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MAT 535 Notes on The Fundamental Theorem
of Galois Theory

These are some notes accompanying the proof of the fundamental theorem of Galois theory pre-
sented in lecture. The textbook gives a slightly different proof which we also discuss.

1 Algebras of set functions.

Let F be a commutative ring with 1. For every set Σ, denote by FΣ the set of all set functions
a : Σ → F . This is an F -algebra under pointwise addition, pointwise scaling, and pointwise
multiplication; i.e., for a, b in FΣ and for λ in F , for every σ in Σ we define

(a+ b)(σ) := a(σ) + b(σ), (λ · b)(σ) := λ · b(σ), (a · b)(σ) := a(σ) · b(σ).

These structures make FΣ into a commutative F -algebra whose additive identity is the constant
function with value 0 and whose multiplicative identity is the constant function with value 1. For
every element λ in F , we will denote by λ the constant function in FΣ with value λ.

For every set function,
u : Σ→ T

there is an associated function

F u : F T → FΣ, F u(a) := a ◦ u.

By the definition of addition, scaling and multiplication,

(a+ b) ◦ u = a ◦ u+ b ◦ u, (λ · b) ◦ u = λ · (b ◦ u), (a · b) ◦ u = (a ◦ u) · (b ◦ u).

Thus F u is a homomorphism of F -algebras. For every pair of set functions,

u : Σ→ T, v : T → Θ,

the composition
F u ◦ F v : FΘ → FΣ

equals F v◦u. And for the identity map

IdΣ : Σ→ Σ,

also F IdΣ equals the identity map on FΣ. Altogether we have the following.
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Proposition 1.1. The rule associating to every set Σ the associated F -algebra FΣ and associating
to every set function u the associated F -algebra homomorphism F u is a contravariant functor from
the category of sets to the category of F -algebras.

As with all such general constructions, there is a universal property. For every set Σ and for every
F -algebra B, define FΣ(B) to be the set of all binary operations,

β : Σ×B → F

such that for every σ in Σ, the induced map

βσ : B → F, b 7→ β(σ, b)

is an F -algebra homomorphism. For every F -algebra homomorphism f : A → B, there is an
associated set map

FΣ(f) : FΣ(B)→ FΣ(A), β 7→ β ◦ (IdΣ × f).

It is straightforward to verify the following.

Proposition 1.2. The rule FΣ is a contravariant functor from the category of F -algebras to the
category of sets.

The point is that there is a natural object αΣ in FΣ(FΣ),

αΣ : Σ× FΣ → F, (σ, a) 7→ a(σ).

In fact, the F -algebra addition, scaling and multiplication are the unique operations that commute
with the maps αΣ,σ for every σ in Σ. Precisely, c equals a+ b if and only if for every σ in Σ, αΣ,σ(c)
equals αΣ,σ(a) + αΣ,σ(b), and similarly for scaling and multiplication.

For every F -algebra B and for every element β in FΣ(A), define the function

β̃ : B → FΣ, b 7→ (σ 7→ βσ(b)).

This set map has the property that αΣ,σ(β̃(b)) equals βσ(b) for every σ in Σ. By hypothesis βσ
is an F -algebra homomorphism, i.e., it commutes with addition, scaling and multiplication. Thus
αΣ,σ ◦ β̃ commutes with addition, scaling and multiplication for every σ in Σ. By the previous

paragraph, this means that β̃ commutes with addition, scaling and multiplication; i.e., β̃ is an
F -algebra homomorphism. Moreover, since an element a in FΣ is uniquely determined by all of
its value αΣ,σ(a), β̃(b) is the unique element such that αΣ,σ(β̃(b)) equals βσ(b) for every σ in Σ. In

other words, β̃ is the unique F -algebra homomorphism such that αΣ ◦ β̃ equals β. Altogether we
have proved the following.

Proposition 1.3. For every set Σ, the F -algebra FΣ together with the object αΣ in FΣ(FΣ) rep-
resent the functor FΣ.
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In fact the functor Σ 7→ FΣ is the left adjoint functor in an adjoint pair of functors. The right
adjoint functor in this pair is the Yoneda functor

hF : F − Algebras→ Sets, A 7→ HomF−Alg(A,F ).

Since we do not need this, we will not pursue it.

Proposition 1.4. Assume that F is nonzero. Let u : Σ→ T be a set map.

(i) The F -algebra homomorphism F u is injective if and only if u is surjective.

