THE SNAKE DIAGRAM

JASON MICHAEL STARR

Abstract

This is a test. This is only a test. Do not attempt to adjust your set. Do not contact emergency personnel.

1. Statement of the lemma

Let \mathcal{C} be an Abelian category. In particular, every image in \mathcal{C} equals the coimage. Thus we make no distinction between images and coimages in what follows. One of the fundamental notions of homological algebra is the following.

Definition 1.1. A short exact sequence

$$
\Sigma_{A}: \quad 0 \longrightarrow A^{\prime} \xrightarrow{q_{A}} A \xrightarrow{p_{A}} A^{\prime \prime} \longrightarrow 0
$$

is a pair of morphisms in \mathcal{C}

$$
\Sigma_{A}=\left(q_{A}: A^{\prime} \rightarrow A, p_{A}: A \rightarrow A\right)
$$

such that all of the following hold:
(i) q_{A} is a monomorphism,
(ii) p_{A} is an epimorphism, and
(iii) the image of q_{A} equals the kernel of p_{A}.

There is a category whose objects are short exact sequences in \mathcal{C}. Here is the notion of morphism in this category.

Definition 1.2. Let $\Sigma_{A}=\left(q_{A}, p_{A}\right)$ and $\Sigma_{B}=\left(q_{B}, p_{B}\right)$ be short exact sequences in \mathcal{C}. A morphism Σ_{f} from Σ_{A} to Σ_{B},

is a triple of morphisms in \mathcal{C}

$$
\Sigma_{f}=\left(f^{\prime}: A^{\prime} \rightarrow B^{\prime}, f: A \rightarrow B, f^{\prime \prime}: A^{\prime \prime} \rightarrow B^{\prime \prime}\right)
$$

such that every square commutes, i.e., both of the following hold:
(i) $q_{B} \circ f^{\prime}$ equals $f \circ q_{A}$, and
(ii) $p_{B} \circ f$ equals $f^{\prime \prime} \circ p_{A}$.

[^0]In the category of short exact sequences the identity morphisms and the compositions are the obvious notions. The category of short exact sequences is an additive category.

Let Σ_{f} be a morphism of short exact sequences as above. Denote the kernels of f^{\prime}, respectively $f, f^{\prime \prime}$ by,

$$
i^{\prime}: K_{\Sigma_{f}}^{\prime} \rightarrow A^{\prime}, \text { resp. } i: K_{\Sigma_{f}} \rightarrow A, i^{\prime \prime}: K_{\Sigma_{f}}^{\prime \prime} \rightarrow A^{\prime \prime}
$$

Similarly, denote the cokernels of f^{\prime}, respectively $f^{\prime}, f^{\prime \prime}$ by,

$$
s^{\prime}: B^{\prime} \rightarrow C_{\Sigma_{f}}^{\prime}, \text { resp. } s: B \rightarrow C_{\Sigma_{f}}, s^{\prime \prime}: B^{\prime \prime} \rightarrow C_{\Sigma_{f}}^{\prime \prime}
$$

Because $q_{B} \circ f^{\prime}$ equals $f \circ q_{A}$, also $f \circ\left(q_{A} \circ i^{\prime}\right)$ equals $q_{B} \circ\left(f^{\prime} \circ i^{\prime}\right)$, which equals $q_{B} \circ 0=0$. Thus, by the universal property of the kernel, there is a unique morphism

$$
q_{K}: K_{\Sigma_{f}}^{\prime} \rightarrow K_{\Sigma_{f}}
$$

such that $i \circ q_{K}$ equals $q_{A} \circ i^{\prime}$. For a similar reason, there is a unique morphism

$$
p_{K}: K_{\Sigma_{f}} \rightarrow K_{\Sigma_{f}}^{\prime \prime}
$$

such that $i^{\prime \prime} \circ p_{K}$ equals $p_{A} \circ i$. And by analogous arguments there are unique morphisms

$$
q_{C}: C_{\Sigma_{f}}^{\prime} \rightarrow C_{\Sigma_{f}}, \quad p_{C}: C_{\Sigma_{f}} \rightarrow C_{\Sigma_{f}}^{\prime \prime}
$$

such that $q_{C} \circ s^{\prime}$ equals $s \circ q_{B}$, and $p_{C} \circ s$ equals $s^{\prime \prime} \circ p_{B}$. To summarize, we have that the following diagram is commutative.

By hypothesis, both $f^{\prime \prime} \circ p_{A}$ and $p_{B} \circ f$ are equal. Denote by t this common morphism

$$
t: A \rightarrow B^{\prime \prime}
$$

Denote the kernel of t by

$$
j: K_{t} \rightarrow A
$$

Now $f^{\prime \prime} \circ\left(p_{A} \circ j\right)$ equals $t \circ j$, which is 0 . By the universal property of the kernel of $f^{\prime \prime}$, there is a unique morphism

$$
\widetilde{p_{A}}: K_{t} \rightarrow K_{\Sigma_{f}}^{\prime \prime}
$$

such that $i^{\prime \prime} \circ \widetilde{p_{A}}$ equals $p_{A} \circ j$. Similarly, $p_{B} \circ(f \circ j)$ equals $t \circ j$, which is 0 . By the universal property of the kernel of p_{B}, there is q unique morphism

$$
\tilde{f}: K_{t} \rightarrow B^{\prime}
$$

such that $q_{B} \circ \tilde{f}$ equals $f \circ j$.

Lemma 1.3 (The Snake Lemma). For a morphism Σ_{f} of commutative diagrams as above, all of the following hold.
(i) The morphism q_{K} is a monomorphism, and the morphism p_{C} is an epimorphism.
(ii) The image of q_{K} equals the kernel of p_{K}, and the kernel of p_{C} equals the image of q_{C}.
(iii) There is a unique morphism $\delta_{\Sigma_{f}}: K_{\Sigma_{f}}^{\prime \prime} \rightarrow C_{\Sigma_{f}}^{\prime}$ such that $\delta_{\Sigma_{f}} \circ \widetilde{p_{A}}$ equals $s^{\prime} \circ \tilde{f}$ as morphisms $K_{t} \rightarrow C_{\Sigma_{f}}^{\prime}$.
(iv) The image of p_{K} equals the kernel of $\delta_{\Sigma_{f}}$, and the kernel of q_{C} equals the image of $\delta_{\Sigma_{f}}$.
In summary, the following long sequence is exact,

This entire situation is often summarized with the following large diagram.

Department of Mathematics, Stony Brook University, Stony Brook, NY 11794
E-mail address: jstarr@math.sunysb.edu

[^0]: Date: October 19, 2010.

