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MAT 311 Solutions to Final Exam Practice

Remark. If you are comfortable with all of the following problems, you will be very well prepared
for the midterm. Some of the problems below are more difficult than a problem that would be
asked on the midterm. But all of the problems will help you practice the skills and results from
this part of the course.

Exam Policies. You must show up on time for all exams. Within the first 30 minutes of each
exam, no students will be allowed to leave the exam room. No students arriving after the first 30
minutes will be allowed to take the exam. Students finishing within the last 10 minutes of the exam
may be asked to remain until the exam is over and then follow special instructions for turning in
their exams (for instance, students are often asked to turn in exams row-by-row).

If you have a university-approved reason for taking an exam at a time different than the scheduled
exam (because of a religious observance, a student-athlete event, etc.), please contact your instructor
as soon as possible. Similarly, if you have a documented medical emergency which prevents you
from showing up for an exam, again contact your instructor as soon as possible.

For excused absences from a midterm, the usual policy is to drop the missed exam and compute the
exam total using the other exams. In exceptional circumstances, a make-up exam may be scheduled
for the missed exam. For an excused absence from the final exam, the correct letter grade can only
be assigned after the student has completed a make-up final exam.

All exams are closed notes and closed book. Once the exam has begun, having notes or books on
the desk or in view will be considered cheating and will be referred to the Academic Judiciary.

For all exams, you must bring your Stony Brook ID. The IDs may be checked against picture sheets.

It is not permitted to use cell phones, calculators, laptops, MP3 players, Blackberries or other
such electronic devices at any time during exams. If you use a hearing aid or other such device,
you should make your instructor aware of this before the exam begins. You must turn off your
cell phone, etc., prior to the beginning of the exam. If you need to leave the exam room for any
reason before the end of the exam, it is still not permitted to use such devices. Once the exam has
begun, use of such devices or having such devices in view will be considered cheating and will be
referred to the Academic Judiciary. Similarly, once the exam has begun any communication with a
person other than the instructor or proctor will be considered cheating and will be referred to the
Academic Judiciary.

Practice Problems.
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(1) In each of the following cases, for the given pair (m,n) 6= (0, 0) of integers, find the greatest
common divisor c > 0. Find the integers m/c and n/c. Find integers u and v such that c equals
um + vn. Given integers (x, y), know a necessary and sufficient condition in terms of c such that
there exists an integer z with z ≡ x (mod m) and z ≡ y (mod n). Assuming the condition is true,
find a formula for one particular such integer z, and know how to describe the general such integers
in terms of a particular integer.

(a) (m,n) = (114, 91).
(b) (m,n) = (51, 85).
(c) (m,n) = (−56, 92).
(d) (m,n) = (72, 54).
(e) (m,n) = (b3, (b+ 1)3), where b is an arbitrary integer.

(2) For each of the following sequences (n1, . . . , nr) of pairwise relatively prime integers, find a
formula for a particular integer z such that

z ≡ x1 (mod n1), . . . , z ≡ xr (mod nr),

for a variable sequence of residues (x1, . . . , xr). Finally, for the given sequence of residues (a1, . . . , ar),
find the integer z as above with smallest absolute value.

(a) (n1, n2, n3) = (1, 2, 3), (a1, a2, a3) = (0, 1, 2).
(b) (n1, n2, n3) = (4, 9, 25), (a1, a2, a3) = (1, 1, 1).
(c) (n1, n2, n3, n4) = (16, 27, 25, 7), (a1, a2, a3, a4) = (−1, 1,−1, 1).
(d) (b, b+ 1, b(b+ 1) + 1), (a1, a2, a3) = (1, 0, 0), where b is an arbitrary integer.

(3) Prove that there are infinitely many primes congruent to 5 modulo 6.

(4) For the following list a1, . . . , ar of integers and for the following list n1, . . . , ns of positive
integers, determine precisely which integers ai are invertible modulo nj. In each such case, find an
integer bi,j such that bi,jai ≡ 1 (mod ni).

(n1, n2, n3, n4, n5)) = (8, 27, 25, 49, 51), (a1, a2, a3, a4) = (1, 2, 3, 4).

(5) In each of the following cases, determine φ(n).

n = 2, n = 7, n = 16, n = 14, n = 105, n = 75.

(6) In each of the following cases, say whether or not the given integer n is a sum of two squares.
When it is a sum of two squares, find integers a and b such that a2 + b2 equals n.

n = 0, n = 1, n = 4, n = 19, n = 29, n = 49, n = 61.

(7) In each of the following cases, find all solutions of the polynomial congruence f(x) ≡ 0 modulo
the two given relatively prime integers a and b. Then find all solutions modulo the integer ab.
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(a) f(x) = 7, (a, b) = (2, 7).
(b) f(x) = 3x− 1, (a, b) = (2, 5).
(c) f(x) = x2, (a, b) = (8, 9).
(d) f(x) = x6 − 1, (a, b) = (7, 13).
(e) f(x) = x6 + 1, (a, b) = (7, 13).

(8) In each of the following cases, for the given polynomial f(x), given prime p, and given integer
a1, say whether or not the given integer a1 is a solution of f(x) ≡ 0 (mod p). Further, say whether
or not a is a critical point of f(x) modulo p. If not, give formulas for solutions a2, resp. a3, of
f(x) ≡ 0 (mod p2), resp. of f(x) ≡ 0 (mod p3), which are congruent to a1 modulo p.

(a) f(x) = 7, p = 2, a1 = 3.
(b) f(x) = 3x− 1, p = 5, a1 = 2.
(c) f(x) = x2, p = 3, a1 = 1.
(d) f(x) = x6 − 1, p = 7, a1 = 3.
(e) f(x) = x6 + 1, p = 13, a1 = 2.

(9) For each of the following integers n, say whether or not the multiplicative group (Z/nZ)× is
cyclic. If so, find one generator, say how many generators there are, and give a formula for finding
all generators in terms of the particular generator.

n = 13, n = 14, n = 8, n = 27, n = 257.

(10) For each of the following integers n, list all units modulo n which are quadratic residues. Then
list all units modulo n which are quadratic nonresidues.

n = 5, n = 7, n = 8, n = 9, n = 10, n = 257.

(11) Compute each of the following Legendre symbols directly, without using quadratic reciprocity.(
2
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(12) Compute each of the following Legendre symbols by any method, including quadratic reci-
procity. (
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(13) In each of the following cases, for the given integer a, find a necessary and sufficient condition
for a variable odd prime p (not dividing a) that a is a quadratic residue modulo p in terms of a
congruence involving p modulo a fixed integer n (not varying with p).

a = 7, a = 13, a = 91, a = 44, a = 27.
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(14) In each of the following cases, determine whether or not the system is consistent. If it is
consistent, find the general solution.

(i)
7x+ 15y = 9

(ii)
84x− 39y = 41

(iii)
84x− 39y = 42

(iv)
84x− 39y = b, b arbitrary

(v)
15x+ 21y + 35z = 14

(15) For each of the following matrices A, find invertible, square matrices with integer entries U
and V such that UAV is defined and is in block diagonal form.

(i) A =

[
2 0
3 −1

]
, (ii) A =

 2 0 0
0 −5 0
3 0 −1

 , (iii) A =

 5 10
9 3
4 −7

 ,

(iv) A =

 1 1 −3 2
5 5 −3 10
2 2 0 4

 , (v) A =

 1 2 3
1 4 9
1 3 6

 ,
(16) For each of the matrices A from Problem 15, find necessary and sufficient conditions on
a column vector B so that there exists a column vector X with integer entries solving the linear
system AX = B. Assuming the system is consistent, find the general integer solution of the system.

(17) In each of the following cases, for the given integer d, find necessary and sufficient conditions
on a prime p such that it is properly represented by an integral, binary quadratic form with
discriminant equal to d.

d = 1, d = 2, d = −4, d = −3, d = −60.

(18) In each of the following cases, find an “admissible” linear change of coordinates that transforms
the given binary quadratic form to reduced form.