(ii) And F u is surjective if and only if u is injective.

Proof. (i) First assume that u is injective, i.e., the associated surjective set map

usurj : Σ→ u(Σ)

is a bijection. Denote by u−1
surj the inverse bijection. For every set map a : Σ→ F , define u!(a) : T →

F to be the unique set map which equals a ◦ u−1
surj on u(Σ) and which equals 0 on the complement

T − u(Σ). Then F u(u!(a)) equals a, so that F u is surjective. Note that the rule a 7→ u!(a) is a
right inverse to F u which is an F -module homomorphism. But u!(1) equals 1 if and only if u is
surjective. So in general u! is not a ring homomorphism (since it does not send 1 to 1).

Next assume that u is not injective. Then there exist distinct elements σ and σ′ in Σ such that
u(σ) equals u(σ′). For every b in F T , F u(b) equals b◦u, and so has equal values on σ and σ′. Define
eσ : Σ → F to be the set map which equals 1 on σ, and which equals 0 on Σ− {σ}. Since eσ has
different values on σ and σ′ (since 1 does not equal 0 in F ), eσ is not in the image of F u. Thus F u

is not surjective.

(ii) First assume that u is surjective. Let b and b′ be elements in F T such that F u(b) equals F u(b′),
i.e., b ◦ u equals b ◦ u′. For every τ in T , there exists σ in Σ with τ = u(σ). Thus b(τ) equals
(b ◦ u)(σ), which equals (b′ ◦ u)(σ) by hypothesis, and this equals b′(τ). So b equals b′. Therefore
F u is injective.

Next assume that u is not surjective, i.e., there exists τ in T which is not in u(Σ). Then F u(eτ )
equals 0, which equals F u(0). But eτ is not equal to 0. Thus F u is not injective.

Because of the proposition, injective set maps with target Σ determine F -algebra quotients of FΣ.
Because quotient objects are a bit less canonical than subobjects, we will instead talk about the
kernel of the quotient homomorphims, which is an ideal in FΣ. Similarly, surjective set maps with
source Σ determine F -subalgebras of FΣ. If F is a field and if Σ is finite, every quotient F -algebra
of FΣ and every F -subalgebra of F σ arises in this way.

Proposition 1.5. Let F be a field and let Σ be a finite set. Every ideal in FΣ is of the form
Ker(F u) for an injective set map u : T → Σ. And if u′ : T ′ → Σ is an injective set map with
Ker(F u′

) equal to Ker(F u), then there exists a unique set map v : T ′ → T such that u′ equals u ◦ v
(and necessarily v is a bijection).
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Proof. Let I be an ideal in FΣ. Define TI to be the subset of Σ consisting of all elements τ such that
αΣ,τ (I) equals {0}. Let uI : TI → Σ be the inclusion map. The claim is that I equals Ker(F uI ).
By construction, I is contained in Ker(F uI ). It remains to prove the reverse inclusion.

For every element σ in Σ, denote by eσ the set function which equals 1 on σ and which equals 0 on
Σ− {σ}. Then Ker(F uI ) is precisely span(eσ|σ ∈ Σ− TI). For every element σ in Σ− TI , αΣ,σ(I)
is an F -submodule of F which is not equal to {0}, i.e., a nonzero ideal in F . Since F is a field, this
ideal equals F , i.e., there exists an element a in I such that a(σ) equals 1. Since I is an ideal, eσ ·a
is in I. But eσ · a equals eσ, so eσ is in I. Thus I contains span(eσ|σ ∈ Σ − TI), i.e., I contains
Ker(F uI ).

Now let u : T → Σ be the inclusion of a subset of Σ. And let u′ : T ′ → Σ be an injective set map
such that Ker(F u′

) equals Ker(F u). For every σ in Σ − T , since eσ is in Ker(F u), also F u′
(eσ)

equals 0. Thus σ is not in the image of u′. So Image(u′) is contained in T . Define v : T ′ → T to
be the unique map such that u′ equals u ◦ v.

The final claim is that v is a bijection. Since u′ is an injection, also v is an injection. And for every
τ in T , since eτ is not in Ker(F u), also eτ is not in Ker(F u′

). Thus τ is in the image of u. Therefore
also v is surjective. Therefore v is a bijection.

Corollary 1.6. Let F be a field and let Σ, T be finite sets. Every surjective F -algebra homomor-
phism FΣ → F T is of the form F u for a unique set map u : Σ′ → Σ, and u is an injection. If F u

is an isomorphism, then u is a bijection.

