MAT 614 Problem Set 1

Homework Policy. Please read through all the problems. I will be happy to discuss the solutions during office hours.

Problems.

Problem 1. For a finite type, separated k-scheme X, recall the alternative definition of the subgroup $\operatorname{Rat}_{l}(X) \subset Z_{l}(X)$. It equals the subgroup generated by all pushforward classes, $i_{*}\left[W_{0}\right]-$ $i_{*}\left[W_{\infty}\right]$, for all k-schemes W of pure dimension $l+1$, and for all proper morphisms

$$
(h, i): W \rightarrow \mathbb{P}^{1} \times_{k} X
$$

such that the first component morphism

$$
h: W \rightarrow \mathbb{P}^{1}
$$

is flat over 0 and ∞. In particular, for every irreducible k-scheme V of dimension l, check directly that for the identity morphism,

$$
\left(\mathrm{pr}_{\mathbb{P}^{1}}, \mathrm{pr}_{V}\right): \mathbb{P}^{1} \times_{k} V \rightarrow \mathbb{P}^{1} \times_{k} V,
$$

the pushforward class equals 0 . This fills one gap from the presentation in lecture.
Problem 2. For every integer l, define $\operatorname{Alg}_{l}(X) \subset Z_{l}(X)$ to be the subgroup generated by all pushforward classes, $i_{*}\left[W_{t_{0}}\right]-i_{*}\left[W_{t_{\infty}}\right]$, for all proper, irreducible k-curves C, for all pairs of k points $t_{0}, t_{\infty} \in C(k)$, for all k-schemes W of pure dimension $l+1$, and for all proper morphisms

$$
(h, i): W \rightarrow C \times_{k} X
$$

such that the first component morphism

$$
h: W \rightarrow C,
$$

is flat over t_{0} and t_{∞}. The quotient group $Z_{l}(X) / \operatorname{Alg}_{l}(X)$ is denoted by $B_{l}(X)$. Check that $\operatorname{Rat}_{l}(X)$ is contained in $\operatorname{Alg}_{l}(X)$, and thus the quotient $Z_{l}(X) \rightarrow A_{l}(X)$ factors uniquely through the quotient $Z_{l}(X) \rightarrow B_{l}(X)$. Give an example where $\operatorname{Rat}_{l}(X)$ is properly contained in $\operatorname{Alg}_{l}(X)$.

Problem 3. Continuing the previous problem, prove that for every proper morphism of finite type, separated k-schemes,

$$
f: X \rightarrow Y
$$

the pushforward maps on cycles map $\operatorname{Alg}_{l}(X)$ to $\operatorname{Alg}_{l}(Y)$. Thus there is an induced pushforward map of quotient groups,

$$
f_{*}: B_{l}(X) \rightarrow B_{l}(Y),
$$

i.e., $X \mapsto B_{l}(X)$ is covariant for proper morphisms.

Problem 4. Continuing the previous problems, also check that the flat pullback maps preserve the subgroups $\operatorname{Alg}_{l}(X) \subset Z_{l}(X)$. Conclude that $X \mapsto B_{l}(X)$ is contravariant for flat pullback maps (with the appropriate degree shift).

Problem 5. Let $g: U \hookrightarrow X$ be an open subset of X, and denote the closed complement by $i: E \hookrightarrow X$. As in the case of A_{*}, check that the flat pullback by g and the proper pushforward by i induce an exact sequence,

$$
B_{l}(E) \xrightarrow{i_{*}} B_{l}(X) \xrightarrow{g^{*}} B_{l}(U) \rightarrow 0 .
$$

Give an example proving that i_{*} need not be injective.
Problem 6. Let $n \geq 1$ be an integer. Recall the \mathbb{Z}-algebra from Problem 10 on Problem Set 1,

$$
A_{n}^{*}:=\left(\mathbb{Z}[s, t] /\left\langle x^{n+1}, x^{n}+\cdots+s^{n-r} t^{r}+\cdots+t^{n}, t^{n+1}\right\rangle\right)^{\mathfrak{G}_{2}} .
$$

For every pair of integers $0 \leq a \leq b<n$, denote

$$
p_{b, a}=(s t)^{a}\left(s^{b-a}+\cdots+s^{b-a-r} t^{r}+\cdots+t^{b-a}\right) .
$$

Check that the images $\left(\bar{p}_{b, a}\right)_{0 \leq a \leq b \leq n}$ form a free \mathbb{Z}-basis for A_{n}^{*}.
By convention, extend this to all pairs of nonnegative integers (a, b), defining $\bar{p}_{b, a}$ to be 0 if either $b \geq n$ or $a>b$.

