Name: \qquad Core Competency Exam A
You do not need to show work. Answer on the line. $x= \begin{cases}5, & \text { or } \\ 1\end{cases}$

3. Problem 1 The equation $|x-3|=2$ has: (1) no solutions, (2) a unique solution, (4) one positive and one negative solution, or (3) two positive solutions, (5) two negative solutions.
2 . Problem 2 The set of all real numbers where $|2 x-6| \leq 4$ is: $\begin{array}{rl}-4 \leqslant 2 x-6 \leqslant+4, ~ & 2 \leqslant 2 x \leqslant 10, \\ 1 \leqslant x \leqslant 5 .\end{array}$
(1) $(1,5)$,
(2) $[1,5]$,
(3) $(-\infty, 1) \cup(5, \infty)$,
(4) $(-\infty, 1] \cup[5, \infty)$, or $(5)(2 / 2,10 / 2]$.

2 . Problem 3 The reflection through the y-axis of the graph of $y=f(x)$ is the graph of:

$$
\text { (1) } y=-f(x),(2) y=f(-x), \text { or (3) } y=-f(-x)
$$

 . Problem 4 For the function $f(x)=1 /(x+1), x \geq 0$, the value $f(f(0))$ equals:
(1) 1 ,
(2) 0 , (3) $1 / 2$,
(4) 2 , or
(5) undefined.
$f(0)=\frac{1}{0+7}=1$
$f(1)=\frac{1}{1+1}=\frac{1}{2}$

3 . Problem 5 For the functions $f(x)=\frac{1}{x}+1, x \neq 0$, and $g(u)=\frac{1}{u+1}, u \neq-1$, the composite function $f(g(x)), x \neq-1$, equals $f(g(x))=\frac{1}{g(x)}+1=\frac{1}{1(x+1)}+1=(x+1)+1=x+2$
(1) $\frac{x}{2 x+1}$,
(2) $\frac{1}{(1 / x)+2}$,
(3) $x+2$,
(4) $\frac{1}{1 /(x+1)}-1$.

$$
y-3=2(x-1)=2 x-2
$$

1. Problem 6 The equation of the line with slope 2 containing the point $(x, y)=(1,3)$ is: $\quad y=2 x+1$
(1) $y=2 x+1$,
(2) $y-1=2(x-3)$,
(3) $y=2 x+3$, or (4) $y-3=3(x-1)$.

4Problem 7 The line containing the two points $(x, y)=(1,1)$ and $(x, y)=(2,-1)$ has equation

$$
\begin{aligned}
m=\frac{-1-1}{2-1}=-2 \cdot(y-1) & =-2(x-1)=-2 x+2, \\
y & =-2 x+3
\end{aligned}
$$

(1) $y-1=\frac{2-1}{-1-1}(x-1)$,
(2) $y-1=\frac{-1-1}{2-1}(x-2)$,
(3) $y=1 x+1$, or (4) $y=-2 x+3$. 3. Problem 8 The perpendicular line to $y=(2) x+2$, containing the point $(1,-1)$ has equation $2,-\frac{1}{2}=-\frac{1}{2} . \quad\left(y-(-1)=-\frac{1}{2}(x-1)=-\frac{1}{2} x+\frac{1}{2}, y=-\frac{1}{2}\right.$
(1) $y=2 x-3$,
(2) $y=(-1 / 2) x-1$,
(3) $y=(-1 / 2) x+(-1 / 2)$, or (4) $y=(1 / 2) x-3 / 2$.
2. Problem 9 The solutions of the quadratic equation $2 x^{2}+4 x=0$ are (1) $x=0$ and $x=-4$, $\overline{(2) x}=0$ and $x=-2,(3) x=-2$ and $x=-4$, or (4) undefined. $\quad \mathbf{Z x}(\mathbf{x}+\boldsymbol{Z})=0, \quad \mathbf{x}=\left\{\begin{array}{l}0,0 \\ -2\end{array}\right.$ 3. Problem 10 The parabola with equation $y=x^{2}-4 x+3$ satisfies $y>0$ for x in
(1) $(1,3)$,
(2) $[1,3]$,
(3) $(-\infty, 1) \cup(3, \infty)$,
(4) $(-\infty, 1] \cup[3, \infty)$.

$$
\text { 2 } \begin{gathered}
x^{2}-4 x+3=0 \\
(x-3)(x-1)=0 \\
x=\left\{\begin{array}{l}
1 \\
3
\end{array}\right.
\end{gathered}
$$

Mastery Exam. Show all Work.

Name: \qquad Problem 1: \qquad

Mastery Problem 1 (35 points) For all parts of this problem, $f(x)$ equals $\sqrt{9-2 x}$. Show all work.
(a) (5 points) Find the domain of f, i.e., the maximal set of real numbers for which the expression is defined as a real number. Express your answer using interval notation.
Domain. \sqrt{t} defined for $t \geqslant 0$. Thus $\sqrt{9-2 x}$ defined for $9-2 x \geqslant 0$
$9 \geqslant 2 x$
$\frac{9}{2} \geqslant x$

Domain equals $\left(-\infty, \frac{9}{2}\right]$.
(b) (10 points) Find the unique real number c such that $f(c)$ equals 4 .

$$
\begin{aligned}
f(c)=\sqrt{9-2 c} & =4 \\
(\sqrt{9-2 c})^{2} & =(4)^{2} \\
9-2 c & =16 \\
-2 c & =16-9=7 \\
c=\frac{7}{-2} & =-\frac{7}{2}
\end{aligned}
$$

$$
C=\frac{-7}{2}
$$

Name: \qquad

MethdI
(c)(5 points) Find the range of f. Express your answer in interval notation.