Proof. The corollary is trivial if T is empty. Thus assume that T is nonempty. Let φ : FΣ → F T

be a surjective F -algebra homomorphism. For every element τ of T , let eτ : {τ} → T be the
inclusion. The composition F eτ ◦φ is a surjection from FΣ to F {τ} whose kernel is a maximal ideal.
By Proposition 1.5, this is the kernel of the F -algebra homomorphism of a subset of FΣ. And since
this kernel is a maximal proper ideal, the subset is a minimal nonempty subset, i.e., a singleton set
{σ} for a unique element σ of Σ.

For every τ as above, define u(τ) to be this unique element σ. Then u : T → Σ is the unique set
map such that F eτ ◦ F u equals F eτ ◦ φ for every element τ of T . But the product map

(F eτ )τ∈T : F T →
∏
τ∈T

F {τ}

is an isomorphism. Since the composition of this isomorphism with F u equals the composition with
φ, F u equals φ. Thus u is the unique set map such that F u equals φ.

Also, if u(τ) equals u(τ ′), then F eτ ◦ F u equals F eτ ′ ◦ F u. Thus F eτ ◦ φ equals F eτ ′ ◦ φ. Since φ
is surjective, this means that F eτ equals F eτ ′ . In particular they have equal kernels. But again by
Proposition 1.5, this implies that τ equals τ ′. Therefore u is injective.

Finally, if F u is invertible, then the same argument proves that the inverse map is of the form
F v for a unique set map v : Σ → T , which is an injective set map. But then F u◦v and F v◦u are
the respective identity maps on FΣ and F T . Since F IdΣ and F IdT are also the identity maps, the
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uniqueness of the set maps above implies that u ◦ v equals IdΣ and v ◦ u equals IdT . Thus u is a
bijection.

For the proof of the next proposition, it is useful to make two definitions. First of all, for every a
in FΣ, the support of a is the subset

Supp(a) := a−1(F − {0}) = Σ− a−1(0).

Next, for every subset T of Σ, define eT to be the set function Σ → F which equals 1 on T and
which equals 0 on Σ − T . Sometimes this is called the characteristic function or the indicator
function of T . Observe that Supp(eT ) equals T .

Proposition 1.7. Let F be a field and let Σ be a finite set. Every F -subalgebra in FΣ is of the
form Image(F q) for a surjective set map q : Σ → Θ. And if q′ : Σ → Θ′ is a surjective set map
with Image(F q′) equal to Image(F q), then there exists a unique set map w : Θ → Θ′ such that q′

equals w ◦ q (and necessarily w is a bijection).

Proof. Let B be an F -subalgebra of FΣ (in particular B contains 1). Let σ be any element of Σ.
Consider the collection of all subsets of Σ of the form Supp(b) for an element b in B with b(σ) 6= 0,
i.e., σ is in Supp(b). There is at least one such set, namely Σ = Supp(1). Let T be a minimal set
among all such subsets, i.e., i.e., if b′ is an element of B with b′(1) 6= 0, then Supp(b′) is not properly
contained in T . By definition, there exists b in B with b(σ) 6= 0 and with Supp(b) equals T . The
claim is that b equals b(σ) · eT . In particular, eT equals (1/b(σ)) · b, which is in the F -algebra B.

If T equals the singleton set {σ}, the claim is obvious. Thus assume there exists an element τ in
Tσ different from σ. Consider the element b′ := b2 − b(τ)b. Since B is an F -algebra which contains
b, also B contains b′. Of course Supp(b′) is contained in T . And b′(τ) equals 0, so that Supp(b′)
is properly contained in T . By the minimality of T , it follows that b′(σ) equals 0. In other words,
b(σ)2 = b(σ)b(τ). Since b(σ) is nonzero, we can divide each side by b(σ) to conclude that b(τ) equals
b(σ). Since b(τ) equals b(σ) for every element τ in T , and since b(τ) equals 0 for every element τ
in Σ− T , b equals b(σ)eT .