Problem 7. Now, let V be a k-vector space of dimension $n+1$, and let

$$
\{0\}=V_{0} \subsetneq V_{1} \subsetneq \cdots \subsetneq V_{r} \subsetneq \cdots \subsetneq V_{n} \subsetneq V_{n+1}=V,
$$

be a complete flag of k-linear subspaces of V. For every pair of nonnegative integers (a, b), denote

$$
\Sigma_{b, a}^{o}\left(V_{0}\right):=\left\{[U] \in \operatorname{Grass}(2, V): \operatorname{dim}\left(U \cap V_{n-b}\right)=1, \operatorname{dim}\left(U \cap V_{n+1-a}\right)=2\right\} .
$$

as a locally closed subset of the Grassmannian $\operatorname{Grass}(2, V)=\operatorname{Grass}\left(\mathbb{P}^{1}, \mathbb{P} V\right)$. Denote by $\Sigma_{b, a}\left(V_{\bullet}\right)$ the Zariski closure of $\Sigma_{b, a}^{o}\left(V_{\bullet}\right)$.
If either $b \geq n$ or $a>b$, prove that $\Sigma_{b, a}^{o}\left(V_{\bullet}\right)$ is empty. If $0 \leq a \leq b<n$, prove that $\Sigma_{b, a}^{o}\left(V_{\bullet}\right)$ is isomorphic to an affine space of codimension $a+b$ in $\operatorname{Grass}\left(\mathbb{P}^{1}, \mathbb{P} V\right)$, and the Zariski closure equals

$$
\Sigma_{b, a}\left(V_{\bullet}\right):=\left\{[U] \in \operatorname{Grass}(2, V): \operatorname{dim}\left(U \cap V_{n-b}\right) \geq 1, \operatorname{dim}\left(U \cap V_{n+1-a}\right) \geq 2\right\} .
$$

Denote the cycle class $\left[\Sigma_{b, a}\left(V_{\bullet}\right)\right]$ by $\sigma_{b, a}$. In particular, this is zero if either $b \geq n$ or $a>b$.

Problem 8. Show that there is a well-defined \mathbb{Z}-module homomorphism,

$$
\Phi: A_{n}^{*} \rightarrow A_{*}\left(\operatorname{Grass}\left(\mathbb{P}^{1}, \mathbb{P} V\right)\right)
$$

sending each element $\bar{p}_{b, a}$ to $\sigma_{b, a}$. Moreover, check that this homomorphism is surjective.
Problem 9. Pieri's Rule. First, show that for every $0 \leq a \leq b<n$ and for every $0 \leq l<n$, there is an identity,

$$
\bar{p}_{l, 0} \bar{p}_{b, a}=\sum_{i=0} \bar{p}_{b+l-i, a+i} .
$$

Denote by J_{n} the ideal in the ring $\mathbb{Z}\left[\pi_{b, a}\right]_{0 \leq a \leq b<n}$ generated by the polynomials,

$$
P_{l, a, b}=\pi_{l, 0} \cdot \pi_{b, a}-\sum_{i=0}^{l} \pi_{b+l-i, a+i}, 0 \leq l<n, \quad 0 \leq a \leq b<n
$$

with the convention that $\pi_{c, d}$ equals 0 if either $c \geq n$ or $d>c$. Denote the quotient ring by,

$$
R_{n}^{*}=\mathbb{Z}\left[\pi_{b, a}\right]_{0 \leq a \leq b<n} / J_{n}
$$

Show that the elements $\bar{\pi}_{b, a}$ generate R_{n}^{*} as a \mathbb{Z}-module. Next use the previous paragraph to show that there is a well-defined \mathbb{Z}-algebra homomorphism,

$$
\bar{p}: R_{n}^{*} \rightarrow A_{n}^{*}, \quad \bar{\pi}_{b, a} \mapsto \bar{p}_{b, a}
$$

Since the elements $\bar{p}_{b, a}$ form a \mathbb{Z}-basis for A_{n}^{*}, conclude that \bar{p} is an isomorphism.
For every $1 \leq a \leq b<n$, prove "Giambelli's formula":

$$
\bar{\pi}_{b, a}=\bar{\pi}_{a, 0} \bar{\pi}_{b, 0}-\bar{\pi}_{a-1,0} \bar{\pi}_{b+1,0}
$$

