x}(t)=\left[\begin{array}{c}
x_{0}(t) \\
x_{1}(t)
\end{array}\right]
$$

gives a solution of the original and order IVP by $x(t)=x_{0}(t)$.
(b)(15 points) Find the characteristic polynomial of A, find the factorization into a product of linear factors (each of which will be real), and find all eigenvalues of A.
(c)(20 points) Find an invertible 2×2 matrix U, a diagonal 2×2 matrix \tilde{S}, and a 2×2 matrix \tilde{N} which is upper triangular (or lower triangular if you prefer) such that $\tilde{S} \tilde{N}=\tilde{N} \tilde{S}$ and such that $A U=U(\tilde{S}+\tilde{N})$.
(d)(20 points) Compute $\exp \left(\tilde{S}\left(t-t_{0}\right)\right), \exp \left(\tilde{N}\left(t-t_{0}\right)\right)$ and $\exp \left(A\left(t-t_{0}\right)\right)$. In your answer, write out each entry of the matrix; do not leave matrix multiplications unevaluated. All entries of your matrices should involve only polynomials in t and exponential in t, no unevaluated power series.
(e)(15 points) Find the general solution $\vec{x}(t)$ of the 1st order IVP above. Write out each component of $\vec{x}(t)$; do not leave matrix multiplications unevaluated. Both components should involve only polynomials in t and exponential in t.
(a). Set $x_{0}(t)=x(t)$ and $x_{1}(t)=\frac{d x}{d t}(t)$. Then $\frac{d}{d t} x_{d}(t)$ equals $x_{1}(t)$. And $\frac{d}{d t} x_{1}(t)$ equals $\frac{d^{2} x}{d t^{2}}$, which equals $2 \frac{d x}{d t}-x=-1 x_{0}(t)+2 x_{1}(t)$, by the $2^{\text {nd }}$ order oDE. Thus $\left\{\begin{array}{l}\frac{d}{d t} x_{0}(t)=0 x_{0}(t)+1 x_{1}(t) \\ \frac{d}{d t} x_{1}(t)=-1 x_{0}(t)+2 x_{1}(t)\end{array}\right.$, or $\quad \frac{d}{d t}\left[\begin{array}{l}x_{0}(t) \\ x_{1}(t)\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ -1 & 2\end{array}\right]\left[\begin{array}{l}x_{0}(t) \\ x_{1}(t)\end{array}\right], A=\left[\begin{array}{cc}0 & 1 \\ -1 & 2\end{array}\right]$ (b). $\operatorname{Trace}(A)=0+2=2$ and $\operatorname{Det}(A)=0 \cdot 2-1(-1)=1$. Thus the characteristic polynomial is $C_{A}(\lambda)=\operatorname{Det}\left(\lambda I d_{2 \times 2}-A\right)=\lambda^{2}-\operatorname{Trace}(A) \lambda+\operatorname{Det}(A)=\lambda^{2}-2 \lambda+1$ There is one repeated eigenvalue, $\lambda_{1}=1$. $=(\lambda-1)^{2}$.

Name:
Problem 2, continued
(c). The matrix $A-\lambda_{1} I_{d_{22}}$ is $\left[\begin{array}{ll}0 & 1 \\ -1 & 2\end{array}\right]-\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}-1 & 1 \\ -1 & 1\end{array}\right]$. The kernel is

One vector in $\mathbb{R}^{2} \backslash \operatorname{Ker}\left(A-\lambda_{1} I_{d_{222}}\right)$ is $B_{2}:=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. $\operatorname{span}\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ 。
And $\left(A-\lambda_{1} I d_{202}\right) \|_{2}$ is $\left[\begin{array}{cc}-1 & 1 \\ -1 & 1\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Denote this by $b_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
Then $U:=\left[H_{1} \vdots H_{2}\right]=\left[\begin{array}{lll}1 & 0 \\ 1 & 0 \\ 1 & 1\end{array}\right]$ satisfies $\left(A-\lambda_{1} I d_{2: 2}\right) U=\left[\left(A-\lambda_{1} I_{d}\right) H_{1} \mid\left(A-\lambda_{1} z_{d}\right) H_{2}\right]=$

$$
\left[\vec{O} \vdots b_{1}\right]=\left[\begin{array}{ll:l}
O b_{1}+O b_{2} & 1 b_{1}+O b_{1}
\end{array}\right]=\left[\begin{array}{l:l}
b_{1}: b_{2}
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=U N \quad \text { where } \tilde{N}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \text {. }
$$