(i) 6x2 − 5xy + 3y2, (ii) 3x2 − 3xy − 3y2, (iii) 17x2 − 18xy + 4x2.
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(19) For each of the following integers d, find all the positive definite, reduced, integral, binary
quadratic forms which have discriminant d. In particular, compute the class number H(d).

d = −3, d = −4, d = −8, d = −11.

(20) For each of the cases from Problem 19, find a necessary and sufficient condition on an odd
prime p not dividing d such that p is properly represented by a positive definite, reduced, integral,
binary quadratic form with discriminant d. Can you determine which form represents which prime
p in terms of the residue class of p modulo 4d?

(21) Does there exist a Pythagorean triple (x, y, z) such that xy is a square integer?

(22) In each of the following cases, find an invertible linear change of coordinates (with rational
coefficients) that transforms the given ternary quadratic form to diagonal form. Then use Legendre’s
theorem to determine whether or not this quadratic form has a solution.

f(x, y, z) = (x2 + yz) + 3(y2 + xz) + 4(z2 + xy),

g(x, y, z) = x2 − y2 + 2xz + z2,

h(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz.

(23) In each of the following cases, for the given polynomials (f(x), g(x)) 6= (0, 0) with integer
coefficients, find the monic greatest common divisor polynomial c(x) as polynomials with rational
coefficients. Find the polynomials f(x)/c(x) and g(x)/c(x). Find polynomials u(x) and v(x) with
rational coefficients such that c(x) equals u(x)f(x) + v(x)g(x). Finally, find a polynomial with
integer coefficients F1(x), resp. G1(x), which is a scalar multiple of f(x)/c(x), resp. g(x)/c(x), and
such that F (x)/F1(x) has integer coefficients, resp. G(x)/G1(x) has integer coefficients.

(a) f(x) = x+ 2, g(x) = 2x+ 1.
(b) f(x) = x3 + x2 + x+ 1, g(x) = x+ 1.
(c) f(x) = x3 + x2 + x+ 1, g(x) = x5 + x4 + x3 + x2 + x+ 1.
(d) f(x) = (x3 + x)3, g(x) = f ′(x) = 3(x3 + x)2(3x2 + 1).

(24) For each of the following nonzero algebraic numbers α, find the minimal polynomial mα(x)
of α. Then describe 1/α as f(α) for some polynomial f(x) with rational coefficients. Finally, find
the minimal polynomial for 1/α, and find the minimal polynomial for α− (1/α).

(a) α = 1.
(b) α =

√
7.

(c) α = 3
√

7.
(d) α = 3

√
7 + 2 3

√
49.

(e) α =
√

2 +
√

3.

(25) For each of the following pairs of algebraic numbers (α, β), find the minimal polynomial of
α + β and find the minimal polynomial of α · β.
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(a) (α, β) = (1, 2).
(b) (α, β) = ( 3

√
7, 3
√

7).
(c) (α, β) = ( 3

√
7,
√

3).
(d) (α, β) = (

√
2 +
√

3,
√

3 +
√

6).

(26) For each of the following nonzero algebraic numbers α, determine whether or not α is an
algebraic integer. When it is an algebraic integer, determine all positive integers n which can be
written in the form α ·β for some choice of algebraic integer β. Finally, for the least positive integer
n1 which can be written in this form, find an algebraic integer β such that α · β equals n1. In
particular, say whether or not α is a unit, and if so, find a formula for the multiplicative inverse.

(a) α = (−1 +
√

2)/2.
(b) α = (−1 +

√
3)/2.

(c) α =
√

2 +
√

3.
(d) α = 3

√
81/3.

(27) For each of the following squarefree integers m, find the general form of an algebraic integer
in Q(

√
m). When m is negative, describe the group of units in the ring of integers.

m = 2, m = −1, m = −3, m = −5.

Solution to Problems.

Solution to (1) In general, we can compute c, u and v by repeated application of the division
algorithm (this is sometimes called the “Euclidean algorithm”). The simultaneous congruences

z ≡ x (mod m), z ≡ y (mod n)

has a solution if and only if x ≡ y (mod c). Indeed, in this case z = x+ cw is a solution for every
integer w such that w ≡ 0 (mod (m/c)) and w ≡ (y − x)/c (mod (n/c)). Since n/c and m/c are
relatively prime, we can solve this last system of congruences by the Chinese Remainder Theorem,
namely w = um(y − x)/c2 + qmn/c2 for arbitrary integers q.

(a) By repeated application of the division algorithm, c = 1, u = 4, v = −5 , i.e., 4·114+(−5)·91 =

1. This gives m/c = 114, n/c = 91. The system of congruences always has a solution, namely

z = (−5) · 91 · x+ 4 · 114 · y + q · 114 · 91 for an arbitrary integer q.

(b) By repeated application of the division algorithm, c = 17, u = 2, v = −1 , i.e., 2·51+(−1)·85 =

17. This gives m/c = 3, n/c = 5. The system of congruences has a solution if and only if
x ≡ y (mod 17). In that case the general solution is z = −5x+ 6y + q · 3 · 5 · 17 for an arbitrary
integer q.

(c) By repeated application of the division algorithm, c = 4, u = −5, v = −3 , i.e., (−5) · (−56) +

(−3) · 92 = 4. This gives m/c = −14, n/c = 23. The system of congruences has a solution if and

only if x ≡ y (mod 4). In that case the general solution is z = −69x+ 70y + q · (−14) · 23 · 4 for

an arbitrary integer q.
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(d) By repeated application of the division algorithm, c = 18, u = 1, v = −1 , i.e., 1·72+(−1)·54 =

18. This gives m/c = −4, n/c = 3. The system of congruences has a solution if and only if
x ≡ y (mod 18). In that case the general solution is z = −3x+ 4y + q · 4 · 3 · 18 for an arbitrary
integer q.

(e) Begin with the equation 1 = (−1) · b + (+1) · (b + 1). Raising both sides to the fifth power,
using the binomial theorem to expand, and gathering factors divisible by b3 and factors divisible
by (b+ 1)3 gives

1 = 15 = (−1)5b5+5·(−1)4b4(b+1)+10·(−1)3b3(b+1)2+10·(−1)2b2(b+1)3+5·(−1)b(b+1)4+(b+1)5 =

(−6(b+ 1)2 − 3(b+ 1)− 1)b3 + (6b2 − 3b+ 1)(b+ 1)3.

Thus c = 1, u = −6(b+ 1)2 − 3(b+ 1)− 1, v = 6b2 − 3b+ 1 . Thus the congruence always holds.

And the general solution is

z = (6b2 − 3b+ 1)(b+ 1)3x+ (−6(b+ 1)2 − 3(b+ 1)− 1)b3y + qb3(b+ 1)3

for an arbitrary integer q.

Solution to (2) Denote n1 · · · · · nr by n1,...,r. Let ur,1, . . . , ur,r be integers such that

1 = ur,1
n1,...,r

n1

+ · · ·+ ur,k
n1,...,r

nk
+ · · ·+ ur,r

n1,...,r

nr
.

Then for every sequence of integers (x1, . . . , xr), for the following integer z,

z = ur,1
n1,...,r

n1

x1 + · · ·+ ur,k
n1,...,r

nk
xk + · · ·+ ur,r

n1,...,r

nr
xr,

for every k = 1, . . . , r, z ≡ xk (mod nk). And the general solution of this system of congruences
is z + qn1,...,r for an arbitrary integer q. Moreover, given an integer nr+1 which is relatively prime
to every integer n1, . . . , nr, then nr+1 is relatively prime to the product n1,...,r. Thus there exist
integers vr+1 and ur+1,r+1 such that

1 = vr+1n1,...,r + ur+1,r+1n1,...,r.

