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MAT 311 Solutions for Midterm II Practice
Problems

Remark. If you are comfortable with all of the following problems, you will be very well prepared
for the midterm. Some of the problems below are more difficult than a problem that would be
asked on the midterm. But all of the problems will help you practice the skills and results from
this part of the course.

Exam Policies. You must show up on time for all exams. Within the first 30 minutes of each
exam, no students will be allowed to leave the exam room. No students arriving after the first 30
minutes will be allowed to take the exam. Students finishing within the last 10 minutes of the exam
may be asked to remain until the exam is over and then follow special instructions for turning in
their exams (for instance, students are often asked to turn in exams row-by-row).

If you have a university-approved reason for taking an exam at a time different than the scheduled
exam (because of a religious observance, a student-athlete event, etc.), please contact your instructor
as soon as possible. Similarly, if you have a documented medical emergency which prevents you
from showing up for an exam, again contact your instructor as soon as possible.

For excused absences from a midterm, the usual policy is to drop the missed exam and compute the
exam total using the other exams. In exceptional circumstances, a make-up exam may be scheduled
for the missed exam. For an excused absence from the final exam, the correct letter grade can only
be assigned after the student has completed a make-up final exam.

All exams are closed notes and closed book. Once the exam has begun, having notes or books on
the desk or in view will be considered cheating and will be referred to the Academic Judiciary.

For all exams, you must bring your Stony Brook ID. The IDs may be checked against picture sheets.

It is not permitted to use cell phones, calculators, laptops, MP3 players, Blackberries or other
such electronic devices at any time during exams. If you use a hearing aid or other such device,
you should make your instructor aware of this before the exam begins. You must turn off your
cell phone, etc., prior to the beginning of the exam. If you need to leave the exam room for any
reason before the end of the exam, it is still not permitted to use such devices. Once the exam has
begun, use of such devices or having such devices in view will be considered cheating and will be
referred to the Academic Judiciary. Similarly, once the exam has begun any communication with a
person other than the instructor or proctor will be considered cheating and will be referred to the
Academic Judiciary.
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Review Topics.
The following are the most important new skills not already tested on Midterm I.

(1)

(10)

Know the statement of quadratic reciprocity, including the criteria for when —1 is a quadratic
residue and when 2 is a quadratic residue. Be able to use quadratic reciprocity and the Chinese
Remainder Theorem to find necessary and sufficient conditions for a given integer m to be
a quadratic residue modulo a varying odd prime p in terms of the value of p modulo a fixed
integer.

Using elementary row and column operations over the integers, transform a given integer
matrix into “block diagonal” form. Use this to find conditions for consistency of a linear
system AX = B in terms of linear congruences on the entries of B. For a consistent system,
find the form of the general integer solution of the system.

Know a necessary and sufficient condition for the existence of an integral, binary quadratic
form with a given discriminant d and properly representing a given integer m.

Using quadratic reciprocity and the Chinese Remainder Theorem, determine all odd primes
p which are properly represented by some integral, binary quadratic form with a given dis-
criminant d (but possibly depending on p).

Use integral linear variable changes with determinant +1 to find a reduced form of an integral,
binary quadratic form with non-square discriminant d.

Find all integral, binary quadratic forms with given non-square discriminant d which are
reduced.

Know the general form of a Pythagorean triple. Be able to use this to prove non-existence
of a triple (a,b,c) of integers with both a* + * = ¢* and abc # 0. Similarly, be able to
use Pythagorean triples to find the general solution of equations such as a? + > = ¢* or

a’? +b* = 8.

For a ternary quadratic form with rational coefficients and nonzero discriminant, using an
invertible linear variable change with rational coefficients, transform the quadratic form to
“diagonal form” g(az? + by* + cz?) where a, b, c are integers with ged(a,b,c) = 1.

For a diagonal ternary quadratic form as above, use a further variable change to tranform
to “Legendre diagonal form”, g(az? + by* + cz?) where a, b, ¢ are integers such that abc is
square-free.

Use Legendre’s theorem to determine when a Legendre diagonal ternary quadratic form has
a nontrivial rational solution.
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Practice Problems.

(1)[In each of the following cases, determine the value of the given Legendre symbol.