Thus, for $\frac{U=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right], \tilde{S}=\lambda_{1} I_{d 24}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], \widetilde{N}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]}{U^{-1}=\left[\begin{array}{cc}2 & 0 \\ -1 & 2\end{array}\right]}, \quad A U$ equals $U(\widetilde{S}+\tilde{N})$.
(d). $\widetilde{S}\left(t-t_{0}\right)$ equals $\left[\begin{array}{cc}t-t_{0} & 0 \\ 0 & t-t_{0}\end{array}\right]$. so that $\exp \left(\tilde{s}\left(t-t_{0}\right)\right)$ equals $\left[\begin{array}{cc}e^{t-t_{0}} & 0 \\ 0 & e^{t-t_{0}}\end{array}\right]$.
$\widetilde{N}\left(t-t_{0}\right)$ equals $\left[\begin{array}{ll}0 & t-t_{0}\end{array}\right]$. $\tilde{N}\left(t-t_{0}\right)$ equals $\left[\begin{array}{cc}0 & t-t_{0} \\ 0 & 0\end{array}\right]$, which has square equal to $O_{2 \times 2}$. Therefore $\exp \left(\tilde{N}\left(t-t_{0}\right)\right)=I d_{2 \times 2}+\frac{1}{1!} \tilde{N}\left(t-t_{0}\right)+\frac{1}{2!}\left(\tilde{N}\left(t-t_{0}\right)\right)^{2}+\ldots$ equals $\quad I d_{2 a 2}+\tilde{N}\left(t-t_{0}\right)=\left[\begin{array}{cc}1 & t-t_{0} \\ 0 & 1\end{array}\right]$.
Since $\tilde{S}\left(t-t_{0}\right)$ and $\tilde{N}\left(t-t_{0}\right)$ commute, $\exp \left(\tilde{S}\left(t-t_{0}\right)+\tilde{N}\left(t-t_{0}\right)\right)$ equals exp $\left.\tilde{S}\left(t-t_{0}\right) \cdot \exp \tilde{N}(t-t)\right)$ $=\left[\begin{array}{cc}e^{t-t_{0}} & 0 \\ 0 & e^{t-t_{0}}\end{array}\right]\left[\begin{array}{cc}1 & \left(t-t_{0}\right) \\ 0 & 1\end{array}\right]=e^{t-t_{0}}\left[\begin{array}{cc}1 & \left(t-t_{0}\right) \\ 0 & 1\end{array}\right]$. Finally, since $A\left(t-t_{0}\right)$ equals $U\left(\bar{s}\left(t-t_{0}\right)+\tilde{N}\left(t_{0} t_{0}\right) U^{\prime \prime}\right.$

$$
\begin{align*}
& e^{t \cdot t_{0}}\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1-\left(t-t_{0}\right) & t-t_{0} \\
-1 & 1
\end{array}\right]=e^{t-t_{0}}\left[\begin{array}{cc}
1-\left(t-t_{0}\right) & +\left(t-t_{6}\right) \\
-\left(t-t_{0}\right) & 1+\left(t_{-}-t_{0}\right.
\end{array}\right] \tag{j}\\
& \text { (e) The solution is }
\end{align*}
$$

$$
\left[\begin{array}{l}
\left(b_{0}+\left(b_{1}-b_{0}\right)\left(t-t_{0}\right)\right) e^{t-t_{0}} \\
\left(b_{1}+\left(b_{1}-b_{0}\right)\left(t-t_{0}\right)\right) e^{t-t_{0}}
\end{array}\right]
$$

Problem 3(60 points) Let X be a set. Let $\left(X_{n}\right)_{n=1}^{\infty}$ be a collection of subset $X_{n} \subset X$ such that $X=\cup_{n=1}^{\infty} X_{n}$ and such that $X_{n} \subset X_{n+1}$ for every n. Let $\left(X_{n}, \mathcal{M}_{n}, \mu_{n}\right)_{n=1}^{\infty}$ be a collection of (nonnegative) measure spaces such that $\mathcal{M}_{n+1} \cap \mathcal{P}\left(X_{n}\right)$ equals \mathcal{M}_{n} and μ_{n+1} restricted to \mathcal{M}_{n} equals μ_{n} for every n.

Define $\mathcal{M} \subset \mathcal{P}(X)$ to be the collection of sets $E \subset X$ such that for every $n, E \cap X_{n}$ is in \mathcal{M}_{n}. And for every such E, define

$$
\mu(E):=\sup _{n \in \mathbb{N}} \mu_{n}\left(E \cap X_{n}\right) .
$$

(a) (15 points) Prove that \mathcal{M} is a σ-algebra on X.
(b) (20 points) Prove that $\mu(\emptyset)=0$, that μ is finitely additive, and thus that μ is monotone, i.e., $\mu(E) \leq \mu(F)$ if $E \subset F$.
(c)(25 points) Prove that μ is countably additive, thus a measure function.