Then defining ur+1,k := vr+1ur,k for k = 1, . . . , r, we have

1 = ur+1,1
n1,...,r,r+1

n1

+ · · ·+ ur+1,k
n1,...,r,r+1

nk
+ · · ·+ ur+1,r

n1,...,r,r+1

nr
+ ur+1,r+1

n1,...,r,r+1

nr+1

.

Thus the integers ur,k can be computed recursively in r using the Euclidean algorithm.

(a) One solution is (u3,1, u3,2, u3,3) = (0, 1,−1), i.e., 1 = 0(2 · 3) + 1(1 · 3) + (−1)(1 · 2). Thus the
general solution of the system of congruences is

z = 0x1 + 3x2 − 2x3 + 6q
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for an arbitrary integer q. For (a1, a2, a3) = (0, 1, 2), the smallest solution is z = −1 .

(b) One solution is (u3,1, u3,2, u3,3) = (1, 1,−9), i.e., 1 = 1(9 · 25) + 1(4 · 25) + (−9)(4 · 9). Thus the
general solution of the system of congruences is

z = 225x1 + 100x2 − 324x3 + 900q

for an arbitrary integer q. For (a1, a2, a3) = (1, 1, 1), the smallest solution is z = 1 .

(c) One solution is (u4,1, u4,2, u4,3, u4,4) = (3, 10,−1, 1) i.e., 1 = 3(27 · 25 · 7) + 10(16 · 25 · 7) +
(−1)(16 · 27 · 7) + (−1)(16 · 27 · 25). Thus the general solution of the system of congruences is

z = (−14175)x1 + 28000x2 + (−3024)x3 − (10800)x4 + 75600q

for an arbitrary integer q. For (a1, a2, a3, a4) = (−1, 1,−1, 1), the smallest solution is z = 34399 .

(d) One solution is (u3,1, u3,2, u3,3) = (1,−b− 2, b2 + b), i.e., 1 = 1 · (b+ 1) · (b(b+ 1) + 1) + (−b−
2) · b · (b(b+ 1) + 1) + (b2 + b) · b · (b+ 1). Thus the general solution of the system of congruences is

z = (b+ 1)(b(b+ 1) + 1)x1 + (−b− 2)b(b(b+ 1) + 1)x2 + (b2 + b)b(b+ 1)x3 + b(b+ 1)(b(b+ 1) + 1)q

for an arbitrary integer q. For (a1, a2, a3) = (1, 0, 0), the smallest solution is z = (b+ 1)(b(b+ 1) + 1) .

Solution to (3) Every prime p different from 2 and 3 is congruent to either 1 or −1 modulo 6. In
particular, always p2 ≡ 1 (mod 6). Let p1, . . . , pr be any sequence of primes different from 2 and 3.
Consider the integer n = p21p

2
2 · · · · · p2r − 2. This is congruent to 1 · 1 · · · · · 1 − 2 = −1 modulo 6.

Hence it is also congruent to −1 modulo 2 and modulo 3. In particular, it is divisible by neither 2
nor 3. Thus every prime divisor of n is different from 2 and 3.

The claim, to be proved by contradiction, is that at least one prime divisor q of n is congruent
to −1 modulo 6. Otherwise n is a product of prime integers, each of which is congruent to 1
modulo 6. And thus also n is congruent to 1 modulo 6, which contradicts that n ≡ −1 (mod 6).
Therefore there exists a prime divisor q which is congruent to −1 modulo 6. If q equals any of
p1, . . . , pr, then q also divides m = p21 ·p22 · · · · ·p2r. Thus q divides the difference m−n = 2. But this
contradicts that q is different from 2. Therefore q is a prime different from each of p1, . . . , pr such
that q ≡ −1 (mod 6). Thus there exist infinitely many primes which are congruent to −1 modulo
6.

Solution to (4) In the following table, assuming there exists an integer bi,j such that bi,jai ≡
1 (mod nj), one such integer bi,j is given in the (i, j) position.

8 27 25 49 51
1 1 1 1 1 1
2 −13 −12 −24 −25
3 3 −8 −16
4 7 −6 −12 13
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Solution to (5) The main properties of the Euler phi function are that φ(mn) = φ(m)φ(n) if m
and n are relatively prime, and φ(pr) = pr−1(p − 1) for every prime integer p and every integer
r > 0. Also φ(1) = 1. Together these rules determine φ(n) for every positive integer n.

φ(2) = 1, φ(7) = 6, φ(16) = 8, φ(14) = 6, φ(105) = 24, φ(75) = 40 .

Solution to (6) An integer n is a sum of two squares if and only if the squarefree part m of n is
divisible by no odd prime congruent to 3 modulo 4. In the following, for each integer which is a
sum of two squares, one such representation is given.

0 = 02 + 02, 1 = 02 + 12, 4 = 02 + 22, 29 = 22 + 52, 49 = 02 + 72 61 = 52 + 62 .

Solution to (7) In each of the following cases, (u, v) are integers such that 1 = ua+ vb. Let (x, y)
be given integers. The integers z such that z ≡ x (mod a) and z ≡ y (mod b) are precisely the
integers z = vbx + uay + qab for arbitrary integers q. And by the Chinese Remainder Theorem,
f(z) ≡ 0 (mod ab) if and only if f(x) ≡ 0 (mod a) and f(y) ≡ 0 (mod b). Therefore the set
of integers z such that f(z) ≡ 0 (mod ab) are precisely the integers z as above for pairs (x, y) of
integers solving f modulo a, resp. modulo b.

(a) One pair (u, v) is (−3, 1), i.e., 1 = (−3) · 2 + 1 · 7. There are no solutions of 7 ≡ 0 (mod 2).

And the solutions of 7 ≡ 0 (mod 7) are all integers . Since there are no solutions modulo 2, also

there are no solutions modulo 2 · 7.

(b) One pair (u, v) is (−2, 1), i.e., 1 = (−2) · 2 + 1 · 5. The solutions of 3x− 1 ≡ 0 (mod 2) are the
integers x = 1 + 2q where q is an arbitrary integer. The solutions of 3y − 1 ≡ 0 (mod 5) are the

integers y = 2 + 5q where q is an arbitrary integer. Therefore the solutions of 3z−1 ≡ 0 (mod 2·5)

are the integers z = 1 · 5 · 1 + (−2) · 2 · 2 + 2 · 5 · q = −3 + 10q where q is an arbitrary integer.

(c) One pair (u, v) is (−1, 1), i.e., 1 = (−1) · 8 + 1 · 9. The solutions of x2 ≡ 0 (mod 8) are the
integers x = 0 + 8q and x = 4 + 8q where q is an arbitrary integer, i.e., x = 4m+ 8q where

m = 0, 1 and where q is an arbitrary integer. The solutions of y2 ≡ 0 (mod 9) are the integers
y = 0 + 9q , y = 3 + 9q and y = −3 + 9q where q is an arbitrary integer, i.e., y = 3n+ 9q

where n = −1, 0, 1 and where q is an arbitrary integer. Therefore the solutions of z2 ≡ 0 (mod 8 ·9)
are the integers

z = 1 · 9 · 4m+ (−1) · 8 · 3n+ 8 · 9 · q = 12(3m− 2n) + 72q.

Letting m and n vary, this just gives z = 12k for arbitrary integers k.

(d) One pair is (u, v) = (2,−1), i.e., 1 = 2·7+(−1)·13. By Fermat’s Little Theorem, the solutions of

x6−1 ≡ 0 (mod 7) are precisely all integers x with x 6= 0 (mod 7) , i.e., x = ±3+7q,±2+7q,±1+7q.

And by computation, the solutions of y6 − 1 ≡ 0 (mod 7) are the integers y = 3n + 13q with

9
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n = 0, . . . , 5, i.e., y = ±4+13q,±3+13q,±1+13q. Therefore the solutions of z6−1 ≡ 0 (mod7 ·13)
are the integers

z = (−1) · 13x+ 2 · 7 · y + 7 · 13 · q = −13x+ 14y + 91q.