Now suppose that T ′ is any minimal element of the collection of all subsets of Σ of the form Supp(b)
for an element b in B with b(σ) 6= 0. Then, by the same argument, also eT ′ is in B. Since B is
an algebra, the product eT · eT ′ is in B. But this product is eT∩T ′ . Since T ∩ T ′ contains σ and
is contained in T , by the minimality of T it follows that T ∩ T ′ equals T , i.e., T is contained in
T ′. By the same argument applied to T ′, also T ′ equals T . Thus T is the unique minimal element
in this collection. Therefore, for every element σ in Σ, there exists a subset Tσ of Σ of the form
Supp(b) for some b in B with b(σ) 6= 0, and such that for every element b′ in B with b′(σ) 6= 0, Tσ
is contained in Supp(b′). Moreover eTσ is an element of B.

Let τ be any element of Tσ and consider Tτ . By the argument above, eTΣ
and eTτ are contained

in B. Since B is an algebra, also the product eTσ · eTτ is contained in B. And this equals eTΣ∩Tτ .
If Tσ ∩ Tτ does not contain σ, i.e., if σ is contained in Tσ − Tτ , then consider the difference
eTσ − eTσ∩Tτ , which is also an element in the F -algebra B. This difference is simply eTΣ−Tτ . By
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hypothesis, Tσ − Tτ contains σ. And it does not contain τ , thus it is strictly contained in Tσ. This
contradicts minimality of TΣ. Thus σ is contained in Tσ ∩Tτ . And then again by minimality of TΣ,
Tσ ∩ Tτ equals TΣ, i.e., Tσ is contained in Tτ . But then by minimality of Tτ , Tσ equals Tτ . So for
every τ in Tσ, Tτ equals Tσ.

Next let σ′ be any element of Σ. If Tσ ∩ Tσ′ contains an element τ , then by the above paragraph
Tτ equals Tσ. And by the same argument, also Tτ equals Tσ′ . Thus Tσ equals Tσ′ . Therefore, for
every pair of elements σ, σ′ in Σ, if Tσ and Tσ′ intersect, then they are equal. This precisely means
that the collection ΘB of subsets of Σ of the form Tσ for some σ is a partition of Σ. And there is
a surjective function qB : Σ → ΘB defined by qB(σ) := Tσ. The algebra Image(F qB) is precisely
the F -subalgebra of FΣ consisting of functions b which are constant on each subset T of ΘB. The
claim is that B equals Imega(F qB).

For every element T in ΘB, the inverse image q−1
B ({T}) equals T as a subset of Σ. In particular,

for the indicator function eT in FΘB , F q maps this to the indicator function eT in FΣ. As proved,
this is an element of B. And the elements eT corresponding to elements T of ΘB give an F -basis
for FΘB as an F -vector space. So Image(F qB) is contained in B. It remains to prove the reverse
inclusion, i.e., to prove that every element b of B is constant on every subset T of ΘB.

Let b be an element of B and let T be any element of ΘB. The claim is that b is constant on T . If
b is 0 on T , then b is constant on T . Thus suppose that b is not zero on T , i.e., there exists σ in
T ∩Supp(b). Since B is an algebra which contains both b and T , B contains the product bT := b·eT .
The support of bT equals T ∩Supp(b), which contains σ and is contained in T . Thus by minimality
of T = Tσ, the support of bT equals T . As proved above, every element of B whose support equals
T is of the form b(σ)eT . Thus bT is constant on T . But for every τ in T , bT (τ) equals b(τ). Thus
b is constant on T . Since this holds for every τ in ΘB, b is contained in Image(F qB). Therefore B
equals Image(F qB).

Now let Θ be a partition of Σ and let q : Σ → Θ be the corresponding surjective set map. Let
q′ : Σ→ Θ′ be any surjective function such that Image(F q′) equals Image(F q) as F -subalgebras of
FΣ. The collection Θ′ of all fibers of q′ is a partition of Σ. As above, Image(F q′) is the collection of
all set functions which are constant on every set T ′ in Θ′. In particular, for every T in Θ, since eT is
in Image(F q), which equals Image(F q′), mathbfeT is constant on every fiber T ′ of q′. In particular
the support T is a union of fibers T ′ of q′. By the same argument, every fiber T ′ of q′ is a union
of fibers T of q. Thus, every fiber T of q is a fiber T ′ of q′. Define w(T ) to be the unique point of
Θ′ whose fiber T ′ in Σ equals T . This is the unique set map w : Θ→ Θ′ such that q′ equals w ◦ q.
Since q′ is surjective, also w is surjective. But since the inverse image under q′ of w(T ) equals T ,
also w is injective. Therefore w is a bijection.