Hint. Part (b) gives one inequality. Because of this, it suffices to consider a sequence $\left(E_{k}\right)_{k=1}^{\infty}$ of pairwise disjoint sets in \mathcal{M} such that $\sum_{k} \mu\left(E_{k}\right)$ is finite. Thus for every real $\epsilon>0$, there exists an integer $K>0$ such that for every integer $L>0$,

$$
\sum_{k=1}^{L} \mu\left(E_{k}\right) \leq \sum_{k=1}^{\infty} \mu\left(E_{k}\right) \leq\left(\sum_{k=1}^{K} \mu\left(E_{k}\right)\right)+\epsilon .
$$

And for every integer $k>0$, and for every real $\epsilon_{k}>0$, there exists an integer n_{k} such that for all $n \in \mathbb{N}$, we have

$$
\mu_{n}\left(E_{k} \cap X_{n}\right) \leq \mu\left(E_{k}\right) \leq \mu_{n_{k}}\left(E_{k} \cap X_{n_{k}}\right)+\epsilon_{k} .
$$

(a) Axiom $1 \cdot \phi \in \mathcal{M}$. For every $n=1,2, \ldots, \phi$ is in μ_{n}. So for every $n, \phi n X_{n}=\varnothing$ is in \mathcal{M}_{n}. Hence \varnothing is in \mathcal{M}.
Axioms 2. $E \in \mu$ implies $X \backslash E$ is in μ. Let E be in μ. Then for every n, $E_{n} X_{n}$ is in μ_{n}. Since \mathcal{M}_{n} is an algebra on X_{n}, the complement $X_{n} \backslash\left(E_{n} X_{n}\right)$ is in \mathcal{M}_{n}. Since $(X \backslash E) \cap X_{n}$ equals $X_{n} \backslash\left(E \cap X_{n}\right),(X \backslash E) \cap X_{n}$ is in \mathcal{M}_{n} for every n. Hence $X \backslash E$ is in $M_{\text {. }}$ Axiom 3. \mathcal{M} stable under countable union. Let $\left(E_{i}\right)_{i=1}^{\infty}$ be a sequence of elements $E_{i} \in \mathcal{M}$. Then for every $n \&$ for every $i, E_{i} \cap X_{n}$ is in \mathcal{M}_{n}. Since \mathcal{M}_{n} is a $\sigma-\partial l$ debra, $\bigcup_{i=1}^{\infty}\left(E_{i} \cap X_{n}\right)$ is in M_{n}. Since $\left(\bigcup_{i=1}^{\infty} E_{i}\right) \cap X_{n}$ equals $\bigcup_{i=1}^{\infty}\left(E_{i} \cap X_{n}\right),\left(\bigcup_{i=1}^{\infty} E_{i}\right) \cap X_{n}$ is in M_{n} for every n. Hence $\bigcup_{i=1}^{\infty} E_{i}$ is in \mathcal{M}.
Since \mathcal{M} satisfies Axioms 1,2 and $3, \mathcal{M}$ is a σ-algebra.