Thus the solutions are

z = ±1,±3,±4,±9,±10,±12,±16,±17,±22,±23,±25,±27,±29,±30,±36,±40,±43,±53 + 91q

where q is an arbitrary integer.
(e) The pair (u, v) is as in the previous part. There are no solutions to x6 + 1 ≡ 0 (mod 7).

The solutions of y6 + 1 ≡ 0 (mod 13) are the integers y = 2 · 3n + 13q with n = 0, . . . , 5, i.e.,
y = ±2,±5,±6 + 13q for q an arbitrary integer. Since there are no solutions modulo 7, there are

no solutions modulo 7 · 13.

Solution to (8) Let p be a prime integer, let e ≥ 1 be an integer, and let ae be an integer such
that f(ae) ≡ 0 (mod pe), i.e., ae is a solution of f(x) modulo pe. Further assume that there exists
an integer u such that uf ′(ae) ≡ 1 (mod p), i.e., u is a multiplicative inverse of f ′(ae) modulo p.
Such an integer u exists if and only if f ′(ae) 6≡ 0 (mod p), i.e., ae is not a critical point of f(x)
modulo p. Then by Hensel’s lemma there exists an integer ae+1 such that ae+1 ≡ ae (mod pe) and
f(ae+1) ≡ 0 (mod pe+1), i.e., ae+1 is a solution modulo pe+1 which agrees with the given solution
ae modulo pe. Moreover there is a formula for ae+1 by the “p-adic version of Newton’s method”,

ae+1 = ae − uf(ae) + pe+1q,

where q is an arbitrary integer.

(a) There is no solution, in particular a1 is not a solution .

(b) Since f(a1) = 5, which is congruent to 0 modulo p, a1 is a solution modulo p. Moreover

f ′(a1) = 3 is nonzero modulo p, so a1 is a not a critical point modulo p. For the integer u = 2,

uf ′(a1) ≡ 1 (mod p). Thus Hensel’s lemma gives a formula for a2,

a2 = a1 − uf(a1) = 2− 2 · 5 = −8 + p2q

for q an arbitrary integer. And f(a2) equals −25 + 3p2q. So applying Hensel’s lemma once more
gives a formula for a3,

a3 = a2 − uf(a2) = −8 + p2q − 2(−25 + 3p2q) = 42 + p3q

for q an arbitrary integer.

(c) Since f(a1) = 1 is not congruent to 0 modulo p, a1 is not a solution modulo p.

(d) Since f(a1) = 728, which is congruent to 0 modulo p, a1 is a solution modulo p. Moreover

f ′(a1) = 6a51 ≡ (−1)(−2) = 2 (mod p), so a1 is a not a critical point modulo p. For the integer

u = −3, uf ′(a1) ≡ 1 (mod p). Thus Hensel’s lemma gives a formula for a2,

a2 = a1 − uf(a1) + p2q = 3 + 3 · 728 + p2q = −18 + p2q̃

10
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for q̃ an arbitrary integer. And f(a2) equals p2(694127) + 2p2q̃ + p3q̃1, where q̃1 is divisible by q2.
Notice that 694127 happens to be divisible by p, 694127 = p · 99161. So applying Hensel’s lemma
once more gives the formula,

a3 = a2 − uf(a2) = −18 + p2q̃ + 3p399161− p2q̃ + p3q̃2 = −18 + p3q̃2

for q̃2 an arbitrary integer.

(e) Since f(a1) = 65 = 5p, a1 is a solution modulo p. Moreover we have

f ′(a1) = 6a51 = 6 · 32 = p2 + 2p− 3 ≡ −3 (mod p),

so a1 is a not a critical point modulo p. While we are at it, also we have

f ′′(a1)/2 = 6 · 5 · a41/2 = 3 · 5 · 16 = p2 + 5p+ 6 ≡ 6 (mod p).

For the integer u = 4, uf ′(a1) ≡ 1 (mod p). Thus Hensel’s lemma gives a formula for a2,

a2 = a1 − uf(a1) + p2q = 2− 4 · 5p+ p2q = 2 + 6p+ p2q̃ = 80 + p2q̃

for q̃ an arbitrary integer. And by the Taylor expansion we have

f(a2) ≡ f(a1)− uf ′(a1)f(a1) + u2f ′′(a1)/2(f(a1))
2 + f ′(a1)p

2q̃ (mod p3).

This gives

f(a2) ≡ 5p− 4(p2 + 2p− 3)5p+ 16 · (p2 + 5p+ 6) · 25p2 + (p2 + 2p− 3)q̃p2

≡ 5p− 40p2 + 60p+ 16 · 6 · 25p2 − 3q̃p2 ≡ 5p2 − 1p2 − 5p2 − 3q̃p2 ≡ −1p2 − 3q̃p2 (mod p3).

So applying Hensel’s lemma once more gives the formula,

a3 = a2 − uf(a2) ≡ 2 + 6p+ p2q̃ + 4p2 + 12q̃p2 ≡ 2 + 6p+ 4p2 (mod p3).

So a3 = 2 + 6p+ 4p2 + p3q̃2 = 756 + p3q̃2, where q̃2 is an arbitrary integer.

Solution to (9) For an integer n, the multiplicative group (Z/nZ)× is cyclic if and only if n = 1,
pr, 2pr, 2 or 4, where p is an odd prime. The size of the multiplicative group is φ(n), which for
these particular integers is given by

φ(1) = 1, φ(pr) = (p− 1)pr−1, φ(2pr) = (p− 1)pr−1, φ(2) = 1, φ(4) = 2.

If g is one primitive root, then every primitive root is of the form ge where e is a nonnegative
integer relatively prime to φ(n). Moreover gd equals ge if and only if d ≡ e (mod φ(n)). So the
set of primitive roots is in one-to-one correspondence with the units in Z/φ(n)Z, i.e., with the
multiplicative group (Z/φ(n)Z)×, which has size φ(φ(n)). For the integers n as above, this equals

φ(φ(1)) = 1, φ(φ(p)) = φ(φ(2p)) = φ(p−1), φ(φ(pr)) = φ(φ(2pr)) = (p−1)pr−2φ(p−1) for r ≥ 2, φ(φ(2)) = 1, φ(φ(4)) = 1.

11
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To get all primitive roots precisely once, we can restrict to those integer exponents e relatively
prime to φ(n) contained in a residue system modulo φ(n), say 0 ≤ e < φ(n).

For the integers n = 13, 14 = 2 · 7, 8 = 23, 27 = 33, 257, the multiplicative group (Z/nZ)×

is cyclic except for n = 8 . Denote by gn the smallest positive integer which is a primitive root
modulo n. Then we have

g13 = 4, g14 = 3, g33 = 6, g257 = 3.

Except for the final one, these are easy to find by hand. For the final generator, use Problem 3.2.16,
p. 141, from Problem Set 5. The number of primitive roots in each of these cases is

φ(φ(13)) = 4, φ(φ(14)) = 2, φ(33) = 6, φ(257) = 128.

For each integer n, the set of all primitive roots is gen as e ranges over integers 0 ≤ e < φ(n) which
are relatively prime to φ(n), hence,

g113, g
5
13, g

7
13, g

11
13; g114, g

5
14; g

1
33 , g

5
33 , g

7
33 , g

11
33 , g

13
33 , g

17
33 ; ge257, 0 ≤ e < 256, e is odd .

Solution to (10) Let n be an integer such that (Z/nZ)× is cyclic, i.e., there exists a primitive root
g. Then units which are quadratic residues are precisely the units of the form ge for 0 ≤ e < φ(n)
with e even. And the units which are quadratic nonresidues are precisely the units of the form ge

for 0 ≤ e < φ(n) with e odd.

Solution to (11) For each of the integers n = 3, 7, 11, 19, 23, it is straightforward to compute by
hand the set of units which are quadratic residues.

n quad. res.
3 1.
7 1, 2,−3
11 1,−2, 3, 4, 5.
19 1,−2,−3, 4,

5, 6, 7,−8, 9.
23 1, 2, 3, 4,−5, 6,
−7, 8, 9,−10,−11.

