
MAT 614 Intersection Theory
Stony Brook University
Problem Set 2

Jason Starr
Fall 2014

MAT 614 Problem Set 1

Homework Policy. Please read through all the problems. I will be happy to discuss the solutions
during office hours.

Problems.

Problem 1. For a finite type, separated k-scheme X, recall the alternative definition of the
subgroup Ratl(X) ⊂ Zl(X). It equals the subgroup generated by all pushforward classes, i∗[W0]−
i∗[W∞], for all k-schemes W of pure dimension l + 1, and for all proper morphisms

(h, i) : W → P1 ×k X,

such that the first component morphism

h : W → P1,

is flat over 0 and ∞. In particular, for every irreducible k-scheme V of dimension l, check directly
that for the identity morphism,

(prP1 , prV ) : P1 ×k V → P1 ×k V,

the pushforward class equals 0. This fills one gap from the presentation in lecture.

Problem 2. For every integer l, define Algl(X) ⊂ Zl(X) to be the subgroup generated by all
pushforward classes, i∗[Wt0 ] − i∗[Wt∞ ], for all proper, irreducible k-curves C, for all pairs of k-
points t0, t∞ ∈ C(k), for all k-schemes W of pure dimension l + 1, and for all proper morphisms

(h, i) : W → C ×k X,

such that the first component morphism

h : W → C,

is flat over t0 and t∞. The quotient group Zl(X)/Algl(X) is denoted by Bl(X). Check that
Ratl(X) is contained in Algl(X), and thus the quotient Zl(X) → Al(X) factors uniquely through
the quotient Zl(X)→ Bl(X). Give an example where Ratl(X) is properly contained in Algl(X).

Problem 3. Continuing the previous problem, prove that for every proper morphism of finite
type, separated k-schemes,

f : X → Y,
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the pushforward maps on cycles map Algl(X) to Algl(Y ). Thus there is an induced pushforward
map of quotient groups,

f∗ : Bl(X)→ Bl(Y ),

i.e., X 7→ Bl(X) is covariant for proper morphisms.

Problem 4. Continuing the previous problems, also check that the flat pullback maps preserve
the subgroups Algl(X) ⊂ Zl(X). Conclude that X 7→ Bl(X) is contravariant for flat pullback maps
(with the appropriate degree shift).

Problem 5. Let g : U ↪→ X be an open subset of X, and denote the closed complement by
i : E ↪→ X. As in the case of A∗, check that the flat pullback by g and the proper pushforward by
i induce an exact sequence,

Bl(E)
i∗−→ Bl(X)

g∗−→ Bl(U)→ 0.

Give an example proving that i∗ need not be injective.

Problem 6. Let n ≥ 1 be an integer. Recall the Z-algebra from Problem 10 on Problem Set 1,

A∗n := (Z[s, t]/〈xn+1, xn + · · ·+ sn−rtr + · · ·+ tn, tn+1〉)S2 .

For every pair of integers 0 ≤ a ≤ b < n, denote

pb,a = (st)a(sb−a + · · ·+ sb−a−rtr + · · ·+ tb−a).

Check that the images (pb,a)0≤a≤b≤n form a free Z-basis for A∗n.

By convention, extend this to all pairs of nonnegative integers (a, b), defining pb,a to be 0 if either
b ≥ n or a > b.

Problem 7. Now, let V be a k-vector space of dimension n+ 1, and let

{0} = V0 ( V1 ( · · · ( Vr ( · · · ( Vn ( Vn+1 = V,

be a complete flag of k-linear subspaces of V . For every pair of nonnegative integers (a, b), denote

Σo
b,a(V•) := {[U ] ∈ Grass(2, V ) : dim(U ∩ Vn−b) = 1, dim(U ∩ Vn+1−a) = 2}.

as a locally closed subset of the Grassmannian Grass(2, V ) = Grass(P1,PV ). Denote by Σb,a(V•)
the Zariski closure of Σo

b,a(V•).

