Problem 1 Simplify the following expression.

$$
\begin{gathered}
(x+y)^{3}-(x-y)^{3} . \\
2 y\left(3 x^{2}+y^{2}\right)
\end{gathered}
$$

Problem 2 Find another form of the following expression (here $x>1$ and $0<h<1$)

$$
\begin{gathered}
\frac{\sqrt{x+h}-\sqrt{x-h}}{h} \\
2 /(\sqrt{x+h}+\sqrt{x-h})
\end{gathered}
$$

Problem 3 Find the region of the number line on which the inequality is valid.

$$
3 x^{2}-2 x>1
$$

$$
x<-1 / 3 \text { or } x>1
$$

Problem 4 A circle in the $x y$-plane has center on the x-axis and contains the points $(-2,4)$ and $(5,3)$. Find the x-coordinate of the center of the circle.

1
Problem 5 How many points of intersection are there between the parabola $y=x^{2}$ and the circle with center at $(1,1)$ and radius $\sqrt{2}$?

Two

Problem 6 Reflect the parabola $y=x^{2}$ through the line $x=1$. Next reflect the resulting parabola through the line $y=-1$. Find the region on which the final parabola is increasing.

$$
x \leq 2
$$

Problem 7 Consider the following one-to-one function $f(x)$ on the given interval.

$$
f(x)=\frac{x}{1+x^{2}}, \quad 1 \leq x<\infty
$$

Find the domain of the inverse function $f^{-1}(x)$.

$$
(0,1 / 2]
$$

Problem 8 A sector of a circle subtends an angle of $\pi / 3$ radians and has an area of 6π square cm . Find the arc length of the portion of the circumference in this sector.

$$
2 \pi \mathrm{~cm}
$$

Problem 9 Compute $\tan (4 \pi / 3)$.

$$
\sqrt{3}
$$

Problem 10 Find an equivalent form of $\sin (3 \theta)$.

$$
-4 \sin ^{3}(\theta)+3 \sin (\theta)
$$