Corollary 1.8. Let F be a field and let Σ, Σ′ be finite sets. Every F -algebra homomorphism
φ : FΣ′ → FΣ is of the form F u for a unique set map u : Σ → Σ′. And φ is surjective, resp.
injective, if and only if u is injective, resp. surjective.

Proof. Let φ : FΣ′ → FΣ be an F -algebra homomorphism. By Proposition 1.7, there exists a
surjective set map q : Σ → Θ such that Image(φ) equals Image(F q). Thus φ factors through a
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surjective F -algebra homorphism ψ : FΣ′ → FΘ, i.e., F q◦ψ equals φ, and ψ is unique. By Corollary
1.6, there exists a unique set map v : Θ → Σ′ such that F v equals ψ, and v is injective. Thus
u = v ◦ q is the unique set map such that F u equals φ. And by Proposition 1.4, φ is surjective,
resp. injective, if and only if u is injective, resp. surjective.

Before continuing we note that both Proposition 1.5 and Proposition 1.7 fail if Σ is an infinite set.
First, consider the ideal I in FΣ consisting of all set functions Σ → F which have finite support.
Let q : T → Σ be a set map such that Ker(F q) contains I. For every σ in Σ, eσ is in I, thus F q(eσ)
equals 0. This means that σ is not in the image of q, i.e., Image(q) is the empty set. This forces T
to be the empty set. But then Ker(F q) is all of FΣ. Since Σ is infinite, 1 is not in I. Thus 1 is in
Ker(F q), but not in I. Therefore I is not of the form Ker(F q).

Next, consider the F -subspace B = F · 1 + I of FΣ. It is straightforward to check that this is an
F -subalgebra of FΣ. The supports of elements of B are precisely the finite subsets of Σ together
with the cofinite subsets of Σ, i.e., sets whose complements are finite. The minimal sets among
these sets are the singleton sets. So if B were of the form Image(F q) for a set map q : Σ→ Θ, then
the fibers of q would be singleton sets, i.e., q would be injective. But then by Proposition 1.4, F q

is surjective so that Image(F q) equals FΣ. Every infinite set Σ contains an infinite subset T whose
complement Σ − T is also infinite. So eT is an element in FΣ which is not in B. Therefore B is
not of the form Image(F q).

Next, let G be a group acting transitively on a set Σ, µ : G × Σ → Σ. Let Θ be a partition of Σ
which is G-invariant, i.e., for every T in Θ and for every g in G, g · T is also in Θ. Then there is
an induced action of G on Θ. Moreover, for every T and T ′ in Θ, since G acts transitively on Σ
there exists an element g in G mapping an element of T to an element of T ′, i.e., g · T intersects
T ′. Since Θ is partition, this implies that g · T equals T ′. Thus G acts transitively on Θ.

Fix one element T in Θ, and denote by H the stabilizer subgroup, i.e., the set of all h in G such
that h · T equals T . The claim is that T equals H · τ for one, and hence every, element τ in T . Let
τ be an element in T . Since H ·T is contained in T (in fact equals T ), H · τ is contained in T . And
for every element τ ′ in T , since G acts transitively on Σ, there exists g in G with g · τ equal to τ ′.
But then g · T intersects T . Since Θ is a partition, g · T equals T . Thus g is contained in H. So τ ′

is contained in H · τ . Therefore T equals H · τ for each element τ in T .

Since G acts transitively on Θ, every partition set is of the form g · T . Therefore the partition sets
of Θ are precisely the sets of the form gH · τ , as gH varies over the left cosets of H in G, i.e., the
elements of G/H. In summary, we have proved the following.

Proposition 1.9. Let G be a group, and let Σ be a set with a transitive left action of G. For
every partition Θ of Σ which is G-invariant, for every element τ in Σ, denoting by H the stabilizer
subgroup of the partition set containing τ , the partition Θ is precisely the collection of subsets
{gH · τ |gH ∈ G/H}.

There is one final observation, which did arise once last semester, but without much fanfare. So
here it is again. Let H be a subgroup of G. Let G× (G/H)→ G/H be the standard left action of
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G on G/H. Let t : G/H → G/H be a set map which is G-equivariant, i.e., t(g · kH) = g · t(kH)
for every coset kH in G/H. Define k0H to be t(H). Then for every coset kH in G/H, we have

t(kH) = t(k ·H) = k · t(H) = (kk0)H.

So t is uniquely determined by the coset k0H. However, it is not necessarily well-defined. In order
to be well-defined, we must have that t(hH) equals t(H) for every h in H, i.e., hk0H must equal
k0H for every h in H. In other words Hk0H must equal k0H. But this is precisely the condition
that k0 is an element of the normalizer NG(H). In summary, we have the following.