If either b ≥ n or a > b, prove that Σo
b,a(V•) is empty. If 0 ≤ a ≤ b < n, prove that Σo

b,a(V•) is
isomorphic to an affine space of codimension a+ b in Grass(P1,PV ), and the Zariski closure equals

Σb,a(V•) := {[U ] ∈ Grass(2, V ) : dim(U ∩ Vn−b) ≥ 1, dim(U ∩ Vn+1−a) ≥ 2}.

Denote the cycle class [Σb,a(V•)] by σb,a. In particular, this is zero if either b ≥ n or a > b.
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Problem 8. Show that there is a well-defined Z-module homomorphism,

Φ : A∗n → A∗(Grass(P1,PV )),

sending each element pb,a to σb,a. Moreover, check that this homomorphism is surjective.

Problem 9. Pieri’s Rule. First, show that for every 0 ≤ a ≤ b < n and for every 0 ≤ l < n,
there is an identity,

pl,0pb,a =
∑
i=0

pb+l−i,a+i.

Denote by Jn the ideal in the ring Z[πb,a]0≤a≤b<n generated by the polynomials,

Pl,a,b = πl,0 · πb,a −
l∑

i=0

πb+l−i,a+i, 0 ≤ l < n, 0 ≤ a ≤ b < n,

with the convention that πc,d equals 0 if either c ≥ n or d > c. Denote the quotient ring by,

R∗n = Z[πb,a]0≤a≤b<n/Jn.

Show that the elements πb,a generate R∗n as a Z-module. Next use the previous paragraph to show
that there is a well-defined Z-algebra homomorphism,

p : R∗n → A∗n, πb,a 7→ pb,a.

Since the elements pb,a form a Z-basis for A∗n, conclude that p is an isomorphism.

For every 1 ≤ a ≤ b < n, prove “Giambelli’s formula”:

πb,a = πa,0πb,0 − πa−1,0πb+1,0.

Thus R∗n is generated as a Z-algebra by the “special classes” πb,0 for 1 ≤ b < n.

Problem 10. For generic choices of complete flags V• and W• in V , for integers 0 ≤ a ≤ b < n
and 0 ≤ l < n, check that [Σl,0(V•) ∩ Σb,a(W•)] equals

∑l
i=0 σb+l−i,a+i. This strongly suggests that

there is a natural “intersection product” on A∗(Grass(P1,PV )) such that Φ is an isomorphism of
rings. In the following exercises, assume this.

Problem 11. Inside A∗3 check the following identities,

σ2
1,0 = σ2,0 + σ1,1, σ1,0σ2,0 = σ1,0σ1,1 = σ2,1, σ1,0σ2,1 = σ2,2, σ2,0σ2,0 = σ1,1σ1,1 = σ2,1, σ2,0σ1,1 = 0.

In particular, check that σ4
1,0 equals 1.

Problem 12. Let X ⊂ P3 be a smooth, degree d hypersurface, and assume that the characteristic
of p is prime to d(d− 1). Denote,

Tan(X) := {[L] ∈ Grass(P1,P3) : ∃p ∈ L, 2p ⊂ L ∩X},
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i.e., X is tangent to L at some point p in L. Use the method of test families to prove the identity,

[Tan(X)] = d(d− 1)σ1,0.

Problem 13 Let C ⊂ P3 be a smooth, linearly nondegenerate curve with degree d and with genus
g. Denote,

Inc(C) := {[L] ∈ Grass(P1,P3) : L ∩ C 6= ∅},

i.e., L intersects C. Use the method of test families to prove the identity,

[Inc(C)] = dσ1,0.

In particular, for smooth, linearly nondegenerate curves C1, C2 ⊂ P3 of degrees d1, d2, for a generic
projective linear equivalence g : P3 → P3, conclude that

[Inc(C1) ∩ Inc(gC2)] = d1d2σ2,0 + d1d2σ1,1.