From this table it is immediate to compute these Legendre symbols,(
2

3

)
= −1 ,

(
3

7

)
= −1 ,

(
−1

11

)
= −1 ,

(
2

11

)
= −1 ,

(
6

19

)
= +1 ,

(
−9

23

)
= −1 .

The most basic identity for the Legendre symbol is(
a

p

)
=

(
a′

p

)

12
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whenever a ≡ a′ (mod p). One can also use the identity(
a

p

)
≡ a(p−1)/2 (mod p)

which in particular gives that
(
−1
p

)
= (−1)(p−1)/2. And one can use the multiplicative properties(

ab

p

)
=

(
a

p

)
·
(
b

p

)
,

(
ab2

p

)
=

(
a

p

)
.

Together these simplify several of the computations above.

Solution to (12) Quadratic reciprocity gives both(
2

p

)
= (−1)(p

2−1)/8

and (
q

p

)(
p

q

)
= (−1)(p−1)/2·(q−1)/2

for odd primes p and q. When combined with the multiplicative property of the Legendre symbol,
this suffices to compute many Legendre symbols.(

2

11

)
= (−1)((12/2)·(10/2))/2 = (−1)15 = −1 .

(
7

53

)(
53

7

)
= (−1)(6/2)·(52/2) = (−1)3·26 = +1.(

7

53

)
= +1

(
53

7

)
=

(
4

7

)
= +1 .(

14

53

)
=

(
2

53

)
·
(

7

53

)
=

(
2

53

)
· (+1) = (−1)((54/2)·(52/2))/2 = (−1)27·13 = −1 .(

30

53

)
=

(
2

53

)(
3

53

)(
5

53

)
= (−1)

(
53

3

)(
53

5

)
= (−1)

(
−1

3

)(
−2

5

)
= (−1)(−1)(−1) = −1 .(

53

257

)
=

(
257

53

)
=

(
−8

53

)
=

(
−1

53

)(
2

53

)
= (−1)26(−1) = −1 .(

−2

257

)
=

(
−1

257

)(
2

257

)
= (−1)128(−1)(129·128)/2 = (+1)(+1) = +1 .
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Solution to (13) The goal in each of these cases is to determine when the Legendre symbol
(
a
p

)
equals +1. Using the properties of the Legendre symbol and quadratic reciprocity, this can be
reduced to a condition on the residue class of p modulo a fixed integer n depending only on a.(

7

p

)
= (−1)(p−1)/2

(p
7

)
.

Also (−1)(p−1)/2 is congruent to p modulo 4, and
(
b
7

)
equals +1 for b ≡ 1, 2,−3 (mod 7), resp.

equals −1 for b ≡ −1,−2, 3 (mod 7). Using the Chinese remainder theorem, this gives(
7

p

)
= +1 if and only if p ≡ ±1,±3,±9 (mod 28) .

(
13

p

)
=
( p

13

)
= +1 if and only if p ≡ ±1,±3,±4 (mod 13) .(

91

p

)
=

(
7

p

)
·
(

13

p

)
.

This equals +1 if the two factors are either both +1 or both −1. Using the two previous cases, this
happens if and only if p ≡ i (mod 28) and p ≡ j (mod 13) where i and j are among the following
pairs of residue classes,

i = ±1,±3,±9 and j = ±1,±3,±4

or else
i = ±5,±11,±13 and j = ±2,±5,±6 .

Using the Chinese Remainder Theorem, this is equivalent to saying that p ≡ k (mod 13 · 28) where

k ≡ 13 · 13i+ (−6) · 28 · j (mod 13 · 28).(
44

p

)
=

(
11

p

)
= (−1)(p−1)/2

( p
11

)
.

By the same type of argument as in the case of a = 7, this gives(
44

p

)
= +1 if and only if p ≡ ±1,±5,±7,±9,±19 (mod 44) .

(
27

p

)
=

(
3

p

)
= (−1)(p−1)/2

(p
3

)
.

By the same type of argument as in the case of a = 7, this gives(
27

p

)
= +1 if and only if p ≡ ±1 (mod 12) .

14
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Solution to (14) Let (a, b) 6= (0, 0) be a pair of integers. Let g be the gcd and let (u, v) be integers
such that au + bv = g. Then the system ax + by = c is consistent if and only if g divides c, and
then the general solution is

(x, y) = (u(c/g) + (b/g)q, v(c/g)− (a/g)q)

where q is an arbitrary integer.

(i) We have g = 1 and (u, v) = (−2, 1), i.e., 1 = −2 · 7 + 1 · 15. Thus the system is consistent and
the general solution is

(x, y) = (−3 + 15q, 2− 7q)

where q is an arbitrary integer.

(ii) We have g = 3 and (u, v) = (−6,−13), i.e., 3 = (−6) · 84 + (−13) · (−39). Thus the system

84x− 39y = c

is consistent if and only if c ≡ 0 (mod 3), and then the general solution is

(x, y) = (−2c+ 13q,−13(c/3) + 28q)

where q is an arbitrary integer. In particular, since 41 6≡ 0 (mod 3), this system is inconsistent .

(iii) Since 42 ≡ 0 (mod 3), this system is consistent . And the general solution is

(x, y) = (−84 + 13q,−182 + 28q) = (7 + 13q̃, 14 + 28q̃) .

(iv) This was solved in (ii).

(v) The gcd of 15, 21 and 35 is 1, 1 = 1 ·15+1 ·21+(−1) ·35. Thus the system 15x+21y+35z = t
is always consistent, and the general solution is

(x, y, z) = (t− 21q − 14r, t− 20q − 15r,−t+ 21q + 15r)

where q and r are arbitrary integers. In particular the system

15x+ 21y + 35z = 14

is consistent and the general solution is

(x, y, z) = −21q − 14r̃,−1− 20q − 15r̃, 1 + 21q + 15r̃)

where q and r̃ are arbitrary integers.

Solution to (15) Each of these are computed by the same elementary row and column operation
algorithm as described on the review sheet for Midterm 2. So I will just give one answer for each
problem (there are typically many choices for U and V ).

15

http://www.math.sunysb.edu/~jstarr/mat311.spr11/syl.html
mailto:jstarr@math.sunysb.edu


MAT 311 Number Theory
Final Exam, Chem 128, 11:15 AM – 1:45 PM
Friday, May 20th, 2011

Jason Starr
Spring 2011

(i)

U =

[
1 −1
1 0

]
, V =

[
0 1
1 1

]
, UAV =

[
1 0
0 2

]
.

(ii)

U =

 1 −1 0
0 0 −1
5 −4 0

 , V =

 −2 0 5
1 0 −2
−6 1 15

 , UAV =

 1 0 0
0 1 0
0 0 10

 .
(iii)

U =

 1 0 −1
4 0 −5
−1 1 −1

 , V =

[
1 −17
0 1

]
, UAV =

 1 0
0 75
0 0

 .
(iv)

U =

 1 0 0
−2 0 1
−1 1 −2

 , V =


1 3 −1 −2
0 0 1 0
0 1 0 0
0 0 0 1

 , UAV =

 1 0 0 0
0 6 0 0
0 0 0 0

 .
(v)

U =

 3 0 −2
−1 0 1

1 1 −2

 , V =

 1 0 3
0 1 −3
0 0 1

 , UAV =

 1 0 0
0 1 0
0 0 0

 .
Solution to (16) Write UAV = [a′i,j]1≤i≤m,1≤j≤n, where a′i,j equals 0 if i 6= j. Define B′ = UB =
(b′1, . . . , b

′
m)† and X = V X ′, where X ′ = (x′1, . . . , x

′
n)†. Then the original system AX = B is

equivalent to the new system (UAV )X ′ = B′. Since UAV is in block diagonal form, the system is
consistent if and only if a′i,i divides b′i for every i = 1, . . . ,m. And in this case the general solution is
x′j = b′j/aj,j for every j = 1, . . . ,m with aj,j 6= 0, x′j is free for every j = 1, . . . ,m with aj,j = b′j = 0,
and x′j is free for every j = m+ 1, . . . , n.

