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Homework Policy. Please read through all the problems. I will be happy to discuss the solutions
during office hours.

Problems.

Problem 1. Let K be a commutative ring with 1. Denote by K[t] the K-algebra of polynomials in
one variable t with coefficients in K. Denote by K [[t]] the K-algebra of power series in one variable
t with coefficients in K. There is a natural inclusion of K[t] in K [[t]]. Let λ(t) = a0 − a1t + · · · +
(−1)rart

r be an element in K[t].

(a) Prove that there exists a (left-right) inverse σ(t) in K [[t]] to the image of λ(t) if and only if
a0 is invertible in K. In this case, prove that the inverse σ(t) is unique. More generally, for every
element a0− a1t+ . . . in K [[t]], prove that the element is invertible if and only if a0 is invertible in
K, in which case the inverse is unique.

(b) Assume that λ(t) ∈ K[t] has an inverse σ(t) in K [[t]]. Prove that the following sequence of
K[t]-modules is well-defined and exact, where the arrows are scaling by the given element in K [[t]].

0 −−−→ K[t]/λ(t)K[t]
σ(t)−−−→ K [[t]] /K[t]

λ(t)−−−→ K [[t]] /K[t] −−−→ 0.

(c) Assume that both a0 and ar are invertible, so that λ(t) is associate to a monic polynomial.

Then show that K[t]/λ(t)K[t] is a free K-module with basis (1, t, . . . , t
r−1

).

Problem 2. Let (X,OX) be a scheme. Let E be a locally free OX-module of (finite) rank r.

(a) Prove that there exists a pair

(πE : PE → X,φE : π∗EE → O(1))

representing the contravariant functor,

F : SchemesX → Sets,

associating to every X-scheme, p : T → X, the set of invertible quotients of p∗E . Moreover, prove
that, as an X-scheme, PE is isomorphic to Pr−1

X Zariski locally on X.

(b) Denote the “twist” of φE by O(−1) by

ψE : π∗EE(−1)→ OPE .
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Denote the domain by K1(ψE),
K1(ψE) := π∗EE(−1).

For every p = 0, . . . , r, denote by Kp(ψE) the locally free OPE -module,

Kp(ψE) :=

p∧
OPE

K1(ψE) ∼= π∗E

p∧
OX

E(−p).

Thus, the direct sum,

K•(ψE) =
r⊕
p=0

Kp(ψE),

is naturally the exterior algebra on K1(ψE).

Prove that there is a unique collection of OPE -module homomorphisms,

dp : Kp(ψE)→ Kp−1(ψE),

for p = 1, . . . , r such that d1 equals ψE , and so that (K•(ψE), d•) satisfies the graded Leibniz rule,
i.e., for every open U ⊂ PE , for every a ∈ Kp(ψE), and for every b ∈ Kq(ψE),

dp+q(a ∧ b) = dp(a) ∧ b+ (−1)pa ∧ dq(b).

(c) Show that the complex (K•(ψE), d•) is exact. Use the Euler sequence to prove that Ker(d1) is
canonically isomorphic to the sheaf of relative differentials Ωπ, and, more generally,

Ker(dp) = Ωp
π =

p∧
OPE

Ωπ,

for every p = 1, . . . , r. In particular, for every p = 1, . . . , r, this gives a short exact sequence,

0 −−−→ Ωp
π

up,E−−−→ π∗
∧p E(−p)

vp,E−−−→ Ωp−1
π −−−→ 0,

and it also gives a canonical isomorphism,

Ωr−1
π
∼= π∗E

r∧
E(−r).

(d) Prove that for every integer m < 0, the pushforward sheaf,

πE,∗O(m),

is the zero sheaf. Also, the natural OX-module homomorphism,

π# : OX → πE,∗OPE
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is an isomorphism.

Prove that for every integer q = 1, . . . , r− 2 and for every integer m, the higher direct image sheaf,

RqπE,∗O(m),

is the zero sheaf on X.

Finally, prove that for every integer m > −r, the higher direct image sheaf

Rr−1πE,∗O(m)

is the zero sheaf.

(e) Substitute the vanishing results in (d) into the long exact sequences of higher direct image
sheaves associated to the short exact sequences in (c). Conclude that RqπE,∗Ω

p
π vanishes unless p

equals q, in which case it is canonically isomorphic to OX . In particular, conclude that there is a
canonical isomorphism,

tE : Rr−1πE,∗Ω
r−1
π → OX .

(f) Via adjunction of π∗ and π∗, associated to φE , there is a natural homomorphism of OX-modules,

φ1,E : E → πE,∗O(1).

Prove that φ1,E is an isomorphism. More generally, for every integer d ≥ 0, the induced OX-module
homomorphism,

φd,E : Symd
OX
E → πE,∗O(d),

is an isomorphism. Combined with (d) above, this is also valid for d < 0 if we adopt the convention
that Symd

OX
E is the zero sheaf for all d < 0.

Similarly, for every integer d ≥ 0, prove that the natural pairing of OX-modules,

πE,∗HomOPE(Ωr−1
π (−d),Ωr−1

π )⊗OX
Rr−1πE,∗Ω

r−1
π (−d)→ Rr−1πE,∗Ω

r−1
π

tE−→ OX ,

is a perfect pairing, i.e., the induced OX-module homomorphism,

Rr−1πE,∗Ω
r−1
π (−d)→ HomOX

(πE,∗HomOPE(Ωr−1
π (−d),Ωr−1

π ),OX),

is an isomorphism, i.e.,

Rr−1πE,∗Ω
r−1
π (−d) ∼= HomOX

(Symd
OX
E ,OX).

