THE SNAKE DIAGRAM

JASON MICHAEL STARR

ABSTRACT. This is a test. This is only a test. Do not attempt to adjust your set. Do not contact emergency personnel.

1. Statement of the Lemma

Let \mathcal{C} be an Abelian category. In particular, every image in \mathcal{C} equals the coimage. Thus we make no distinction between images and coimages in what follows. One of the fundamental notions of homological algebra is the following.

Definition 1.1. A short exact sequence

$$\Sigma_A: 0 \longrightarrow A' \xrightarrow{q_A} A \xrightarrow{p_A} A'' \longrightarrow 0$$

is a pair of morphisms in \mathcal{C}

$$\Sigma_A = (q_A : A' \to A, p_A : A \to A)$$

such that all of the following hold:

- (i) q_A is a monomorphism,
- (ii) p_A is an epimorphism, and
- (iii) the image of q_A equals the kernel of p_A .

There is a category whose objects are short exact sequences in C. Here is the notion of morphism in this category.

Definition 1.2. Let $\Sigma_A = (q_A, p_A)$ and $\Sigma_B = (q_B, p_B)$ be short exact sequences in C. A morphism Σ_f from Σ_A to Σ_B ,

is a triple of morphisms in $\mathcal C$

$$\Sigma_f = (f': A' \rightarrow B', f: A \rightarrow B, f'': A'' \rightarrow B'')$$

such that every square commutes, i.e., both of the following hold:

- (i) $q_B \circ f'$ equals $f \circ q_A$, and
- (ii) $p_B \circ f$ equals $f'' \circ p_A$.

Date: October 19, 2010.

1

In the category of short exact sequences the identity morphisms and the compositions are the obvious notions. The category of short exact sequences is an additive category.

Let Σ_f be a morphism of short exact sequences as above. Denote the kernels of f', respectively f, f'' by,

$$i': K'_{\Sigma_f} \to A'$$
, resp. $i: K_{\Sigma_f} \to A$, $i'': K''_{\Sigma_f} \to A''$.

Similarly, denote the cokernels of f', respectively f', f'' by,

$$s': B' \to C'_{\Sigma_f}, \text{ resp. } s: B \to C_{\Sigma_f}, \ s'': B'' \to C''_{\Sigma_f}.$$

Because $q_B \circ f'$ equals $f \circ q_A$, also $f \circ (q_A \circ i')$ equals $q_B \circ (f' \circ i')$, which equals $q_B \circ 0 = 0$. Thus, by the universal property of the kernel, there is a unique morphism

$$q_K: K'_{\Sigma_f} \to K_{\Sigma_f}$$

such that $i \circ q_K$ equals $q_A \circ i'$. For a similar reason, there is a unique morphism

$$p_K: K_{\Sigma_f} \to K''_{\Sigma_f}$$

such that $i'' \circ p_K$ equals $p_A \circ i$. And by analogous arguments there are unique morphisms

$$q_C: C'_{\Sigma_f} \to C_{\Sigma_f}, \ p_C: C_{\Sigma_f} \to C''_{\Sigma_f}$$

such that $q_C \circ s'$ equals $s \circ q_B$, and $p_C \circ s$ equals $s'' \circ p_B$. To summarize, we have that the following diagram is commutative.

By hypothesis, both $f'' \circ p_A$ and $p_B \circ f$ are equal. Denote by t this common morphism

$$t:A\to B''$$

Denote the kernel of t by

$$j: K_t \to A$$
.

Now $f'' \circ (p_A \circ j)$ equals $t \circ j$, which is 0. By the universal property of the kernel of f'', there is a unique morphism

$$\widetilde{p_A}: K_t \to K_{\Sigma_f}^{\prime\prime}$$

such that $i'' \circ \widetilde{p_A}$ equals $p_A \circ j$. Similarly, $p_B \circ (f \circ j)$ equals $t \circ j$, which is 0. By the universal property of the kernel of p_B , there is q unique morphism

$$\widetilde{f}: K_t \to B'$$

such that $q_B \circ \widetilde{f}$ equals $f \circ j$.

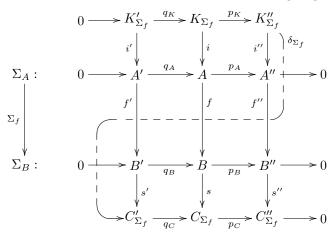
Lemma 1.3 (The Snake Lemma). For a morphism Σ_f of commutative diagrams as above, all of the following hold.

- (i) The morphism q_K is a monomorphism, and the morphism p_C is an epimorphism.
- (ii) The image of q_K equals the kernel of p_K , and the kernel of p_C equals the image of q_C .
- (iii) There is a unique morphism $\delta_{\Sigma_f}: K''_{\Sigma_f} \to C'_{\Sigma_f}$ such that $\delta_{\Sigma_f} \circ \widetilde{p_A}$ equals $s' \circ \widetilde{f}$ as morphisms $K_t \to C'_{\Sigma_f}$.
- (iv) The image of p_K equals the kernel of δ_{Σ_f} , and the kernel of q_C equals the image of δ_{Σ_f} .

In summary, the following long sequence is exact,

$$0 \longrightarrow K'_{\Sigma_f} \xrightarrow{q_K} K_{\Sigma_f} \xrightarrow{p_K} K''_{\Sigma_f} \xrightarrow{\delta_{\Sigma_f}} C''_{\Sigma_f} \xrightarrow{q_C} C_{\Sigma_f} \xrightarrow{p_C} C''_{\Sigma_f} \longrightarrow 0.$$

This entire situation is often summarized with the following large diagram.



DEPARTMENT OF MATHEMATICS, STONY BROOK UNIVERSITY, STONY BROOK, NY 11794 E-mail address: jstarr@math.sunysb.edu