Thus R_{n}^{*} is generated as a \mathbb{Z}-algebra by the "special classes" $\bar{\pi}_{b, 0}$ for $1 \leq b<n$.
Problem 10. For generic choices of complete flags V_{\bullet} and W_{\bullet} in V, for integers $0 \leq a \leq b<n$ and $0 \leq l<n$, check that $\left[\Sigma_{l, 0}\left(V_{\bullet}\right) \cap \Sigma_{b, a}\left(W_{\bullet}\right)\right]$ equals $\sum_{i=0}^{l} \sigma_{b+l-i, a+i}$. This strongly suggests that there is a natural "intersection product" on $A_{*}\left(\operatorname{Grass}\left(\mathbb{P}^{1}, \mathbb{P} V\right)\right)$ such that Φ is an isomorphism of rings. In the following exercises, assume this.
Problem 11. Inside A_{3}^{*} check the following identities,

$$
\sigma_{1,0}^{2}=\sigma_{2,0}+\sigma_{1,1}, \sigma_{1,0} \sigma_{2,0}=\sigma_{1,0} \sigma_{1,1}=\sigma_{2,1}, \sigma_{1,0} \sigma_{2,1}=\sigma_{2,2}, \sigma_{2,0} \sigma_{2,0}=\sigma_{1,1} \sigma_{1,1}=\sigma_{2,1}, \sigma_{2,0} \sigma_{1,1}=0
$$

In particular, check that $\sigma_{1,0}^{4}$ equals 1 .
Problem 12. Let $X \subset \mathbb{P}^{3}$ be a smooth, degree d hypersurface, and assume that the characteristic of p is prime to $d(d-1)$. Denote,

$$
\operatorname{Tan}(X):=\left\{[L] \in \operatorname{Grass}\left(\mathbb{P}^{1}, \mathbb{P}^{3}\right): \exists p \in L, 2 \underline{p} \subset L \cap X\right\}
$$

MAT 614 Intersection Theory
Jason Starr
Stony Brook University
Fall 2014
Problem Set 2
i.e., X is tangent to L at some point p in L. Use the method of test families to prove the identity,

$$
[\operatorname{Tan}(X)]=d(d-1) \sigma_{1,0}
$$

Problem 13 Let $C \subset \mathbb{P}^{3}$ be a smooth, linearly nondegenerate curve with degree d and with genus g. Denote,

$$
\operatorname{Inc}(C):=\left\{[L] \in \operatorname{Grass}\left(\mathbb{P}^{1}, \mathbb{P}^{3}\right): L \cap C \neq \emptyset\right\}
$$

i.e., L intersects C. Use the method of test families to prove the identity,

$$
[\operatorname{Inc}(C)]=d \sigma_{1,0}
$$

In particular, for smooth, linearly nondegenerate curves $C_{1}, C_{2} \subset \mathbb{P}^{3}$ of degrees d_{1}, d_{2}, for a generic projective linear equivalence $g: \mathbb{P}^{3} \rightarrow \mathbb{P}^{3}$, conclude that

$$
\left[\operatorname{Inc}\left(C_{1}\right) \cap \operatorname{Inc}\left(g C_{2}\right)\right]=d_{1} d_{2} \sigma_{2,0}+d_{1} d_{2} \sigma_{1,1} .
$$

Problem 14. Let $C \subset \mathbb{P}^{3}$ be a smooth, linearly nondegenerate curve with degree d and with genus g. Denote,

$$
\operatorname{Sec}^{2}(C):=\left\{[L] \in \operatorname{Grass}\left(\mathbb{P}^{1}, \mathbb{P}^{3}\right): \exists \underline{p}+\underline{q} \in \operatorname{Sym}^{2}(C), \underline{p}+\underline{q} \subset L \cap C\right\}
$$

i.e., L intersects C in a divisor of degree at least 2 in C. Use the method of test families to prove the identity,

$$
\left[\operatorname{Sec}^{2}(C)\right]=\left(\frac{(d-1)(d-2)}{2}-g\right) \sigma_{2,0}+\frac{d(d-1)}{2} \sigma_{1,1} .
$$

Now let $g_{t t}$ be a one-parameter family of projective equivalences of \mathbb{P}^{3} such that g_{0} is the identity. Prove that, as t specializes to 0 , the "flat limit" of $\operatorname{Inc}(C) \cap \operatorname{Inc}\left(g_{t} C\right)$ contains $\operatorname{Sec}^{2}(C)$ with multiplicity 2. How do you account for the discrepancy,

$$
\left[\operatorname{Inc}(C) \cap \operatorname{Inc}\left(g_{t} C\right)\right]-2\left[\operatorname{Sec}^{2}(C)\right]=(3 d+g-2) \sigma_{2,0}+d \sigma_{1,1} ?
$$

In particular, note that the flat limit depends on the family $\left(g_{t}\right)_{t}$. Precisely how does the family enter? This illustrates that some care must be exercised when computing intersections by specialization and "conservation of number".