Let E be an element of μ_{n}. For every $m \leqslant n$, since $X_{m} \in P\left(x_{n}\right) n \mu_{n}=\mu_{m}$, also En m is in $P\left(X_{m}\right) \cap \mu_{n}=\mu_{m}$ (since μ_{n} is an algebra). And for every $m \geqslant n$, $E n X_{m}=E$ is in $\mu_{n} \leq \mu_{m *}$ Thus E is in $\mu_{\text {. Also for } m \leq n, ~} \mu_{m}\left(E \cap X_{m}\right)=\mu_{n}\left(E_{n} X_{n}\right)\left(b y \mu_{m o 1} \mu_{\mu_{m}} \mu_{n}\right)$ $\leqslant \mu_{n}(E)$ by monotonicity of μ_{n}. And for $m \geqslant n \mu_{m}\left(E n x_{n}\right)=\mu_{m}(E)=\mu_{0}(E)$. Therefore $\mu(E)=\sup \mu_{m}\left(E_{n} X_{m}\right)$ equals $\mu_{n}(E)$. So $\mu_{n} \subseteq \mathcal{M}$ and $\left.\mu\right|_{\mu_{n}}$ equals μ_{n}. Name: \qquad Problem 3, continued
(b). $\mu(\phi)=0$. For every n, since μ_{n} is a measure function, $\mu_{n}\left(\phi n x_{n}\right)=\mu_{n}(\phi)$ equals 0 . Hence $\mu(\phi)=\sup _{n} \mu_{n}\left(\phi_{0} x_{n}\right)=$ sup 0 , which equals 0 .
μ is finitely additive. Let E, F be sets in M_{n} with $E n F=\varnothing$. Then for every n, En X_{n} and $F_{n} X_{n}$ are disjoint in μ_{n}. Since μ_{n} is finitely additive, $\mu_{n}\left(E n X_{n}\right) \cup($ Fax)) equals $\mu_{n}\left(E \cap X_{n}\right)+\mu_{n}\left(F n X_{n}\right)$. Therefore $\mu(E \cup F)=\operatorname{Supp}_{n} \mu_{n}\left((E \cup F) \cap X_{n}\right)=\operatorname{Sup}\left(\mu_{n}\left(E n X_{n}\right)+\mu_{n}\left(F_{n} X_{0}\right)\right)$, which is $\leqslant \operatorname{Sup}_{n} \mu_{n}\left(E n X_{n}\right)+\operatorname{Sup}_{n} \mu_{n}\left(F n X_{n}\right)=\mu(E)+\mu(F)$.
If $\mu(E \cup F)$ equals $+\infty$, then also $\mu(E)+\mu(F)$ equals $+\infty$, so $\mu(E \cup F)$ equals, $\left[(G)\left(\mu()^{\circ}\right)\right.$ Thus assume $\mu(E \cup F)$ is finite, ie. $\operatorname{Sup}_{n}\left(\mu_{0}\left(E \cap X_{n}\right)+\mu_{n}\left(F X_{n}\right)\right)$ is finite. Since each $\mu_{n}\left(F n x_{n}\right)$ is $\geqslant 0, \mu(E)=\sup _{n}^{n} \mu_{n}\left(E_{n} x_{n}\right) \leqslant \operatorname{Sup}_{n} p\left(\mu_{n}\left(E_{n} x_{n}\right)+\mu_{n}\left(F_{n} x_{n}\right)\right)<+\infty$ Similarly $\mu(F)<\infty$. Since the sequences $\left(\mu_{0}\left(E 0 R_{0}\right)\right)_{n=1}^{\infty}$ and $\left(\mu_{n}\left(F n n_{n}\right)\right)_{n=1}^{\infty}$ are nondecreasing and bounded, they are convergent with limit equal to the suppomin Thus also $\left(\mu_{n}\left(E_{0} X_{n}\right)+\mu_{n}\left(F_{0} X_{n}\right)\right)_{n=1}^{\infty}$ is convergent with limit equal to the suprenun (in fact this was our hyputhesis), and the limit laws give

$$
\begin{aligned}
& \mu(E \cup F)=\sup _{n}\left(\mu_{n}\left(E \Delta x_{n}\right)+\mu_{n}\left(F F_{n} x_{n}\right)=\lim _{n \rightarrow \infty}\left(\mu_{n}\left(E n x_{n}\right)+\mu_{n}\left(F_{n} x_{n}\right)\right)=(\text { by the limit laws) }\right. \\
& \lim _{n \rightarrow \infty} \mu_{n}\left(E n x_{n}\right)+\lim _{n \rightarrow \infty} \mu_{n}\left(F_{n} x_{n}\right)=\sup _{n} \mu_{n}\left(E n x_{n}\right)+\sup _{n} \mu_{n}\left(F a x_{n}\right)=\mu(E)+\mu(F) .
\end{aligned}
$$

Hence μ is finitely additive. Thus μ is also monotone.
(c). Leaving the hint aside, by an exercise from Problem Set 7 , a finitely additive $\bar{\mu}$ is countably additive if and only if it is continuous from below. Let $E_{1} \subset E_{2} \subset \cdots$ be a sequence of sets in M. By monotonicity sup $\mu\left(E_{i}\right) \leqslant$ $\mu\left(\bigcup_{i=1}^{\infty} E_{i}\right)$ (since μ is a o-algetra, $\bigcup_{i=1}^{\infty} E_{i}$ is in μ). By definition, $\mu\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sup \mu_{n}\left(U E_{i} o_{n}\right)$ Of course $E_{1} a X_{n} \subset E_{2} n x_{n} \subset \cdots$ is an incre acing sequence in \mathcal{M}_{n}. Since μ_{n} is countably additive, it is continuous from below, so $\mu_{n}\left(U\left(E_{i} n_{n} N_{n}\right)\right.$ equals $s_{i} u p \mu_{n}\left(E_{i} \circ K_{n}\right)$.
\qquad Problem 3, continued

$$
\begin{aligned}
& \text { Name: } \\
& S_{0}, \mu\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sup _{n \in \mathbb{Z}_{Z_{0}}} \quad \sup _{i \in \mathbb{Z}_{p 0}} \quad \mu_{n}\left(E_{i} \cap X_{n}\right)=\sup _{(n, j) \in \mathbb{Z}_{70} \mathbb{Z}_{30}} \mu_{n}\left(E_{i} \cap X_{n}\right) \\
& =\sup _{i \in \mathbb{Z}_{>0}} \sup _{n \in \mathbb{Z}_{>0}} \mu_{n}\left(E_{i} \cap X_{n}\right)=\sup _{i \in \mathbb{I}_{>0}} \mu\left(E_{j}\right) \text {. Thus } \mu \text { is continuous from } \text { below. }
\end{aligned}
$$