D) 0 (). w () w () o ()

(2)[ Find all prime integers p such that —14 is a square modulo p. Do not forget about p = 2 and
p = 7. For each prime where —14 is a square modulo p, is it also a square modulo p?, resp. modulo

p*?
In each of the following cases, determine whether or not the system is consistent. If it is
consistent, find the general solution.

5 + 17y =6
112z — 35y = 41
112z — 3by = 42
1122 — 35y = b, b arbitrary

6z + 10y + 152 = 29

For each of the following matrices A, find invertible, square matrices with integer entries U and
V such that UAV is defined and is in block diagonal form.

PR 1 0 2 5 10
@A:[ 3_4,(mA= 0 -3 0], ()A=]9 3],
2 0 1 4 3
11 =30 12 3
ivyA=|55 -3 0|, (WA=]31 2],
2.2 00 2 31

For each of the matrices A from [Problem 4, find necessary and sufficient conditions on a

column vector B so that there exists a column vector X with integer entries solving the linear
system AX = B. Assuming the system is consistent, find the general integer solution of the
system.
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@ Find necessary and sufficient conditions on a prime p such that it is properly represented by
an integral, binary quadratic form with discriminant equal to —7. What if the discriminant equals
—-97

In each of the following cases, find an “admissible” linear change of coordinates that transforms

the binary quadratic form to reduced form.

(i) 5z® — day + 3y?, (i) 32% — vy — 3y, (iii) 162® — 172y + 4%

Find all the positive definite, reduced, integral, binary quadratic forms which have discrimi-
nant —7. Next find all the positive definite, reduced, integral, binary quadratic forms which have
discriminant —23. What is the class number H(—23)7

@ Find the general form of a positive Pythagorean triple whose smallest coordinate is a prime
integer.

(10)| Find the general form of a primitive solution of the integral, Diophantine equation

I’4+y2:Z2

such that x is odd.
(11)|Find an invertible linear change of coordinates (with rational coefficients) that transforms the
following ternary quadratic form to diagonal form.

f(z,y,2) = (2* +y2) + 2(* + 22) + 3(2* + zy).
Then use Legendre’s theorem to determine whether or not this ternary quadratic form has a solu-
tion.
(12)| Find an invertible linear change of coordinates (with rational coefficients) that transforms the
following ternary quadratic form to diagonal form.

f(z,y,2) = (2* +y2) + 5(y* + 22) + 5(2* + zy).
Then use Legendre’s theorem to determine whether or not this ternary quadratic form has a solu-
tion.
Solutions to Problems.

Solution to |(1)| Recall that by quadratic reciprocity, for odd primes p and ¢ we have

(g) (]%) — (—1)P-D/2@D/2,
(%) _ (—1)-Drs

4

Also we have
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and we have

(_?1) = (_1)(p—1)/2_

(i) Notice that 151 is an odd prime. Set ¢ to be 3, and set p to be 151. Then (p — 1)/2 equals 1
and (¢ — 1)/2 equals 75. Thus (p — 1)/2 - (¢ — 1)/2 is odd, so that (—1)P=1/2@=D/2 equals —1.

Therefore we have
3 _ (1
151) 3 )

Since 151 = 1 (mod 3), which is a quadratic residue modulo 3, we have

3 151
(ﬁ) == (?) = —(+1) =[=1].
So 3 is not a quadratic residue modulo 151.

(i) Notice that 157 is an odd prime. Set g to be 151, and set p to be 157. Then (¢ — 1)/2 equals
76, which is even. Hence also (p —1)/2- (¢ — 1)/2 is even. Thus by quadratic reciprocity,

151 . 157
157 ) 151 )"

Of course 157 = 6 (mod 151). Thus we have

(551) = (551)
(frac2-3151) — (1?_1) . <%> |

3
— ) =-1
(151>
2

And for any odd prime g, (5) equals +1 if and only if p? — 1 is divisible by 16, i.e., if and only if

p = %1 (mod 8). In this case 151 = —1 (mod 8). Thus we have

2 =+1
151/

(%) — (~1)(+1) = -1.