Combined with the projection formula, this gives a canonical isomorphism of OX-modules,

Rr−1πE,∗O(−r − d) ∼= HomOX
(Symd

OX
E ⊗OX

r∧
OX

E ,OX).
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(g) For every integer m > 0, consider the exact complex of OPE -modules (K•(ψE)(m), d•). Prove
that for every p = 0, . . . , r and for every q > 0, the higher direct image sheaf,

RqπE,∗[Kp(ψE)(m)] = RqπE,∗[π
∗
E

p∧
OX

E(m− q)],

is the zero sheaf. Moreover, the pushforward sheaf,

πE,∗[Kp(ψE)(m)] =

p∧
OX

E ⊗OX
Symm−q

OX
E ,

is a locally free OX-module; the zero sheaf if m < q. Conclude that the pushforward complex of
OX-modules,

(πE,∗[K•(ψE)(m)], πE,∗d•),

is an exact complex of locally free OX-modules.

In particular, for m = 0, in K0(X) we have the identity,

r∑
p=0

(−1)p[Sym−pOX
E ⊗OX

p∧
OX

E ] = [OX ].

Also, for every m > 0, we have the identity,

r∑
p=0

(−1)p[Symm−p
OX
E ⊗OX

p∧
OX

E ] = 0.

Problem 3. Assume now that X is quasi-compact and connected. Thus also PE is quasi-compact
and connected.

(a) For every finite rank, locally free OPE -module, F , prove that there exists an integer m0, depend-
ing on F , such that for every integer m ≥ m0, πE,∗F(m) is a finite rank, locally free OX-module
and for every integer q > 0, the higher direct image sheaf,

RqπE,∗F(m)

is the zero sheaf. In particular, the image in K0(X) [[t]] /K0(X)[t] of the element,∑
m≥m0

[πE,∗F(m)]tm

is independent of the choice of m0. Denote this image by P (t,F).

(b) For every short exact sequence of finite rank, locally free OPE -modules,

0 −−−→ F1
e−−−→ F2

f−−−→ F3 −−−→ 0,
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choosing m0 to be the maximum of m0(Fi), i = 1, 2, 3, prove that for every integer m ≥ m0, the
pushforward

0 −−−→ πE,∗F1
e−−−→ F2

f−−−→ F3 −−−→ 0,

is a short exact sequence of finite rank, locally free OX-modules. Conclude that P (t,F2) equals
P (t,F1) +P (t,F3). Thus P (t,−) is a generalized Euler characteristic. Hence there exists a unique
group homomorphism,

P (t,−) : K0(PE)→ K0(X) [[t]] /K0(X)[t],

that extends the definition of P (t,−) above. In particular, check that P (t,−) is a homomorphism
of K0(X)-modules.

(c) For every a in K0(PE), check that tP (t, a[O(1)]) equals P (t, a), and P (t, a[O(−1)]) equals
tP (t, a). Thus, if we extend theK0(X)-module structure onK0(PE) to aK0(X)[t]-module structure
by defining t ∗ a := a[O(−1)], then P (t,−) is a homomorphism of K0(X)[t]-modules.

(d) For the K0(X)[t]-module structure from the previous part, check that the class in K0(PE)
corresponding to the complex (K•(ψE), d•) is the image of the polynomial in K0(X)[t],

λ(t) =
r∑
p=0

(−1)p[

p∧
OX

E ]tp.

Use Problem 1(a) to prove that λ(t) is invertible in K0(X) [[t]]. More precisely, use Problem
2(g) to prove that an inverse is,

σ(t) =
∞∑
m=0

[Symm
OX
E ]tm.

Thus, P (t,−) has image contained in the kernel of the homomorphism of K0(X)[t]-modules,

Ko(X) [[t]] /Ko(X)[t]
λ(t)−−−→ Ko(X) [[t]] /Ko(X)[t].

(e) Use Problem 2(b) to conclude that there is a unique homomorphism of K0(X)[t]-modules,

R(t,−) : K0(PE)→ K0(X)[t]/λ(t)K0(X)[t],

such that P (t,−) equals σ(t)R(t,−). Moreover, since P (t, [OPE ]) equals the image of σ(t), conclude
that R(t,OPE) equals 1 in K0(X)[t]/λ(t)K0(X)[t]. Conclude that R(t,−) is surjective. Moreover,
since λ(t) annihilates K0(PE), conclude that R(t,−) is a homomorphism of K0(X)[t]/λ(t)K0(X)[t]-
modules (that sends 1 to 1).

Finally, use the relation λ(t) = 0 in K0(PE) to prove that for every integer m (possibly negative),
the class [O(−m)] = tm is in the K0(X)[t]/λ(t)K0(X)[t]-module generated by 1.

Problem 4. Denote by wE the twist of u1,E by O(1),

wE : Ω1
π(1)→ π∗E .
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Form the Cartesian diagram,

PE ×X PE pr1−−−→ PE
pr2

y yπ
PE −−−→

π
X

.

Using the natural isomorphism of coherent sheaves,

pr∗1π
∗E ∼= (π ◦ pr1)∗E = (π ◦ pr2)∗E ∼= pr∗2π

∗E ,

form the composition homomorphism,

pr∗1[Ω1
π(1)]

pr∗1wE−−−→ pr∗1π
∗E ∼= pr∗2π

∗E
pr∗2φE−−−→ pr∗2O(1).

Twisting by pr∗2O(−1) gives a morphism of coherent sheaves on PE ×X PE ,

αE : pr∗1[Ω1
π(1)]⊗O pr∗2[O(−1)]→ OPE×XPE .

Denote by K1(αE) the domain,

K1(αE) := pr∗1[Ω1
π(1)]⊗O pr∗2[O(−1)]

(a) Prove that the image of αE equals the ideal sheaf I∆ of the diagonal closed immersion,

∆ : PE → PE ×X PE .

Thus, there is an exact sequence,

K1(αE)
αE−−−→ OPE×XPE

∆#

−−−→ ∆∗OPE −−−→ 0.