Problem 15. Let $C \subset \mathbb{P}^{3}$ be a smooth, linearly nondegenerate curve with degree d and with genus g. Denote,

$$
\operatorname{Tan}(C):=\left\{[L] \in \operatorname{Grass}\left(\mathbb{P}^{1}, \mathbb{P}^{3}\right): \exists p \in C, 2 \underline{p} \subset L \cap C\right\}
$$

i.e., L is tangent to C at some point p. Use the method of test families to prove the identity,

$$
[\operatorname{Tan}(C)]=(2 d+2 g-2) \sigma_{2,1}
$$

Problem 16. Double-check the identity from lecture for the "Plücker degree" of Grass $\left(\mathbb{P}^{1}, \mathbb{P}^{n}\right)$, i.e., check

$$
\sigma_{1,0}^{2 n-2}=\frac{1}{n}\binom{2 n-2}{n-1}
$$

Problem 17. Give a second computation of the identity from the first lecture, i.e., for generic complete flags $V_{\bullet}^{a}, V_{\bullet}^{b}, V_{\bullet}^{c}$ and V_{\bullet}^{d} of a vector space V of dimension $n+1=2 m$, we have

$$
\left[\Sigma_{m-1,0}\left(V a_{\bullet}\right) \cap \Sigma_{m-1,0}\left(V_{\bullet}^{b}\right) \cap \Sigma_{m-1,0}\left(V_{\bullet}^{c}\right) \cap \Sigma_{m-1,0}\left(V_{\bullet}^{d}\right)\right]=\sigma_{m-1,0}^{4}=m \sigma_{2 m-2,2 m-2} .
$$

Problem 18. Let $Q \subset \mathbb{P}^{n}$ be a smooth quadric hypersurface. Denote,

$$
\operatorname{Fano}_{1}(Q):=\left\{[L] \in \operatorname{Grass}\left(\mathbb{P}^{1}, \mathbb{P}^{n}\right): L \subset Q\right\}
$$

i.e., the line L is contained in the hypersurface Q. Use the method of test families to prove the identity,

$$
\left[\operatorname{Fano}_{1}(Q)\right]=(2 \bar{s}+0 \bar{t})(1 \bar{s}+1 \bar{t})(0 \bar{s}+2 \bar{t})=4 \sigma_{2,1}
$$

Problem 19. This problem is considerably harder without further techniques, but worth seeing now. Let $X \subset \mathbb{P}^{n}$ be a smooth cubic hypersurface. Denote,

$$
\operatorname{Fano}_{1}(X):=\left\{[L] \in \operatorname{Grass}\left(\mathbb{P}^{1}, \mathbb{P}^{n}\right): L \subset X\right\},
$$

i.e., the line L is contained in the hypersurface X. Use the method of test families to prove the identity,

$$
\left[\mathrm{Fano}_{1}(X)\right]=(3 \bar{s}+0 \bar{t})(2 \bar{s}+1 \bar{t})(1 \bar{s}+2 \bar{t})(0 \bar{s}+3 \bar{t})=18 \sigma_{3,1}+45 \sigma_{2,2}
$$

Problem 20. For a degree d hypersurface $X \subset \mathbb{P}^{n}$, denote

$$
\operatorname{Fano}_{1}(X):=\left\{[L] \in \operatorname{Grass}\left(\mathbb{P}^{1}, \mathbb{P}^{n}\right): L \subset X\right\}
$$

i.e., the line L is contained in the hypersurface X. For a sufficiently general degree d hypersurface X, we will eventually prove that $\mathrm{Fano}_{1}(X)$ is smooth of the "expected" codimension $d+1$, and has class,

$$
\left[\operatorname{Fano}_{1}(X)\right]=(d \bar{s}+0 \bar{t}((d-1) \bar{s}+1 \bar{t}) \cdots((d-r) \bar{s}+r \bar{t}) \cdots(1 \bar{s}+(d-1) \bar{t})(0 \bar{s}+d \bar{t})
$$

However, for every integer $d \geq 4$, for some choice of n, find an example where the dimension of $\mathrm{Fano}_{1}(X)$ is strictly larger than the "expected" dimension. Can you find any such example where $d \leq n$? This is related to the (open) Debarre - de Jong Conjecture.