(i) The equation B′ = UB gives[
b′1
b′2

]
=

[
1 −1
1 0

] [
b1
b2

]
=

[
b1 − b2

b1

]
.

The new system is {
x′1 = b′1 = b1 − b2
2x′2 = b′2 = b1

So the system is consistent if and only if

b1 ≡ 0 (mod 2) .
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And in this case the general solution is (x′1, x
′
2) = (b1 − b2, b1/2). Changing back to the original

coordinates gives the general solution X = V X ′,[
x1
x2

]
=

[
0 1
1 1

] [
b1 − b2

1
2
b1

]
=

[
1
2
b1

3
2
b1 − b2

]
.

(ii) The equation B′ = UB gives b′1
b′2
b′3

 =

 1 −1 0
0 0 −1
5 −4 0

 b1
b2
b3

 =

 b1 − b2
−b3

5b1 − 4b2

 .
The new system is 

x′1 = b′1 = b1 − b2
x′2 = b′2 = −b3

10x′3 = b′3 = 5b1 − 4b2

So the system is consistent if and only if

5b1 − 4b2 ≡ 0 (mod 10) .

And in this case the general solution is (x′1, x
′
2) = (b1 − b2,−b3, 5

10
b1 − 4

10
b2). Changing back to the

original coordinates gives the general solution X = V X ′, x1
x2
x3

 =

 −2 0 5
1 0 −2
−6 1 15

 b1 − b2
−b3

5
10
b1 − 4

10
b2

 =

 1
2
b1
−1

5
b2

3
2
b1 − b3

 .
(iii) The equation B′ = UB gives b′1

b′2
b′3

 =

 1 0 −1
4 0 −5
−1 1 −1

 b1
b2
b3

 =

 b1 − b3
4b1 − 5b3
−b1 + b2 − b3

 .
The new system is 

x′1 = b′1 = b1 − b3
75x′2 = b′2 = 4b1 − 5b3

0 = b′3 = −b1 + b2 − b3
So the system is consistent if and only if

4b1 − 5b2 ≡ 0 (mod 75) and −b1 + b2 − b3 = 0 .

17
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And in this case the general solution is (x′1, x
′
2) = (b1 − b3,

1
75

(4b1 − 5b3). Changing back to the
original coordinates gives the general solution X = V X ′,[

x1
x2

]
=

[
1 −17
0 1

] [
b1 − b3

1
75

(4b1 − 5b3)

]
=

[
7
75
b1 + 10

75
b3

4
75
b1 − 5

75
b3

]
.

(iv) The equation B′ = UB gives b′1
b′2
b′3

 =

 1 0 0
−2 0 1
−1 1 −2

 b1
b2
b3

 =

 b1
−2b1 + b3

−b1 + b2 − 2b3

 .
The new system is 

x′1 = b′1 = b1
6x′2 = b′2 = −2b1 + b3
0 = b′3 = −b1 + b2 − 2b3

So the system is consistent if and only if

−2b1 + b3 ≡ 0 (mod 6) and −b1 + b2 − 2b3 = 0 .

And in this case the general solution is (x′1, x
′
2, x
′
3, x
′
4) = (b1,−2

6
b1 + 1

6
b3, t1, t2) where t1 and t2 are

arbitrary integers. Changing back to the original coordinates gives the general solution X = V X ′,
x1
x2
x3
x4

 =


1 3 −1 −2
0 0 1 0
0 1 0 0
0 0 0 1




b1
−2

6
b1 + 1

6
b3

t1
t2

 =


1
2
b3 − t1 − 2t2

t1
−1

3
b1 + 1

6
b3

t2


where t1 and t2 are arbitrary integers.

(v) The equation B′ = UB gives b′1
b′2
b′3

 =

 3 0 −2
−1 0 1

1 1 −2

 b1
b2
b3

 =

 3b1 − 2b3
−b1 + b3

b1 + b2 − 2b3

 .
The new system is 

x′1 = b′1 = 3b1 − 2b3
x′2 = b′2 = −b1 + b3
0 = b′3 = b1 + b2 − 2b3

So the system is consistent if and only if

b1 + b2 − 2b3 = 0 .
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And in this case the general solution is (x′1, x
′
2, x
′
3) = (3b1 − 2b3,−b1 + b3, t) where t is an arbitrary

integer. Changing back to the original coordinates gives the general solution X = V X ′, x1
x2
x3

 =

 1 0 3
0 1 −3
0 0 1

 3b1 − 2b3
−b1 + b3

t

 =

 3b1 − 2b3 + 3t
−b1 + b3 − 3t

t


where t is an arbitrary integer.

Solution to (17) For an integer d and a prime p, there exists an integral, binary quadratic form
with discriminant d representing p if and only if d is congruent to a square modulo 4p. So 2 is
represented if and only if d is congruent to a square modulo 8, i.e., d ≡ 0, 1, 4 (mod 8). And
for every odd prime p, p is represented if and only if d is congruent to a square modulo 4, i.e.,
d ≡ 0, 1 (mod 4), and d is congruent to a square modulo p. If p divides d, this second condition is

automatic. If d is relatively prime to p, then the second condition says precisely that
(
d
p

)
= +1.

And using quadratic reciprocity this can be reduced to a condition on the residue class of p modulo
a fixed integer e, just as in Problem 13. The following results follow by the same method as in
the Solution to Problem 13.

(i) For d = 1, for every integer n, d ≡ 12 (mod n). Therefore every prime is represented by an

integral, binary quadratic form with discriminant 1. To be explicit, the quadratic form f(x, y) = xy
has discriminant 1 and represents p: f(p, 1) = p.

(ii) For d = 2, d is not congruent to a square modulo 4. Thus there does not exist an integral,

binary quadratic form with discriminant 2. Therefore no prime is represented by an integral,
binary quadratic form with discriminant 2.

(iii) For d = −4, d ≡ 02 (mod 4), so there does exist at least one integral, binary quadratic form
with discriminant −4. In fact every such (positive definite) form is equivalent to the unique reduced

form f(x, y) = x2 + y2. Since d ≡ 22 (mod 8), 2 is represented by f(x, y); explicitly f(1, 1) = 2.
For every odd prime p, (

−4

p

)
=

(
−1

p

)
= (−1)(p−1)/2.

Therefore an odd prime p is represented by f(x, y) if and only if p ≡ 1 (mod 4) .

(iv) For d = −3, d ≡ 12 (mod 4), so there does exist at least one integral, binary quadratic form
with discriminant −3. In fact every such (positive definite) form is equivalent to the unique reduced

form f(x, y) = x2 + xy+ y2. And d 6≡ 0, 1, 4 (mod 8). Thus 2 is not represented by f(x, y). Since

3 divides d, 3 is represented by f(x, y); explicitly f(1, 1) = 3. And for odd primes p 6= 3, by
quadratic reciprocity (

−3

p

)
=
(p

3

)
.

Therefore an odd prime p 6= 3 is represented by f(x, y) if and only if p ≡ 1 (mod 3) .
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(v) For d = −60, d ≡ 02 (mod 4), so there do exist integral, binary quadratic forms with discrimi-
nant −60. The (positive definite) reduced forms are

f1,±(x, y) = 2(x2±xy+4y2), f2(x, y) = 2(2x2+xy+2y2), f3(x, y) = x2+15y2, f4(x, y) = 3x2+5y2.

Since d ≡ 0 (mod 8), 2 is represented ; explicitly f1,pm(1, 0) = 2. For p = 3, 5, since p divides

d, 3 and 5 are represented ; explicitly f4(1, 0) = 3 and f4(0, 1) = 5. And for an odd prime p 6=

3, 5, by quadratic reciprocity,
(
−60
p

)
=
(
−15
p

)
equals +1, i.e, p is represented, if and only if

p ≡ 1, 4, 2,−7 (mod 15) ; more explicitly, p is represented by f3 if and only if p ≡ 1, 4 (mod 15)

and p is represented by f4 if and only if p ≡ 2,−7 (mod 15).