(b) As in Problem 2(b), for p = 0, . . . , r − 1, form the locally free sheaves on PE ×X PE ,

Kp(αE) =

p∧
O

K1(αE) ∼= pr∗1[Ωp
π(p)]⊗O pr∗2[O(−p)].

Prove that there is a unique collection of OPE -module homomorphisms,

dp : Kp(αE)→ Kp−1(αE),

for p = 1, . . . , r − 1 such that d1 equals αE , and so that (K•(αE), d•) satisfies the graded Leibniz
rule.

(c) Read about Koszul complexes in a textbook on commutative algebra or homological algebra.
Check that with respect to local trivializations of K1(αE), the coordinates of αE are a regular
sequence. Conclude that the complex (K•(αE), d•) is acyclic, i.e., it is exact except in degree q = 0,
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where the homology is ∆∗OPE . Thus the complex is a locally free resolution of ∆∗OPE . This is the
Beilinson resolution of the diagonal (this also works for all the standard projective homogeneous
varieties).

(c) For every locally free sheaf F on PE , prove that the tensor product complex,

(pr∗1F ⊗O K•(αE), d•),

is a locally free resolution of ∆∗F . For every p = 0, . . . , r − 1, check that there is a natural
isomorphism of locally free sheaves,

pr∗1F ⊗O Kp(αE) ∼= pr∗1[F ⊗OPE Ωp
π(p)]⊗O pr∗2O(−p).

By Problem 3(a), there exists an integer m0 such that for all integers m ≥ m0, for every
p = 0, . . . , r − 1,

πE,∗[F ⊗OPE Ωp
π(p+m)]

is a locally free OX-module and, for every integer q > 0, the higher direct image sheaf,

RqπE,∗[F ⊗OPE Ωp
π(p+m)],

is the zero sheaf. Conclude that the complex (pr∗1F(m)⊗O K•(αE), d•) is acyclic for pr2,∗, i.e., the
complex on PE

(pr2,∗[pr∗1F(m)⊗O K•(αE)], pr2,∗d•)

is an acyclic complex of locally free sheaves that is a resolution of

pr2,∗∆∗F(m) ∼= F(m).

Finally, twisting by O(−m), this gives a locally free resolution of F by terms

pr2,∗[pr∗1F(m)⊗O Kp(αE)](−m) ∼=

π∗π∗[F ⊗OPE Ωp
π(p+m)](−m).

(d) Conclude that the class in K0(PE) associated to

pr∗1F(m)⊗O Kp(αE)

is in the K0(X)-submodule generated by all of the classes [O(−m)]. Now use (e) to conclude that
this is in the K0(X)[t]/λ(t)K0(X)[t]-submodule generated by 1. Since the complex is an exact
resolution of F , conclude that also [F ] is in this submodule. Since this holds for every locally
free sheaf F , conclude that K0(PE) equals the K0(X)[t]/λ(t)K0(X)[t]-submodule generated by 1.
Finally, conclude that the homomorphism,

R(t,−) : K0(PE)→ K0(X)[t]/λ(t)K0(X)[t],
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is an isomorphism of K0(X)[t]/λ(t)K0(X)[t]-algebras.

(e) The isomorphism above is equivalent to another isomorphism that is more conventional. First
of all, note that t is invertible modulo λ(t). Thus, it makes sense to consider the rational expression,

t−rλ(t) =
r∑
p=0

(−1)p[

p∧
OX

E ](t−1)r−p.

Define s to be
s = t−1 − 1 = [O(1)]− [OPE ].

Recall from lecture that this is the first Chern class of O(1) in K-theory (with respect to one of the
two standard conventions). Using the substitution t−1 = 1 + s, rewrite,

(1 + s)rλ(1/(1 + s)) =
r∑
p=0

(−1)p[

p∧
OX

E ](1 + s)r−p =
r∑

m=0

(
r−m∑
l=0

(−1)l+m−r
(
r − l
m

)
[
l∧
OX

E ]

)
(−1)r−msm.

Defining the Chern classes in K0(X),

cm(E) :=
m∑
j=0

(−1)j
(
r −m+ j

r −m

)
[

m−j∧
OX

E ],

the polynomial is,

µE(s) = (1 + s)rλ(1/(1 + s)) =
r∑

m=0

(−1)mcm(E)sr−m.

Altogether, this gives an isomorphism of K0(X)-algebras,

K0(PE) ∼= K0(X)[s]/〈sr − c1(E)sr−1 + · · ·+ (−1)mcm(E)sr−m + · · ·+ (−1)rcr(E)〉,

where s corresponds to the first Chern class of O(1), i.e., s = [O(1)]− [OPE ].

(f) In particular, observe that the ring homomorphism,

K0(πE) : K0(X)→ K0(PE),

is injective. Thus, for every locally free OX-module E of finite rank r, there exists a projective
morphism that is Zariski locally a product (admitting Zariski local sections)

π : P → X,

such that K0(π) is injective and such that there exists an invertible quotient of π∗E on P . By using
induction on r, and applying the previous step to the kernel of the invertible quotient on P , prove
that there exists a projective morphism that is Zariski locally a product (admitting Zariski local
sections)

ρ : Q→ X,
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such that K0(ρ) is injective and such that ρ∗E admits a filtration by OQ-submodules,

ρ∗E = F 0ρ∗E ⊂ F 1ρ∗E ⊂ · · · ⊂ F rρ∗E = 0,

such that for q = 0, . . . , r − 1, the associated graded OQ-module,

F qρ∗E/F q+1ρ∗E

is an invertible OQ-module.