Method II

$$
R_{\text {angle }}=[0, \infty)
$$

$$
y=\sqrt{9-2 x} \text { has solution }
$$

if \& only if $y \geqslant 0$,
namely $x=\frac{9-y^{2}}{2} \leqslant \frac{9}{2}$

$$
\text { Range }=[0, \infty)
$$

(d) (10 points) Find a formula for the inverse function $f^{-1}(y)$.

$$
\begin{aligned}
y & =\sqrt{9-2 x} \\
(y)^{2} & =(\sqrt{9-2 x})^{2} \\
y^{2} & =9-2 x \\
y^{2}-9 & =-2 x \\
\frac{y^{2}-9}{-2} & =x
\end{aligned}
$$

$$
f^{-1}(y)=-\frac{1}{2} y^{2}+\frac{9}{2}
$$

(e)(5 points) Write the domain and range of the inverse function f^{-1}. Write your answer in interval notation, and make clear which is the domain and which is the range.

$$
f(x) \quad f^{-1}(y)
$$

Domain: $\left(-\infty, \frac{9}{2}\right] \longrightarrow \operatorname{Dominin}[0, \infty)$

$$
\operatorname{Range:}[0, \infty) \longrightarrow \operatorname{Range:}\left(-\infty, \frac{9}{2}\right]
$$

Name: \qquad Problem 2: \qquad $/ 35$

Mastery Problem 2(35 points) Beginning with the equation whose graph is the upper semicircle of radius 1 centered at the origin,

$$
g(x)=\sqrt{1-x^{2}}
$$

FIRST scale horizontally (left-right) by 2 and scale vertically (up-down) by 4, and NEXT translate horizontally by 2 and translate vertically by -1 . Find the equation $h(x)$ whose graph is the transformed graph. Please express your answer in the form

$$
h(x)=e+\sqrt{a x^{2}+b x+c},
$$

for real numbers a, b, c and e. Draw a rough sketch indicating the images on the new graph of the special points $(-1,0),(0,1)$ and $(1,0)$ of the original graph. Show all work.
General formula for vertical scale by t, horizontal! scale by s followed by vertical shift by k, horizontal shift by h.

$$
\begin{aligned}
& \frac{y-k}{t}=f\left(\frac{x-h}{5}\right) . \\
& \frac{y-(-1)}{4}=g\left(\frac{x-2}{2}\right)=\sqrt{1-\left(\frac{x-2}{2}\right)^{2}}=\sqrt{1-\frac{\left(x^{2}-4 x+4\right)}{4}}=\sqrt{\frac{4}{4}-\frac{\left(x^{2}-4 x+4\right)}{4}}=\sqrt{\frac{-x^{2}+4 x}{4}} \\
& \frac{y+1}{4}=\sqrt{\frac{-x^{2}+4 x}{4}}, \quad y+1=4 \sqrt{\frac{-x^{2}+4 x}{4}}=\sqrt{16} \sqrt{\frac{-x^{2}+4 x}{4}}=\sqrt{\frac{16\left(-x^{2}+4 x\right)}{4}}=\sqrt{4\left(-x^{2}+4 x\right)} \\
& y+1=\sqrt{-4 x^{2}+16 x} . \quad y=-1+\sqrt{-4 x^{2}+16 x}
\end{aligned}
$$

Name: \qquad
\qquad /30

Mastery Problem 3(30 points) For the parabola with equation

$$
F(x)=-2 x^{2}-4 x-3
$$

give a rough sketch of the parabola carefully labelling the vertex as well as all intersection points (if any) with both the x-axis and the y-axis. Show all work.
Vertex

$$
\begin{aligned}
& \text { (if any) with both the } x \text {-axis and the } y \text {-axis. Show all work. } \\
& \begin{aligned}
-2 x^{2}-4 x-3=-2\left(x^{2}+2 x\right)-3=-2\left(\left(x^{2}+2 x+1\right)-1\right)-3 & =-2(x+1)^{2}+2-3 \\
& =-2(x+1)^{2}-1
\end{aligned}
\end{aligned}
$$

Since $F(x)=-2(x+1)^{2}-1$, vertex is $(x, y)=(-1,-1)$.
Zeroes. $-2(x+1)^{2}-1=0,-2(x+1)^{2}=1,(x+1)^{2}=-\frac{1}{2} \rightarrow$ Impossible, $-\frac{1}{2}$ not nonnegative.
There are no zeroes.
y-intercept. $F(0)=-2(0)^{2}-4(0)-3=0+0-3=-3$

$$
y=-2 x^{2}-4 x-3
$$