5

Since 6 equals 2 - 3, we have

As computed above,

This gives
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So by quadratic reciprocity,
151
)=l
(i) -EB
i.e., 151 is not a quadratic residue modulo 157.

(iii) As used above, 157 is congruent to —1 modulo 8, and hence it is congruent to 1 modulo 4.

Therefore we have )
) =[x
( 157 ) D’

i.e., —1 is a quadratic residue modulo 157.

(iv) As also used above, since 157 is congruent to —1 modulo 8, we have

(15 ) -

i.e., 2 is a quadratic residue modulo 157.

(v) Denote the odd prime 101 by p. Notice that 6 equals 3 - 2. Therefore we have,

6\ [ 2 3
101/ \101 101
Recall that for an odd prime p such as 101, 2 is a quadratic residue modulo p if and only if p is

congruent to +1 modulo 8. In this case, p = 3 (mod 8). Thus (10%) equals —1.

Since (p —1)/2 =50 is even, also (p —1)/2- (¢ — 1)/2 is even for every odd prime ¢ such as 3.

Thus, by quadratic reciprocity,
< q ) _ (101
101/ \ ¢ )°

()-(%)

And 101 is congruent to —1 modulo 3. This is not a quadratic residue modulo 3. Thus we have

()=

() - () () -coco-om

Thus 6 is a quadratic residue modulo 101.

In particular, we have

Multiplying gives
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Solution to First of all, for p =2 and p =7, —14 = 0 = 0? (mod p). Thus —14 is a quadratic
residue modulo 2 and 7. Next consider the case where p is an odd prime different from 7. Since

—14 equals (—1) - 2- 7, we have
5)-G)E)G)

As discussed in the [Solution to Problem 1] —1 is a quadratic residue modulo p if and only if
p =1 (mod 4) and 2 is a quadratic residue modulo p if and only if p = +1(mod 8). Thus both

(%) and (%) equal +1 if and only if p = 1 (mod 8). And both (%) and (%) equal —1 if and
only if p =3 (mod 8). Therefore we conclude that

=2\ _ [ +1, p=13(mod38),

p ) | -1, p=-1,-3 (mod 8).
Next, (7 — 1)/2 equals 3. Thus for an odd prime p, (p —1)/2- (7 — 1)/2 is even if and only if
p=1 (mod 4). So if p=1 (mod 4), then by quadratic reciprocity we have

T\ _ n (2) [ 41, p=1,-3,2 (mod 7),
p) 77 | -1, p=-1,3,-2(mod 7)

And if p = —1 (mod 4), then by quadratic reciprocity we have

7 __<£>_ -1, p=1,-3,2 (mod 7),
p) 7) | +1, p=-1,3,—2 (mod 7)

Putting the pieces together, we conclude that

+1, p==£1(mod 8) and p=1,-3,2 (mod 7),

14\ J -1, p=+43 (mod8) andp=1,— (mod 7),
(7) —1, p=+1 (mod 8) and p = —1, 3 2 (mod 7),
+1, p=43 (mod 8) and p = —1,3, -2 (mod 7).

Combined with the Chinese Remainder Theorem, we conclude that

(__14>_ +1, p=1,3,5,9,—11,13,15,—17,—19, 23,25, —27 (mod 56),
r )"\ -1, p=-1,-3,-5,—9,11,—13, —15,17, 19, —23, —25, 27 (mod 56)

By Hensel’s Lemma, for a prime p and for an integer z, such that z2 + 14 = 0 (mod p®), if
2z, # 0 (mod p) then there exists an integer x4, such that 22 ; +14 = 0 (mod p**') and such that
Tor1 = zs(mod p*). Thus, inductively, if there exists an integer zy such that z2 + 14 = 0 (mod p)
and such that 2zg # 0 (modp), then for every integer s > 1, there exists an integer z; such
that 22 + 14 = 0 (mod p) and such that x, = zy (mod p). For every prime integer p # 2,7, if
72+ 14 = 0 (mod p), then automatically zy #Z 0 (mod p). Thus, for a prime p # 2,7, for every

7
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integer s > 1, —14 is a quadratic residue modulo p® if and only if —14 is a quadratic residue modulo

.
On the other hand, it is straightforward to check that —14 = —2 (mod 4) is not a quadratic
residue modulo 4. Similarly —14 is not a quadratic residue modulo 49.