This leads to the splitting principle. Let there be given a class of schemes and morphisms between
these schemes such that for each scheme X as above, and for every locally free OX-module E
of finite rank r, the morphism ρ constructed above is in the class. Suppose given a rule that
associates to certain collections of locally free sheaves E1, . . . , Em on a scheme X in our class an
element a(X, E1, . . . , Em) in K0(X). Assume moreover that the rule is functorial, i.e., for every
morphism f : Y → X in our class, f ∗a(X, E1, . . . , Em) equals a(Y, f ∗E1, . . . , f

∗Em). Finally, assume
that a(X, E1, . . . , Em) equals 0 whenever the sheaves admit filtrations whose associated graded pieces
are invertible quotients, i.e., whenever the locally free sheaves “split” as a sum of invertible sheaves
in K-theory. Then prove that for all (X, E1, . . . , Er), the class a(X, E1, . . . , Er) equals 0. The idea is
to introduce a morphism ρ : Q → X as above such that each ρ∗Ei has such a filtration, and then
use that K0(ρ) is injective.

Problem 5. By (a), the subset 1 + tK0(X) [[t]] ⊂ K0(X) [[t]] is an Abelian group under mul-
tiplication. For every locally free OX-module E of finite rank r, define the following element in
1 + tK0(X) [[t]],

λ(E , t) =
r∑
p=0

[

p∧
OX

E ]tp =
∞∑
p=0

[

p∧
OX

E ]tp.

Thus the polynomial λ(t) from the previous problems equals λ(E ,−t).
For every short exact sequence of locally free OX-modules of finite ranks r′, resp. r, r′′,

Σ :0 −−−→ E ′ u−−−→ E v−−−→ E ′′ −−−→ 0,

for every integer p = 0, . . . , r, for every integer q = 0, . . . , p, define the subsheaf F q
Σ

∧p
OX
E of

∧p
OX
E

to be the image of the composition,

q∧
OX

E ′ ⊗OX

p−q∧
OX

E
∧p u⊗Id−−−−−→

q∧
OX

E ⊗OX

p−q∧
OX

E −∧−−−−→
p∧
OX

E .

(a) Prove that for every pair of integers p1, p2 with 0 ≤ p1, p2 ≤ r and for every pair of integers
q1, q2 with 0 ≤ qi ≤ pi, the multiplication homomorphism

F q1
Σ

p1∧
OX

E ⊗OX
F q2

Σ

p2∧
OX

E −∧−−−−→
p1+p2∧
OX

E
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surjects onto the subsheaf F q1+q2
Σ

∧p1+p2
OX

E .

(b) Prove that F 1
Σ

∧p
OX
E equals the kernel of the natural surjection,

p∧
(v) :

p∧
OX

E →
p∧
OX

E ′′,

so that associated graded sheaf F 0
Σ/F

1
Σ equals

∧p
OX
E ′′.

(c) Combine (a) and (b) with associativity of the multiplication in the exterior algebra, to prove
that there is a well-defined multiplication homomorphism to the associated graded sheaf of this
filtration,

q∧
OX

E ′ ⊗OX

p−q∧
OX

E ′′ → F q
Σ/F

q+1
Σ .

Prove that this homomorphism is an isomorphism.

(d) Conclude the identity in K0(X),

[

p∧
OX

E ] =

p∑
q=0

[

q∧
OX

E ′][
p−q∧
OX

E ′′].

Finally, use this to prove the identity in 1 + tK0(X) [[t]],

λ(E , t) = λ(E ′, t)λ(E ′′, t).

Conclude that λ(−, t) is a generalized Euler characteristic. Thus, there exists a unique extension
to a group homomorphism,

λ(−, t) : K0(X)→ 1 + tK0(X) [[t]] .

For every integer p ≥ 0, define
λp : K0(X)→ K0(X)

to be the unique set map such that for every a ∈ K0(X),

λ(a, t) =
∞∑
p=0

λp(a).

(e) Prove that λ0(a) equals 1, prove that λ1(a) equals a, and prove that for every q > 1, for every
invertible sheaf L, prove that λq([L]) equals 0. In particular, prove that for every q > 1, λq(1)
equals 0. Also, use the fact that λ(−, t) is a group homomorphism to prove that for every integer
p ≥ 0,

λp(a+ b) =

p∑
q=0

λq(a)λp−q(b).
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(f) Let A1, . . . ,Ar be invertible OX-modules, and denote ai = [Ai] in K0(X). Denote a1 + · · ·+ ar
by a. Prove that

λ(a, t) =
r∏
i=1

(1 + ait).

Similarly, for invertible sheaves B1, . . . ,Bs with classes bj = [Bj], denoting b1 + · · ·+ bs by b, prove
that also

λ(b, t) =
s∏
j=1

(1 + bjt).

Finally, since ab =
∑

i,j aibj, prove that

λ(ab, t) =
r∏
i=1

s∏
j=1

(1 + aibjt).

(g) Now let the symmetric group Sr, resp. Ss act on the polynomial ring Z[x1, . . . , xr], resp.
Z[y1, . . . , ys], in the obvious manner. This induces an action of the product Sr ×Ss on the tensor
product Z[x1, . . . , xr, y1, . . . , ys]. The main theorem of invariant theory guarantees that the invariant
ring Z[x1, . . . , xr]

Sr is the polynomial ring generated by the algebraically independent elements

χl =
∑

I⊂{1,...,r},#I=l

∏
i∈I

xi,

for l = 1, . . . , r. Similarly, Z[y1, . . . , ys]
Ss is the polynomial ring generated by the algebraically

independent elements

υm =
∑

J⊂{1,...,s},#J=m

∏
jinJ

yj.

Finally, the subring of Z[x1, . . . , xr, y1, . . . , ys] of Sr × Ss-invariants is the subring generated by
χ1, . . . , χr and υ1, . . . , υs. Thus, for every integer n ≥ 0, there exists a unique polynomial

P(r,s),m(χ1, . . . , χr; υ1, . . . , υs) ∈ Z[χ1, . . . , χr, υ1, . . . , υs],

such that the Sr ×Ss-invariant polynomial,

r∏
i=1

s∏
j=1

(1 + xiyjt)

equals
∞∑
n=0

P(r,s),n(χ1, . . . , χr; υ1, . . . , υs)t
n.