Solution to (18) This is similar to problems discussed on the review sheet for Midterm 2. So I
will only list the answer.

(i) For the admissible linear change of coordinates (x, y) = (ỹ,−x̃+ ỹ) , the new form is reduced,

f̃(x̃, ỹ) = 3x̃2 − x̃ỹ + 4ỹ2 .

(ii) For the admissible linear change of coordinates (x, y) = (ỹ,−x̃) , the new form is reduced,

f̃(x̃, ỹ) = −3x̃2 + 3x̃ỹ + 3ỹ2 .

(iii) For the admissible linear change of coordinates (x, y) = (−x̃,−ỹ − 2x̃) , the new form is

reduced,

f̃(x̃, ỹ) = −3x̃2 − 2x̃ỹ + 4ỹ2 .

Solution to (19) This is similar to problems discussed on the review sheet for Midterm 2. So I
will only list the answer.

(i) There is a unique reduced positive definite form of discriminant −3,

f(x, y) = x2 + xy + y2 .

In particular, H(−3) = 1 .

(ii) There is a unique reduced positive definite form of discriminant −4,

f(x, y) = x2 + y2 .

In particular, H(−4) = 1 .
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(iii) There is a unique reduced positive definite form of discriminant −8,

f(x, y) = x2 + 2y2 .

In particular, H(−8) = 1 .

(iv) The class number is H(−11) = 1 , although there are two distinct reduced positive definite

forms of discriminant −3:

f+(x, y) = x2 + xy + 3y2 and f−(x, y) = x2 − xy + 3y2

In fact these are equivalent: f+(x − y, y) equals f−(x, y). This is a highly subtle point which the
textbook does not directly address.

Solution to (20) This is similar to Problem 17. In fact the cases d = −3 and d = −4 were
solved in the Solution to Problem 17. So I will only record the answer for d = −8 and d = −11.

(i) For d = −8, since d ≡ 02 (mod 8), the prime 2 is represented ; explicitly f(0, 1) = 2. For an

odd prime p, by quadratic reciprocity
(
−8
p

)
=
(
−2
p

)
equals +1, i.e., p is represented, if and only if

p ≡ 1, 3 (mod 8) .

(ii) For d = −11, since d 6≡ 0, 1, 4 (mod 8), the prime 2 is not represented . Since 11 divides d,

11 is represented ; explicitly f+(−1, 2) = f−(1, 2) = 11. For an odd prime p 6= 11, by quadratic

reciprocity
(
−8
p

)
=
(
−2
p

)
equals +1, i.e., p is represented, if and only if p ≡ 1, 3 (mod 8) .

Solution to (21) There does not exist a nontrivial Pythagorean triple (x, y, z) such that xy is a
square integer. First of all, if there exists a nontrivial Pythagorean triple such that xy is a square
integer, then by factoring also there exists a primitive Pythagorean triple such that xy is a square,
say w2. Up to changing (x, y, z) to (−x,−y,−z), assume that both x and y are positive. For
a primitive Pythagorean triple, gcd(x, y) equals 1. If a product of two positive, relatively prime
integers is a square, then each factor is a square, i.e., x = u2 and y = v2. Since (x, y, z) is a
Pythagorean triple, this gives u4 + v4 = z2. But, in the course of proving Fermat’s Last Theorem
for n = 4, we proved there are no triples (u, v, z) 6= (0, 0, 0) such that u4 + v4 = z2.

Solution to (23) This is similar to problems from the review sheet for Midterm 2. So I am not
including the solutions to this problem.

Solution to (24) (a) Here c(x) = 1 , u(x) = 2
3

+ q(x)g(x) , and v(x) = −1
3
− q(x)f(x) , where

q(x) is an arbitrary polynomial with rational coefficients. So f(x)/c(x) equals f(x), and g(x)/c(x)
equals g(x). So F1(X) equals f(x) and G1(x) equals g(x).

(b) Here c(x) = x+ 1 , u(x) = q(x)f(x) , and v(x) = 1− q(x)g(x) , where q(x) is an arbitrary

polynomial with rational coefficients. So f(x)/c(x) equals F1(x) equals x2 + 1 , and g(x)/c(x)

equals G1(x) equals 1 .
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(c) Also in this case c(x) = x+ 1 , u(x) = 1 + q(x)f(x) , and v(x) = −x2 − q(x)f(x) , where

q(x) is an arbitrary polynomial with rational coefficients. So f(x)/c(x) equals F1(x) equals x2 + 1 ,

and g(x)/c(x) equals G1(x) equals x4 + x2 + 1 .

(d) In this case c(x) = (x3 + x)2 , u(x) = −27
6

(x) + q(x)g(x) , and v(x) = 1
6
(3x2 + 2)− q(x)f(x) ,

where q(x) is an arbitrary polynomial with rational coefficients. So f(x)/c(x) equals F1(x) equals

x3 + x , and g(x)/c(x) equals G1(x) equals 9x2 + 3 .

Solution to (24) Let α be a nonzero algebraic number. Write the minimal polynomial of α as

mα(x) = xd − c1xd−1 + · · ·+ (−1)ecex
d−e + · · ·+ (−1)d−1cd−1x+ (−1)dcd = xg(x) + (−1)dcd.

Since the polynomial mα(x) has minimal degree among polynomials satisfied by α, cd is nonzero;
otherwise αg(α) = 0 so that g(x) is a polynomial satisfied by α of smaller degree than mα(x). Since
cd is nonzero, the equation mα(α) = 0 is equivalent to

α · (−1)d−1

cd
g(α) = 1.

In other words 1/α = (−1)d−1g(α)/cd. And to find the minimal polynomial of β = 1/α, use the
fact that (−1)dβd/cd ·mα(1/β) = 0, i.e., β satisfies the polynomial

(−1)d

cd
xdmα(1/x) = xd − cd−1

cd
+ · · ·+ (−1)d−e

ce
cd
xe + · · ·+ (−1)d−1

c1
cd
x+ (−1)d

1

cd
.

If the minimal polynomial mβ(x) of β had degree r strictly smaller than d, then by the same
argument also α satisfies the polynomial xrmβ(1/x) which has degree r < d, contradicting that
mα(x) has degree d. Therefore mβ(x) has degree d, from which it follows that mβ(x) is the

polynomial above, m1/α(x) = (−1)d
cd

xdmα(1/x). Finally, to find the minimal polynomial of γ =

α − (1/α), it is usually best to combine the above observations with the technique of computing
the characteristic polynomial of the matrix representative Aγ of the Q-linear operator Lγ : Q(α)→
Q(α) by v 7→ γ · v.

(a) Of course m1(x) = x− 1 , 1/α = 1 , m1/α(x) = x− 1 . And γ = α − (1/α) equals 0, which
has minimal polynomial mβ(x) = x .

(b) The algebraic number α =
√

7 satisfies the monic polynomial x2 − 7. By the criterion that a
root u/v must have u dividing 7 and v dividing 1, it is straightforward to see this has no rational

roots. Hence this polynomial is irreducible so that mα(x) = x2 − 7 . Thus β = 1/α equals f(α)

for f(x) = x/7 . And the minimal polynomial is mβ(x) = (−1)2
7
x2mα(1/x) = x2 − 1

7
.

Finally γ := α − (1/α) equals α − 1
7
α = 6

7
α. For a nonzero algebraic number α and a nonzero

rational number b, γ = b·α satisfies the degree d polynomial bdmα(x/b). So the minimal polynomial
mγ(x) has degree r at most d. But if r < d, then since also α = (1/b)γ = b1γ, also α satisfies the
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polynomial bd1mγ(x/b1) which has degree e < d, contradicting that mα(x) has degree d. Thus e

equals d so that mb·α(x) = bdmα(x/b). Therefore mγ(x) = (6/7)2((7x/6)2 − 7) = x2 − 36
7

.