Solution to A single linear equation over the integers
axy+ -+ apx, =0

is consistent if and only if g := ged(ay, . . ., a,) divides b. In this case, using the Euclidean algorithm
we can find integers ¢; ; such that the linear change of variables,

T C11 Ci2 ... Cin €Ty
!
i) C21 C22 ... Caop Lo
X = VX/? X = . , V= . . . . ) X' = . )
/
Tn Cnil Cn2 ... Cpn Ty,

has det(V') = +1 and gives a new linear equation
gry =b.

So the general solution is 2} = (b/g) and all other variables z are arbitrary. By back-substituting,
this gives the general integer solution of the original linear equation.
(i) The Euclidean algorithm leads to the following change of variables,

_ !
X:\/X’,X:{ﬂ,vz[j2 517},)(’:{“;,].

With respect to the new variables, the linear equation reads
/

xr = 6.

This system is | consistent with general solution 2’ = 6 and 3’ is an arbitrary integer t. Back-
substituting gives the general solution in the original variables

HEEERE A A

where t = 3 + s.

(ii) The Euclidean algorithm leads to the following change of variables,

B , |z |15 ;2
ceveoxa [ val 3] e [2]
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With respect to the new variables, the linear equation reads
T2 = 41.
Since 7 does not divide 41, this system is | inconsistent .

(iii) The Euclidean algorithm leads to the following change of variables,

B , |z |15 P
X_VX,X_L/},V_{B16},X_{y,}

With respect to the new variables, the linear equation reads
Tx' = 42.

Since 7 divides 42, this system is with general solution z’ = 6 and ¢’ is an arbitrary
integer t. Back-substituting gives the general solution in the original variables

HINERARMIR e P

where t = —1 + s.

(iv) The Euclidean algorithm leads to the following change of variables,
I |15 ;|2
x=vxx=|slov=ly G- 0]

With respect to the new variables, the linear equation reads

7 =b.

Thus the system is ‘consistent if and only if 7 divides b‘. In this case, write b = 7c. Then the
general solution is 2’ = ¢ and ¥’ is an arbitrary integer ¢t. Back-substituting gives the general
solution in the original variables

{ﬂ:{é 1561'“1:m

(v) The Euclidean algorithm leads to the following change of variables,

where ¢ = b/7.

T —4 -5 10 T
X=VX, X=|y |, V=1 3 =3|,X=|¢
z 1 0 -2 Z
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With respect to the new variables, the linear equation reads
' = 29.

Thus the system is | consistent | with general solution 2/ = 29 and with i/, 2’ being arbitrary integers
s, t. Back-substituting gives the general solution in the original variables

x -4 =5 10 29 —116 —bHs +10t -1 —bHu +10v
y | = 1 3 -3 s | = 29  +3s =3t = 2 +3u -3
z 1 0 =2 t 29 —2t 1 —2v

where ¢t = 14 + v and where s = 5 + v.

Solution to @ Let A be an m x n matrix with integer entries. By performing elementary row
and column operations with integer coefficients, the original augmented matrix

A Ime
Ian
is elementary equivalent to an augmented matrix
AU
%
where U, resp. V, is an invertible matrix with integer entries of size m x m, resp. n x n, and where
A’ is a matrix in “block diagonal” form,

fd, 0 0 0|0 07
0 ahy O 0|0 0
0 0 dy 0 |0 0
s : : DT
o o0 0 ... a.,|0 01’
0 0 0 010 0
0 0 0 ... 010 ... 0]
for an integer 0 < 7 < min(m, n) and for nonzero integers a} |, ..., a, .. In fact one can even arrange
that the matrix is in “Smith normal form”, i.e., every a;, is positive and a;; divides a;, ., for
1=1,...,7 — 1. Because these augmented matrices are elementary equivalent, we have
A'=UAV.
(i) The original augmented matrix is
-2 3110
3 —-1]0 1
1 0
0 1
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By performing elementary row and column operations with integer coefficients, this is elementary
equivalent to the following augmented matrix

Thus we have

A —UAV, U = H H,A': [1 0]