If we make the invariant ring a bigraded ring with deg(χl) = (l, 0) and deg(υm) = (0,m), then
prove that P(r,s),n is homogeneous of bidegree (n, n). In particular, it cannot involve any χl or υm
with l > n, resp. m > n.
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For r ≤ r′ and s ≤ s′, prove that

P(r′,s′),n(χ1, . . . , χr, 0, . . . , 0; υ1, . . . , υs, 0, . . . , 0) = P(r,s),n(χ1, . . . , χr; υ1, . . . , υs).

Thus, there exists a unique homogeneous, degree n polynomial,

Pn(χ1, . . . , χn; υ1, . . . , υn) = P(n,n),n(χ1, . . . , χn; υ1, . . . , υn)

in the graded ring Z[χ1, . . . , χn, υ1, . . . , υn] such that for every (r, s), in Z[χ1, . . . , χr, υ1, . . . , υs],

P(r,s),n(χ1, . . . , χr; υ1, . . . , υs) = Pn(χ1, . . . , χn; υ1, . . . , υn),

with the convention that χl, resp. υm, is zero if l > r, resp. if m > s.

In particular, compute the low degree polynomials,

P1 = χ1υ1, P2 = χ2
1υ2 + χ2υ

2
1 − 2χ2υ2,

P3 = χ3
1υ3 + χ3υ

3
1 + 2χ1χ2υ1υ2 − 3χ1χ2υ3 − 3χ3υ1υ2 + 18χ3υ3.

(h) Combine (f) and (g) to prove that for a = a1 + · · ·+ ar and b = b1 + · · ·+ bs in K0(X),

λn(ab) = Pn(λ1(a), . . . , λn(a);λ1(b), . . . , λn(b)).

Combine this with the splitting principle to prove that for all finite rank, locally free sheaves A
and B on X and for every integer n ≥ 0,

λn([A][B]) = Pn(λ1([A]), . . . , λn([A]);λ1([B]), . . . , λn([B])).

Combined with the additivity relations, conclude that for every a, b ∈ K0(X),

λn(ab) = Pn(λ1(a), . . . , λn(a);λ1(b), . . . , λn(b)).

(i) Via the same strategy as in (f), (g) and (h), for every pair of integers m and n, prove that there
are canonically defined homogeneous polynomials of degree mn,

Qm,n(χ1, . . . , χmn) ∈ Z[χ1, . . . , χmn],

such that for every quasi-compact scheme X, and for every a, b ∈ K0(X),

λn(λm(a)) = Qn,m(λ1(a), . . . , λmn(a)).

Let the polynomials Pn and Qm,n be as above, A lambda ring is a commutative, unital ring K with
set maps, (λn : K → K)n=0,1,... satisfying the identities above, i.e., for every a and b in K and for
every pair m,n of nonnegative integers,

12
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(i) λ0(a) = 1 and λ1(a) = a,

(ii) λm(1) = 0 for all m > 1,

(iii) λn(a+ b) = λn(a)λ0(b) + · · ·+ λn−m(a)λm(b) + · · ·+ λ0(a)λn(b),

(iv) λn(ab) = Pn(λ1(a), . . . , λn(a);λ1(b), . . . , λn(b)), and

(v) λn(λm(a)) = Qn,m(λ1(a), . . . , λmn(a)).

Equivalently, the data (λn)n can be encoded as the power series map,

λ(−, t) : K → 1 + tK [[t]] , λ(a, t) =
∞∑
n=0

λn(a)tn.

All of the above proves that K = K0(X) with the lambda operations constructed above is a lambda
ring. Moreover, for every f : Y → X, the pullback homomorphisms K0(f) are homomorphisms of
lambda rings.

(j) For the initial commutative, unital ring Z, prove that there exists a unique structure of lambda
ring, namely,

λZ(a, t) := (1 + t)a ∈ 1 + tZ [[t]] .

With this structure, prove that Z is the initial lambda ring, i.e., for every lambda ring (K,λK), the
unique homomorphism of commutative, unital rings,

Z→ K,

is a homomorphism of lambda rings.

An augmented lambda ring is a lambda ring (K,λK) together with a homomorphism of lambda
rings,

ε : K → Z.

The homomorphism ε is called an augmentation. Assume now that X is quasi-compact and con-
nected. Recall that the rank is a generalized Euler characteristic on locally free OX-modules, hence
extends to a unique group homomorphism,

ε : K0(X)→ Z, ε([E ]) = rank(E).

Prove that ε is a homomorphism of lambda rings. Thus, (K0(X), λ, ε) is an augmented lambda
ring.

Problem 6. Let (K,λK) be a lambda ring. Define the set map γ(−, t) as follows,

γ(−, t) : K → 1 + tK [[t]] , γ(a, t) = λ(a, t/(1− t)) =
∞∑
n=0

λn(a)(t+ t2 + t3 + ..)n.
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For every integer n ≥ 0, define

γn : K → K, γ0(a) = 1, γn>0(a) =
n∑

m=1

(
n− 1

m− 1

)
λm(a),

to be the unique set map such that

γ(a, t) =
∞∑
n=0

γn(a)tn.

Since λ(a, t) equals γ(a, t/(1 + t)) is uniquely recovered from γ, every axiom for the lambda oper-
ations is equivalent to a corresponding axiom for the gamma operations. Thus lambda rings could
be alternatively axiomatized in terms of the gamma operations.

(a) Use the identities of a lambda ring to prove the following identities,

γ(a+ b, t) = γ(a, t)γ(b, t),

γ(1, t) =
∞∑
n=0

1tn = 1/(1− t) = 1 + t/(1− t),

and
γ(−1, t) = 1− t.

(b) For every element a of K such that λn(a) vanishes for all n > 1, prove that

γ(a, t) = 1 + at/(1− t) = 1 +
∞∑
n=1

atn.