(c) The algebraic number α = 3
√

7 satisfies the monic polynomial x3 − 7. By the criterion that a
rational root u/v must have u dividing 7 and v dividing 1, it is straightforward to see this has no

rational roots. Hence this cubic polynomial is irreducible so that mα(x) = x3 − 7 . Thus β = 1/α

equals f(α) for f(x) = x2/7 . And the minimal polynomial is mβ(x) = (−1)3
7
x3mα(1/x) = x3 − 1

7
.

Finally γ := α− (1/α) equals α− 1
7
α2. With respect to the ordered Q-basis B = (1, α, α2) for Q(α),

the matrix representative Aγ of Lγ(v) = γ · v equals

Aγ =

 0 −1 7
1 0 −1
−1
7

1 0

 .
The characteristic polynomial is cLγ (x) = x3 + 3x − (7 − 1

7
) = 1

7
(7x3 + 21x − 48). Every rational

root is of the form u/v where u divides 48 and v divides 7. It is straightforward to check none of
these finitely many fractions is a root, hence cLγ (x) is irreducible. Therefore this is the minimal
polynomial,

mγ(x) = cLγ (x) = x3 + 3x− 48
7
.

(d) Denote 3
√

7 by θ; this is the case considered in (c) above. Then α = θ + 2θ2. With respect to
the ordered Q-basis B = (1, θ, θ2), the matrix representative Aα of Lα(v) = α · v equals

Aα =

 0 14 7
1 0 14
2 1 0

 .
The characteristic polynomial is cLα(x) = x3− 42x− 7 · 3 · 19. By the criterion that a rational root
u/v must have u dividing 7 ·3 ·19 and must have v dividing 1, it is straightforward to see this has no

rational roots. Hence this cubic polynomial is irreducible so that mα(x) = x3 − 42x− 7 · 3 · 19 .

Thus β = 1/α equals f(α) for f(x) = (x2 − 42)/7 = (θ2 + 28θ − 14)/7. And the minimal

polynomial is mβ(x) = (−1)3
7·3·19x

3mα(x), i.e.,

mβ(x) = x3 + 2
19
x− 1

7·3·19 .

Finally, γ := α− (1/α) equals 13
7
θ2 − 3θ + 2. So the matrix representative is

Aγ =

 2 13 −21
−3 2 13
13
7
−3 2

 .
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The characteristic polynomial is

cLγ (x) = (x− 2)3 + 9 · 13(x− 2)− 1

7
(133 − 7 · 33) = x3 − 2 · 3x2 + 3 · 43x− 22·3·11·29

7
.

(e) Denote µ =
√

2 and ν =
√

3. Then one ordered Q-basis for Q(µ, ν) is (1, µ, ν, µν). Since α
equals µ+ ν, the matrix representative Aα of Lα(v) = α · v is

Aα =


0 2 3 0
1 0 0 3
1 0 0 2
0 1 1 0

 .
The characteristic polynomial is cLα(x) = x4 − 10x2 + 1. A rational root must have the form u/v
where both u and v divide 1. It is straightforward to see no such rational number is a root. Hence
this quartic polynomial has no linear factor. So if it is reducible, it is the square of an irreducible
quadratic polynomial which must have the form x2 ± 1 (since cLα(x) has trivial linear and cubic
terms, this forces the linear term of the quadratic to be zero). It is easy to see that the square of
both of these quadratics is different from cLα(x). Hence cLα(x) is irreducible. Thus the minimal
polynomial is

mα(x) = x4 − 10x2 + 1 .

Thus β := 1/α equals f(α) for f(x) = −x3 + 10x = ν − µ. And the minimal polynomial is

mβ(x) =
(−1)4

1
x4mα(1/x) = x4 − 10x2 + 1

Finally, γ := α− (1/α) equals 2µ. So the matrix representative is

Aγ =


0 4 0 0
2 0 0 0
0 0 0 4
0 0 2 0

 .
Thus the characteristic polynomial is cLγ (x) = (x2−8)2. This is reducible. So it is not the minimal
polynomial of γ. Instead the minimal polynomial is the unique irreducible factor,

mγ(x) = x2 − 8 .

Solution to (25) (a) Of course γ := α + β equals 3, so mγ(x) = x− 3 . And δ = α · β equals 2,

so mδ(x) = x− 2 .

(b) Since γ := α+β equals 2 3
√

7, by the same technique as above, mγ(x) = x3 − 23 · 7 . And since

δ := α · β equals 3
√

7
2
, also mδ(x) = x3 − 72 .
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(c) One ordered Q-basis for Q(α, β) is B = (1, α, α2, β, βα, βα2). For γ := α + β, the matrix
representative Aγ of Lγ(v) = γ · v with respect to this basis is

Aγ =


0 0 7 3 0 0
1 0 0 0 3 0
0 1 0 0 0 3
1 0 0 0 0 7
0 1 0 1 0 0
0 0 1 0 1 0

 .

The characteristic polynomial is

cLγ (x) = (x2 − 3)3 − 23 · 7x3 + 72 + 2 · 3 · 7x(x2 − 3) = x6 − 9x4 + 14x3 + 27x2 − 22.

This is of the form mγ(x)e where e is an integer e ≥ 1. Since cLγ (x) has integer coefficients, by
Gauss’s Lemma also mγ(x) has integer coefficients. And thus the constant coefficient cLγ (0) = −22
equals the eth power of the constant coefficient, mγ(0)e. But −22 is squarefree, so e must equal 1.
Therefore cLγ (x) equals the minimal polynomial, i.e.

mγ(x) = x6 − 9x4 + 14x3 + 27x2 − 22 .

For δ = αβ, we have

Aδ =


0 0 0 0 0 21
0 0 0 3 0 0
0 0 0 0 3 0
0 0 7 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

 ,

so that cLδ(x) = x6 − 3372. As above, cLδ(x) = mδ(x)e for some integer e. But the only integer e
which divides the exponent 3 in the factor 33 and the exponent 2 in the factor 72 is e = 1. Thus
cLδ(x) equals mδ(x), i.e.,

mδ(x) = x6 − 3372 .

Solution to (26) (a) The minimal polynomial ismα(x) = x2−x−1
4
. Thus α is not an algebraic integer ,

since the coefficient −1/4 is not an integer.

(b) The minimal polynomial is mα(x) = x2− x− 1
2
. Thus α is not an algebraic integer , since the

coefficient −1/2 is not an integer.

(c) By the Solution to Problem 24, the minimal polynomial of α is mα(x) = x4−10x2+1. Since

the coefficients are all integers, α is an algebraic integer . Since the constant coefficient equals 1,

α is a unit and a formula for the inverse is β = 1/α = −α3 + 10α . Since 1 equals α · β, n1 = 1 .

And every integer n is a multiple of α and the algebraic integer nβ.
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(d) Note that α = 3
√

3. So the minimal polynomial ismα(x) = x3−3. Thus α is an algebraic integer .

Since the norm equals 3, n1 = 3 . And α · β = 3 for β = 3/α = α2 .

Solution to (27) For a squarefree integer m 6= 1, if m 6≡ 1 (mod 4) then OQ(
√
m) equals

{a+ b
√
m|a, b ∈ Z}.

And if m ≡ 1 (mod 4), then OQ(
√
m) equals

{1

2
(a+ b

√
m)|a, b ∈ Z a ≡ b (mod 2)}.

So for m = 2,−1,−5, we have the first case, and for m = −3 we have the second case. For m = −5,
the units are precisely UQ(

√
−5) = {−1,+1}. For m = −1, the units are

UQ(
√
−1) = {

√
−1,−1,−

√
−1, 1}.

And for m = −3, the units are

UQ(
√
−3) = {1

2
(1−

√
−3),

1

2
(−1−

√
−3),−1,

1

2
(−1 +

√
−3),

1

2
(1 +

√
−3), 1}.
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