(ii) The original augmented matrix is

(1 0 2[1 0 0]
0 -3 0/0 10
2 0 1/0 0 1
I 0 0
0 1 0
0 0 1 |

By performing elementary row and column operations with integer coefficients, this is elementary
equivalent to the following augmented matrix

10 0} 1 0 O
03 0|0 -1 0
00 3|-2 0 -1
1 0 =2
01 0
00 1 |
Thus we have
1 0 1 00 1 0 =2
A=vAv, U= 0 =1 0 |, A=]030|.v=]01 0
-2 0 -1 00 3 00 1
(iii) The original augmented matrix is
5 1011 0 O
9 31010
4 310 0 1
1 0
0 1

11
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By performing elementary row and column operations with integer coefficients, this is elementary
equivalent to the following augmented matrix

1 0 |—-1 -2 6
0o 512 2 =7
0O O 3 5 —15
1 -2
0 1
Thus we have
1 -2 6 10 T
A=vAv,U=/| 2 2 -7 |, 2a=|05 ,v—[o 1]
3 5 —15 0 0
(iv) The original augmented matrix is
1 1 =3 0|1 0 0]
5 5 =3 0|0 1 0
22 0 0/0 01
1 0 0 O
01 0 0
00 1 O
(00 0 1 |

By performing elementary row and column operations with integer coefficients, this is elementary
equivalent to the following augmented matrix

10 0 O0]1 0 0O ]
06 0 0]/-20 1
00 0 O0|-11 =2
1 3 -1 0
00 1 0
01 0 O
00 0 1 |
Thus we have
1 0 0 1000 (1)3218
A =UAV, U = -2 0 1 , Al = 06 00|} V=
-1 1 =2 00 0 O v L0
00 0 1

12
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(v) The original augmented matrix is

12 3[100
3 12(010
2 3 1[0 0 1
100
010
00 1 |

By performing elementary row and column operations with integer coefficients, this is elementary

equivalent to the following augmented matrix

10 0]-3 0 2 ]
01 02 0 —1
00 18] 7 1 =5
10 7
01 =5
| 0 0 1 |
Thus we have
-3 0 2 1 0 0 10 7
A =UAV, U = 2 0 -1|.A=1]010]|,V=1(01 -5
7 1 =5 0 0 18 00 1

Solution to Let A be an m x n matrix. Let U, resp. V, be an invertible matrix with integer
entries of size m x m, resp. n x n, such that the m x n integer matrix

A'=UAV
is in “block-diagonal” form,
[a;,;, O O ... 010 07
0 ayy, O 0 [0 0
0 0 a3 . 010 0
;o : : R :
A= o 0 0 ... a.,|0 01’
0o 0 0 0 [0 0
. 0 0 0 ... 010 0
for an integer 0 < r < min(m,n) and for nonzero integers @) ,,...,a,,. Make the change of
variables,
T x)
X=VX X=| : |, X' =] :
Tn x!

13
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And let B be a column m-vector,

b
B=| :
bm

Then the original linear system, AX = B, is equivalent to the new linear system A’X’ = UB.
Denoting UB by B’,

b
B'=UB, B'= S
[ O
the new system is simply
((dyr = b
g7y = b
a = b
/
0 = by
Thus the system is consistent if and only if both b} = 0 for every j = r +1,...,m and ¥ =
0 (mod a;,) for every ¢ = 1,...,r. In this case, the general solution is given by z} = b;/a;; for
1=1,...,r, and every .CE; is an arbitrary integer for 7 = r + 1,..., m. We can back-substitute for

the original variables using X = V X".

(i) The new linear system is
AX' =D

. 10 . l’ll o . 11 bl . b1—|-bg

In other words, the system is

where

1$/1 = bl + bg
7.27/2 = 3b1 -+ 2b2

Therefore the system is consistent if and only if

‘Bbl +2by =0 (mod 7) ,

i.e., 3b; + 2by = Tc for some integer c¢. And then the general solution is
X, _ I’ll _ b1 + bg
) c '

14
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Back-substituting gives the general solution in the original variables

SHRIBRE

where 3b, + 20, = Tc.