Conclude that,
γ(a− 1, t) = γ(a, t)γ(−1, t) = 1 + (a− 1)t.

More generally, for every integer r ≥ 1, for every element a such that λn(a) vanishes for all n > 1,
check that

γ(a− r, t) = γ(a, t)(1− t)r = 1 +
r∑

n=1

(
n∑

m=0

(−1)n−m
(
r −m
r − n

)
λm(a)

)
.

You may use the combinatorial identity,(
r −m
r − n

)
=

n∑
l=m

(−1)n−l
(

r

n− l

)(
l − 1

m− 1

)
.

(c) Let (K,λ, ε) be an augmented lambda ring. First, check that ε is compatible with the gamma
operations. For every a in K, define the total Chern class as follows,

c(−, t) : K → 1 + tK [[t]] , c(a, t) = γ(a− ε(a), t) = γ(a, t)(1− t)ε(a).
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Prove that the lambda operations are recovered from the total Chern class and the augmentation
by the identity,

λ(a, t) = c(a, t/(1 + t))(1 + t)ε(a).

Hence every axiom for the augmented lambda ring leads to an axiom for the total Chern class and
augmentation. Thus, augmented lambda rings could be alternatively axiomatized in terms of the
total Chern class and the augmentation. Prove the Whitney sum formula,

c(a+ b, t) = c(a, t)c(b, t).

(d) For every integer n ≥ 0, define the degree n Chern class,

cn : K → K,

to be the unique set map such that

c(a, t) =
∞∑
n=0

cn(a)tn.

Let a be an element of K such that ε(a) is a nonnegative integer r and such that λn(t) vanishes for
all n > r. Use (b) to prove that cn(a) vanishes for all n > r, and

cn(a) =
n∑

m=0

(−1)n−m
(
r −m
r − n

)
λm(a)

for all integers n = 0, . . . , r. Also in this case, use the identity λ(a, t) = c(a, t/(1 + t))(1 + t)r to
prove the identity

λn(a) =
n∑

m=0

(
r −m
r − n

)
cn(a)

for all integers n = 0, . . . , r.

Define Γ1K to be the ideal that is the kernel of ε. Since c1(a) equals a − ε(a), prove that Γ1K
equals the ideal generated by all first Chern classes c1(a). More generally, since ε is compatible
with the gamma operations, prove that the image in 1 + tZ [[t]],

ε(c(a, t)) :=
∞∑
n=0

ε(cn(a))tn

equals
c(ε(a), t) = γ(ε(a)− ε(a), t) = γ(0, t) = 1.

Hence, for every n > 0, prove that ε(cn(a)) equals 0, i.e., cn(a) is in Γ1K. Thus Γ1K equals the
ideal generated by all expressions cd1(a1) · · · cdm(am) for all positive integers m, for all m-tuples
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(a1, . . . , am) of elements in K, and for every m-tuple of nonnegative integers (d1, . . . , dm) such that
d1 + · · ·+ dm ≥ 1.

More generally, define the gamma filtration to be the descending filtration of K by ideals ΓdK,
for d = 0, 1, 2, . . . , where ΓdK equals the additive subgroup of K generated by all expressions
cd1(a1) · · · cdm(am) for all nonnegative integers m, for all elements a1, . . . , am in K, and for all m-
tuples of nonnegative integers d1, . . . , dm such that d1 + · · ·+ dm ≥ d. For every b ∈ K, since c1(b)
equals b− ε(b), prove that

bcd1(a1) · · · cdm(am) = ε(b)cd1(a1) · · · cdm(am) + c1(b)cd1(a1) · · · cdm(am)

is again in ΓdK. Hence ΓdK is an ideal in K. Moreover, for all nonnegative integers d and e,
ΓdK · ΓeK is contained in Γd+eK.

(e) Formalize the equivalence between the lambda operations as follows. For every nonnegative
integer r, let Φr be the commutative, unital ring Z[χ1, . . . , χr] and let Fr be the commutative,
unital ring Z[u1, . . . , ur]. Define inverse ring isomorphisms,

Cr : Φr → Fr, Cr(χi) :=
i∑

p=0

(
r − p
r − i

)
up.

and

Lr : Fr → Φr, Lr(ui) :=
i∑

p=0

(−1)i−p
(
r − p
r − i

)
up.

For every element a in K such that ε(a) equals r and such that λn(a) vanishes for all n > r, there
is a corresponding ring homomorphism,

φr(a) : Φr → K, χi 7→ λi(a),

and a ring homomorphism,
fr(a) : Fr → K, ui 7→ ci(a).

Prove that fr(a) ◦ Cr equals φr(a), and prove that φr(a) ◦ Lr equals fr. Moreover, if we make Fr
into a graded ring with deg(um) = m, and if we define the corresponding ideal ΓdFr to be the ideal
generated by all homogeneous elements of degree ≥ d, then prove that fr(Γ

dFr) is contained in
ΓdK.

Let Tr be the commutative, unital ring Z[x1, . . . , xr]. Define ring homomorphisms,

τr : Φr → Tr, χq 7→ σq(x1, x2, . . . , xr) :=
∑

I⊂{1,...,r},#I=q

(∏
i∈I

xi

)
.

Thus, σq is the degree q elementary symmetric polynomial. Similarly, define the ring homomor-
phism,

tr : Fr → Rr, uq 7→ sq(x1 − 1, x2 − 1, . . . , xr − 1).

16

http://www.math.sunysb.edu/~jstarr/M614f14/index.html
mailto:jstarr@math.sunysb.edu


MAT 614 Intersection Theory
Stony Brook University
Problem Set 3

Jason Starr
Fall 2014

Prove that tr ◦ Cr equals τr, and prove that τr ◦ Lr equals tr. Moreover, prove that τr and tr
are injective, and each image equals the subring of invariants Z[x1, . . . , xr]

Sr . Of course defining
elements,

x̃i = xi − 1, xi = x̃i + 1,

there is an Sr-equivariant ring automorphism,

ιr : Rr → Rr, ιr(xi) = x̃i

sending every χm to um.

