Problem 1 Simplify the following expression.

$$(x+y)^3 - (x-y)^3.$$

 $2y(3x^2+y^2)$

Problem 2 Find another form of the following expression (here x > 1 and 0 < h < 1)

$$\frac{\sqrt{x+h} - \sqrt{x-h}}{h}.$$
$$\frac{2}{\sqrt{x+h} + \sqrt{x-h}}$$

Problem 3 Find the region of the number line on which the inequality is valid.

$$3x^2 - 2x > 1.$$

 $x < -1/3 \text{ or } x > 1$

Problem 4 A circle in the xy-plane has center on the x-axis and contains the points (-2, 4) and (5, 3). Find the x-coordinate of the center of the circle.

1

Problem 5 How many points of intersection are there between the parabola $y = x^2$ and the circle with center at (1, 1) and radius $\sqrt{2}$?

Problem 6 Reflect the parabola $y = x^2$ through the line x = 1. Next reflect the resulting parabola through the line y = -1. Find the region on which the final parabola is increasing.

 $x \leq 2$

Problem 7 Consider the following one-to-one function f(x) on the given interval.

$$f(x) = \frac{x}{1+x^2}, \quad 1 \le x < \infty$$

Find the domain of the inverse function $f^{-1}(x)$.

(0, 1/2]

Problem 8 A sector of a circle subtends an angle of $\pi/3$ radians and has an area of 6π square cm. Find the arc length of the portion of the circumference in this sector.

 $2\pi \text{ cm}$

 $\sqrt{3}$

Problem 9 Compute $\tan(4\pi/3)$.

Problem 10 Find an equivalent form of $\sin(3\theta)$.

$$-4\sin^3(\theta) + 3\sin(\theta)$$

Two