Y

(ii) The new linear system is

AX =D
where
1 00 x) 10 0 by by
A=1030]|,X'=|a,|,BB=UB= 0O -1 0 by | = —by
In other words, the system is
].l'll = b1
31"2 = —b2
3[13% = —2b1 — b3

Therefore the system is consistent if and only if

—by =0 (mod 3) and —2b; — b3 = 0 (mod 3) |,

i.e., —by = 3c; and —2b; — by = 3¢, for some integers ¢; and co. And then the general solution is

Ill bl
X=|ay | =]«
xh 2

Back-substituting gives the general solution in the original variables

2 ]. 0 —2 bl b1 - 202
X = L} } =101 0 a | = c1 ,
2 0 0 1 Co C2
where —by = 3¢; and —2b; — by = 3c¢s.
(iii) The new linear system is
AX' =B

where

10 o -1 -2 6 by —by — 2by + 603

A=105 ,X’:[x}],B':UB: 2 2 =7 by | = | 2by+2by — Ths
0 0 2 3 5 -—15 bs 3b1 + 5by — 1503

15
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In other words, the system is

1.’1)’1 = —bl — 2(72 + 6()3
5I/2 = 2[)1 + 2b2 - 7b3
0 = 3b; + 5by — 1503

Therefore the system is consistent if and only if

3by + bby — 15b3 = 0 and 2b; + 2by — 7Tbg = 0 (mod 5) ,

i.e., 2by +2b+ 2 — 7bs = He. And then the general solution is

X,: |:.T,1:|:|:—b1—2b2+6b3:|

/
Ty c

Back-substituting gives the general solution in the original variables

1 1 -2 —by — 2by + 6b3 —by — 2by + 6b3 — 2¢
X p— p— p—
To 0 1 c c

)

where 2b; + 2b+ 2 — 7bs = 5.

(iv) The new linear system is

A/X/ — B/
where
/
1000 i} 1 0 0 by by
A=10600]|, X = 33,2 , BB=UB=| -2 0 1 by | = —2by + b3
0000 x? -1 1 =2 b3 —by + by — 2b3
4
In other words, the system is
11”1 = b1
6513/2 = —2b1+bg
0 - _bl + bg - 2b3

Therefore the system is consistent if and only if

—bl == bz — 2b3 =0 and —2b1 =+ b3 =0 (mod 6)

i.e., —2b; 4+ b3 = 6¢ for some integer c¢. And then the general solution is

/
231 b]_
/
T c
X! — 2 | _
I
3
/
Ty t

16
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for arbitrary integers s and t. Back-substituting gives the general solution in the original variables

1 1 3 -1 0 b1 bl +3c—s
x| {00 1 0 c | S
X = z3 | |01 0 0 s | ¢ ’
T4 00 0 1 t t
where —2b; 4+ b3 = 6¢ and where s, t are arbitrary integers.
(v) The new linear system is
AIXI — B/
where
10 0 x) -3 0 2 by —3b1 + 203
A/: 0 1 0 ,X/: 17/2 7B,:U'B: 2 0 —1 bg == 2b1—bg
In other words, the system is
12y = —3b + 2b3
11’/2 = 2b1 - b3

181‘% = 7b1 + bg - 5b3

Therefore the system is consistent if and only if

7b1 4 b2 — 5b3 =0 (mod 18) s

i.e., Tby + by — bbs = 18c¢ for some integer ¢. And then the general solution is

! —3by + 2bs
X/ = ZL‘/2 = 2b1 — bg
xh c

Back-substituting gives the general solution in the original variables

T 10 7 —3b1 + 2b3 —3b1 4 2b3 + Tc
X = i) = 01 -5 2[)1 - bg = 2b1 — bg — b s
T3 00 1 c c

where 7b; + by — 5b3 = 18¢.