(f) Let r and s be nonnegative integers. As above, denote Φr = Z[χ1, . . . , χr], denote Fr =
Z[u1, . . . , ur], and denote Tr = Z[x1, . . . , xr], with the corresponding ring homomorphisms Cr, Lr,
τr and tr. For the integer s, for notation’s sake, denote Φs = Z[υ1, . . . , υs], denote Fs = Z[v1, . . . , vs],
and denote Ts = Z[y1, . . . , ys], with the corresponding ring homomorphisms Cs, Ls, τs and ts. In
particular, we have tensor product rings,

Φr,s := Φr ⊗ Φs = Z[χ1, . . . , χr, υ1, . . . , υs],

Fr,s := Fr ⊗ Fs = Z[u1, . . . , ur, v1, . . . , vs],

and
Tr,s := Tr ⊗ Ts = Z[x1, . . . , xr, y1, . . . , ys].

We also have the tensor product homomorphisms,

Cr,s : Φr,s → Fr,s, Cr,s(χi) = Cr(χi), Cr,s(υj) = Cs(υj),

τr,s : Φr,s → Tr,s, τr,s(χi) = τr(χi), τr,s(υj) = τs(υj),

Lr,s : Fr,s → Φr,s, Lr,s(ui) = Lr(ui), Lr,s(vj) = Ls(vj),

and
tr,s : Fr,s → Tr,s, tr,s(ui) = tr(ui), tr,s(vj) = ts(vj).

As above, tr,s ◦Cr,s equals τr,s, and τr,s ◦Lr,s equals tr,s. Finally, for every pair of elements (a, b) in
K such that ε(a) = r, resp. ε(b) = s, and such that λn(a) vanishes for n > r, resp. such that λn(b)
vanishes for n > s, there exists a unique ring homomorphism,

φr,s(a, b) : Φr,s → K, χi 7→ λi(a), υj 7→ λj(b),

and there exists a unique ring homomorphism,

fr,s(a, b) : Fr,s → K, ui 7→ ci(a), vj 7→ cj(b).

As above, fr,s(a, b) ◦ Cr,s equals φr,s(a, b), and φr,s(a, b) ◦ Lr,s equals fr,s(a, b). If we make Fr,s into
a graded ring with deg(um) = deg(vm) = m, and if we define ΓdFr,s to be the ideal generated by
all homogeneous elements of degree ≥ d, then also prove that fr,s(Γ

dFr,s) is contained in ΓdK.
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For every integer n = 1, . . . , rs, define the element

P̃(r,s),n(u1, . . . , ur; v1, . . . , vs) := Cr,s(
n∑

m=0

(−1)n−m
(
rs−m
rs− n

)
P(r,s),m),

where P(r,s),m is as in Problem 5(g). For elements a, b of K as above, prove that ε(ab) = rs, prove
that λn(ab) vanishes for all n > rs, and prove the identity,

cn(ab) = P̃(r,s),n(c1(a), . . . , cr(a); c1(b), . . . , cs(b))

for every n = 0, . . . , rs. Also, inside the polynomial ring Tr,s[t], prove that

rs∑
n=0

tr,s(P̃(r,s),n(u1, . . . , ur; v1, . . . , vr))t
n =

r∏
i=1

s∏
j=1

(1 + (xiyj − 1)t) =

s∏
j=1

(1 + ((x̃i + ỹj + x̃iỹj)t) =
rs∑
n=0

σn(x̃i + ỹj + x̃iỹj)t
n,

where σn is, as above, the degree n elementary symmetric polynomial. This gives another way to
compute P̃(r,s),n. In particular, conclude that

P̃(r,s),n(u1, . . . , ur; v1, dots, vr) ∼= σn(x̃i + ỹj) (mod Γn+1Fr,s).

One special case is when s equal to 1,

P̃(r,1),n(u1, . . . , ur; v1) = σn(x̃1(1 + v1) + v1, . . . , x̃n(1 + v1) + v1) =

n∑
m=0

(
r −m
n−m

)
umv

n−m
1 (1 + v1)m ≡

n∑
m=0

(
r −m
n−m

)
umv

n−m
1 (mod Γn+1Fr,1).

(g) Now let (K0(X), λ, ε) be the augmented lambda ring from Problem 5. For every locally free
sheaf E of rank r, conclude that the “lambda-theoretic” Chern classes defined above agree with the
earlier definition, i.e.,

cn([E ]) =
n∑

m=0

(−1)n−m
(
r −m
r − n

)
[
m∧
OX

E ].

In particular, conclude the Whitney sum formula for this new definition.

(h) Now assume that X is separated and finite type over a field k, or at least Noetherian of
finite dimension. Recall the codimension filtation FlK0(X) on the Grothendieck group of coherent
sheaves on X: it is the image of the cycle map,

cyclel(X) : ⊕m≤lZm(X)→ K0(X), [V ] 7→ [OV ].
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By devissage, FlK0(X) is the same as the subgroup generated by all coherent sheaves that have
support of dimension ≤ l. In particular, for every projective morphism f : Y → X, the pushforward
homomorphism,

K0(f) : K0(Y )→ K0(X)

preserves the filtation, i.e., K0(f)(FlK0(Y )) is contained in FlK0(X).

A bit more generally, let ρ : Q→ X be any projective morphism such that for every integral closed
subscheme V ⊂ X, there exists an integral closed subscheme Ṽ ⊂ Q whose image equals V and
such that

ρ|Ṽ : Ṽ → V

is birational; i.e., it admits rational sections universally. Use devissage to prove that FlK0(X) is
the subgroup generated by all proper pushforward classes K0(ρ)[OW ] as W varies over integral,
closed subschemes of W of dimension ≤ l, or even just those integral closed subschemes of W of
dimension ≤ l that map birationally to ρ(W ).