Problem 14. Let C ⊂ P3 be a smooth, linearly nondegenerate curve with degree d and with genus
g. Denote,

Sec2(C) := {[L] ∈ Grass(P1,P3) : ∃p+ q ∈ Sym2(C), p+ q ⊂ L ∩ C},

i.e., L intersects C in a divisor of degree at least 2 in C. Use the method of test families to prove
the identity,

[Sec2(C)] =

(
(d− 1)(d− 2)

2
− g
)
σ2,0 +

d(d− 1)

2
σ1,1.

Now let gtt be a one-parameter family of projective equivalences of P3 such that g0 is the iden-
tity. Prove that, as t specializes to 0, the “flat limit” of Inc(C) ∩ Inc(gtC) contains Sec2(C) with
multiplicity 2. How do you account for the discrepancy,

[Inc(C) ∩ Inc(gtC)]− 2[Sec2(C)] = (3d+ g − 2)σ2,0 + dσ1,1?

In particular, note that the flat limit depends on the family (gt)t. Precisely how does the family
enter? This illustrates that some care must be exercised when computing intersections by special-
ization and “conservation of number”.

Problem 15. Let C ⊂ P3 be a smooth, linearly nondegenerate curve with degree d and with genus
g. Denote,

Tan(C) := {[L] ∈ Grass(P1,P3) : ∃p ∈ C, 2p ⊂ L ∩ C},

i.e., L is tangent to C at some point p. Use the method of test families to prove the identity,

[Tan(C)] = (2d+ 2g − 2)σ2,1.
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Problem 16. Double-check the identity from lecture for the “Plücker degree” of Grass(P1,Pn),
i.e., check

σ2n−2
1,0 =

1

n

(
2n− 2

n− 1

)
.

Problem 17. Give a second computation of the identity from the first lecture, i.e., for generic
complete flags V a

• , V b
• , V c

• and V d
• of a vector space V of dimension n+ 1 = 2m, we have

[Σm−1,0(V a•) ∩ Σm−1,0(V
b
• ) ∩ Σm−1,0(V

c
• ) ∩ Σm−1,0(V

d
• )] = σ4

m−1,0 = mσ2m−2,2m−2.

Problem 18. Let Q ⊂ Pn be a smooth quadric hypersurface. Denote,

Fano1(Q) := {[L] ∈ Grass(P1,Pn) : L ⊂ Q},

i.e., the line L is contained in the hypersurface Q. Use the method of test families to prove the
identity,

[Fano1(Q)] = (2s+ 0t)(1s+ 1t)(0s+ 2t) = 4σ2,1.

Problem 19. This problem is considerably harder without further techniques, but worth seeing
now. Let X ⊂ Pn be a smooth cubic hypersurface. Denote,

Fano1(X) := {[L] ∈ Grass(P1,Pn) : L ⊂ X},

i.e., the line L is contained in the hypersurface X. Use the method of test families to prove the
identity,

[Fano1(X)] = (3s+ 0t)(2s+ 1t)(1s+ 2t)(0s+ 3t) = 18σ3,1 + 45σ2,2.

Problem 20. For a degree d hypersurface X ⊂ Pn, denote

Fano1(X) := {[L] ∈ Grass(P1,Pn) : L ⊂ X},

i.e., the line L is contained in the hypersurface X. For a sufficiently general degree d hypersurface
X, we will eventually prove that Fano1(X) is smooth of the “expected” codimension d+ 1, and has
class,

[Fano1(X)] = (ds+ 0t((d− 1)s+ 1t) · · · ((d− r)s+ rt) · · · (1s+ (d− 1)t)(0s+ dt).

However, for every integer d ≥ 4, for some choice of n, find an example where the dimension of
Fano1(X) is strictly larger than the “expected” dimension. Can you find any such example where
d ≤ n? This is related to the (open) Debarre - de Jong Conjecture.
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