Solution to @ For an integer d and for an integer n, there exists an integral, binary quadratic
form of disciminant d which properly represents n if and only if d is congruent to a square modulo
4|n|. First of all for n = p = 2, =7 = 1 = 1% (mod 8), hence there exists an integral, binary
quadratic form of discriminant —7 which properly represents 2. Next, —7 = 49 (mod 28), hence
there exists an integral, binary quadratic form of discriminant —7 which properly represents 7.
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Finally, assume that p is an odd prime different from 7. Since —7 = 1 = 12 (mod 4), there exists
an integral, binary quadratic form which properly represents p if and only if <’77) equals 1. And
by quadratic reciprocity,

=7\ _ (]_9> [ 41 = p=1,2,-3 (mod 7),
p ) \7) | -1 = p=-1,-2,3 (mod 7),
Since —9 is not congruent to a square modulo 4, there exists no integral, binary quadratic form

with discriminant equal to —9.

Solution to (i) The admissible linear change of coordinates (z,y) = (—yi,z1 — y1) gives a
reduced form,

323 — 2z + 4yi |

(ii) The admissible linear change of coordinates (x,y) = (—y1, z1) gives a reduced form,

—322 4+ z1y1 + 3y3 .

(iii) The admissible linear change of coordinates (x,y) = (—x1, —2z1 — y;) gives a reduced form,

_237% — 1Y + 43/% .

Solution to There is only one positive definite, integral, binary quadratic form of discriminant
—7 which is reduced, namely

z? + zy + 292 |

There are three positive definite, integral, binary quadratic form of discriminant —23 which is
reduced, namely

2?2+ zy +6y%| |22 — 2y + 392, |22% + Yy + 32|

Therefore the class number is | H(—23) = 3.

Solution to @ Up to permuting = and y, every positive, primitive, Pythagorean triple has the
form

r = r*—s%
y = 2rs,
z = r*+4+s?

for relatively prime integers r > s > 0 such that r # s (mod 2). If one of = or y equals the prime
p = 2, then it must be y, since z is odd. But this then implies r = s = 1, which contradicts the
conditions on r and s. Hence 2 cannot be one of x or y for a positive, primitive, Pythagorean
triple. For an odd prime p > 3, if one of = or y equals p, then it must be x, since y is even. Since
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p = (r+ s)(r — s), it must be that r — s equals 1 and r + s equals p. This quickly leads to the
general form of a primitive, Pythagorean triple with smallest entry equal to a prime,

xr = b,
y = 4-((*-1)/8),
z = 1+4-((p>—-1)/8)

for an odd prime p > 3.

Solution to Without loss of generality, change the signs of x, y and z if necessary so that all
three are nonnegative. By considering the equation modulo 4, if z is odd then y must be even. Of
course there is the trivial solution (z,y, 2) = (z,0,2?). But if y > 0, then (22, y, 2) is a Pythagorean
triple of the form

22 = 2 —s?),
y = 2rs,
z = r’4s?

for integers r > s > 0 with 7 # s (mod 2). Then (z,s,r) is a Pythagorean triple. And since z is
odd, s must be even. Thus (z, s, 7) is a Pythagorean triple of the form

= u?—12,
s = 2uv,
r o= u?+4+0?

for integers u > v > 0 with u # v (mod 2). Back-substituting gives the general solution of the
equation z* 4 y? = 22 such that x is odd,

r = u? — 02,
y = duv(u®+0?),
z = u*+6uv? 40t

for integers u > v > 0 with u # v (mod 2).
Solution to |(11)| With respect to the linear change of variables,

T 1 -3 —-19 T
X =VXy, y =10 2 11 Y1
z 0 O 1 21

the quadratic polynomial is

filz,y,21) = f(z,y,2) = 2@% + ?J% - 352%)-

This is in Legendre diagonal form. And it does have a real point. But it does not have a
primitive solution at 7, since 2 + y? = 0 (mod 7) has no nontrivial solution. Thus there is

no nontrivial solution‘ to f(x,y,z) = 0 in integers.
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Solution to |(12)|

T 1 15 —-15 5 Ty
X=VXy, |y | = T 0 6 -7 Y1
z 0 0 5 21

the quadratic polynomial is

2
fl(xlayla 21) = f(xayaz) = 5(5$% - 39% + 22%)

This is in Legendre diagonal form. And it does have a real point. But it does not have a primitive
solution at 3, since 522 + 227 = 2(22 + 22) = 0 (mod 3) has no nontrivial solution. Thus there is

‘no nontrivial solution‘ to f(x,y,z) =0 in integers.
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