For every locally free sheaf E on X of rank r, for every integral, closed subscheme V ⊂ X of
dimension l, the tensor product E ⊗OX

OV has support contained in V (equal to V unless E is the
zero sheaf). Conclude that each subgroup FlK0(X) is a K0(X)-submodule. Moreover, since there
exists a dense open subscheme U ⊂ V such that E|U is isomorphic to O⊕rX |U , conclude that

([mathcalE]− r[OX ]) · [OV ]

is represented by a coherent sheaf that has support contained in V \U . In particular, it is contained
in Fl−1K0(X). Conclude that for every a ∈ K0(X), c1(a) · FlK0(X) is contained in Fl−1K0(X).

For every locally free sheaf E on X of rank r, let

ρ : Q→ X,

be a projective morphism as in Problem 4(f). Such a morphism admits sections Zariski locally,
hence it admits rational sections universally. Thus, FlK0(X) is generated by the images of all
structure sheaves [OW ] as W varies among integral closed subschemes of Q of dimension ≤ l. By
the projection formula,

K0(ρ)(K0(ρ)(a) · b) = a ·K0(ρ)(b).

In particular, to prove that a ·FlK0(X) is contained in Fl−nK0(X), it suffices to prove that K0(ρ)a ·
FlK0(Q) is contained in Fl−nK0(Q). Now apply the Whitney sum formula to express K0(ρ)cn(E)
as a linear combination of products of d first Chern classes c1(F qρ∗E/F q+1ρ∗E). Thus, by the result
for first Chern classes, prove that K0(ρ)cn(E) maps FlK0(Q) into Fl−nK0(Q). Thus cn(E)· − maps
FlK0(Q) into Fl−nK0(Q). Conclude that ΓnK0(X) · FlK0(X) is contained in Fl−nK0(X).

Define the associated graded ring of the gamma filtration of K0(X) by ideals,

grΓK
0(X) := ⊕∞n=0grnΓK

0(X), grnΓK
0(X) := ΓnK0(X)/Γn+1K0(X).
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Similarly, define the associated graded group for the dimension filtration of K0(X) by

grFK0(X) := ⊕∞l=0grFl K0(X), grFl K0(X) := FlK0(X)/Fl−1K0(X).

Use the previous paragraph to prove that grFK0(X) admits a well-defined structure of graded
module for the graded ring grΓK

0(X). Moreover, check that these graded rings and graded modules
are compatible with pushforward and pullback (arbitrary pullback for K0, flat pullback for K0,
proper pushforward for K0, etc.).

(i) Assume now that X is a connected, separated, finite type k-scheme. Recall that the cycle class
maps factor uniquely through rational equivalence,

cyclel : Al(X)→ grFl K0(X),

and these morphisms are surjective by devissage. For every locally free sheaf E of rank r on X, use
the splitting principle as in the previous section to prove compatible with the Chow theory Chern
classes and the K-theory Chern classes, i.e.,

cyclel−n(cAd (E) ∩ β) = cd(E) · cyclel(β)

for every β ∈ Al(X), where cAd (E)∩ − denotes the Chern class operation Al(X)→ Al−d(X) defined
in the textbook.

Denote by End(A∗(X)) the associative ring of group homomorphisms from A∗(X) to itself. For
every integer d, define Endd(A∗(X)) to be the additive subgroup of group homomorphisms such that
for every l, the homomorphism maps Al(X) to Al−d(X). Denote by End∗(A∗(X)) the subring of
End∗(A∗(X)) that is the direct sum of all subgroups Endd(A∗(X)). This is a graded (associative)
ring. Define A∗pre(X) to be the graded subring of End∗(A∗(X)) generated by all Chern classes

cAd (E) ∈ Endd(A∗(X)) for all integers d ≥ 0 and all locally free sheaves E . This is not yet the Chow
(cohomology) ring, as defined in Fulton. For instance, there is a surjective group homomorphism,

Pic(X)→ A1
pre(X), [L] 7→ c1(L)∩ − .

However, there exists nonreduced, projective schemes X such that Fulton’s Chow cohomology group
A1(X) is not generated by the image of Pic(X). Use the splitting principle to prove that A∗pre(X)
is a commutative, unital, graded ring.

For every locally free sheaf E on X, define the total Chern class,

cA(E , t) ∈ 1 + tA∗pre(X) [[t]]

by

cA(E , t) = 1 +

rank(E)∑
n=1

tdcAd (E)∩ − .
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Use the Whitney sum formula for cAd to prove that cA(−, t) is a generalized Euler characteristic.
Conclude that there exists a well-defined group homomorphism,

cA(−, t) : K0(X)→ 1 + tA∗pre(X) [[t]]

extending the definition above. For every integer n ≥ 0, define

cAn : K0(X)→ Anpre(X)

to be the unique set map such that

cA(a, t) =
∞∑
n=0

cAn (a)tn.

In general, there is no reason to expect that there exists a homomorphism of commutative, unital,
graded rings,

(−)A : gr∗ΓK
0(X)→ A∗pre(X)

such that
(cd1(a1) · · · cdm(am))A = cAd1(a1) ∩ · · · ∩ cAdm(am),

for every integer m > 0, for every m-tuple (a1, . . . , am) of elements in K0(X), and for every m-tuple
of nonnegative integers (d1, . . . , dm). The basic difficulty is that a polynomial expression in Chern
classes that evaluates to 0 in gr∗ΓK

0(X) need not evaluate to 0 in A∗pre(X) (at least not obviously).
However, at least when the gamma filtration terminates, after tensoring with Q there is a unique
homomorphism of commutative, unital, graded rings

(−)AQ : gr∗ΓK
0(X)Q → A∗pre(X)Q

that is compatible with monomials in Chern classes. The proof of this uses the Adams operations.
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