Proposition 1.10. For a subgroup H of G, every left G-equivariant map t : G/H → G/H is of
the form t(kH) = kk0H for a unique coset k0H in NG(H)/H, and every such map is well-defined
and G-equivariant.

2 The Fundamental Theorem of Galois Theory

Let F be a field, and let G ≤ Aut(F ) be a finite subgroup of the group of field automorphisms of
F . Denote by E the fixed set FixG(F ), i.e.,

FixG(F ) := {a ∈ F |∀σ ∈ G, σ(a) = a}.

Lemma 2.1. The subset FixG(F ) is a subfield of F , and the inclusion FixG(F )→ F is an algebraic
field extension.

Proof. Clearly FixG(F ) is a subring of F which contains 1. In particular, FixG(F ) is an integral
domain. As proved in Theorem 26 (1) on p. 694 of the textbook (and also in lecture), if F is integral
over FixG(F ), then FixG(F ) is a field. And then it follows that FixG(F )→ F is an algebraic field
extension (since this is precisely the same thing as an integral ring extension if the source and
target are fields). So it suffices to prove that every element b in F satisfies a monic polynomial p(x)
with coefficients in FixG(F ). Consider the polynomial,

p(x) =
∏
σ∈G

(x− σ(b)).

This is a monic polynomial with p(b) equals 0 (since x− Id(b) is one of the factors of p(x)). And the
coefficients of p(x) are symmetric polynomials in the elements σ(b), which clearly are G-invariant.
Thus the coefficients are elements in FixG(F ).

Now consider the set map

β : F × F → FG, β(c, b) : σ 7→ cσ(b).

It is straightforward to verify that β is an E-bilinear map and thus determines an E-linear map

T : F ⊗E F → FG.
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In fact, if we consider F ⊗E F as a left F -vector space via the scaling rule λ · (c ⊗ b) := (λc) ⊗ b,
then T is even F -linear. If we choose a basis (bi)i∈I for F as an E-vector space, then (1 ⊗ bi)i∈I
is an F -basis for F ⊗E F (with respect to this left F -vector space structure). And if we use the
standard basis eσ for FG, then the matrix of the linear transformation T is [σ(bi)](i,σ)∈I×G, i.e.,

T (1⊗ bi) =
∑
σ∈G

σ(bi)eσ.

The key result is the following.

Theorem 2.2. The F -linear map T is an isomorphism of F -vector spaces. Moreover it is a
homomorphism of F -algebras, hence an isomorphism of F -algebras. In particular, [F : E] is finite
and equals #G.

Proof. As explained in lecture, the proof that F/E is a finite extension of degree #G in fact proves
that the matrix [σ(bi)](i,σ) is a square, invertible matrix, i.e., T is an isomorphism of F -vector
spaces. And for every pair of elements b, b′ in F ,

T (1⊗ b) · T (1⊗ b′) =

(∑
σinG

σ(b)eσ

)
·

(∑
σ∈G

σ(b′)eσ

)
=
∑
σ∈G

σ(b)σ(b′)eσ.

On the other hand, (1⊗ b) · (1⊗ b′) equals 1⊗ (bb′). Thus,

T ((1⊗ b) · (1⊗ b′)) = T (1⊗ (bb′)) =
∑
σ∈G

σ(bb′)eσ.

Since each σ is a ring homomorphism, σ(bb′) equals σ(b)σ(b′). Thus T commutes with multiplica-
tion. Therefore the F -vector space isomorphism T is actually an F -algebra isomorphism.

Since we know the F -subalgebras of FG, this means that we know the F -subalgebras of F ⊗E F .

Corollary 2.3. For the left F -vector space structure on F ⊗E F , every F -subalgebra of F ⊗E F is
of the form T−1(Image(F q)) for a unique partition q : G→ Θ.

There is a left action of G on the ring F ⊗E F by E-algebra isomorphisms σ̂ defined as follows,

σ̂· : F ⊗E F → F ⊗E F, σ̂(c⊗ b) := σ(c)⊗ b.

Notice that σ̂· is not F -linear for the left F -vector space structure on F ⊗E F , (although it is F -
linear for the right F -vector space structure). There is also a left action of G on FG by E-algebra
isomorphisms σ̃· defined as follows,

σ̃· : FG → FG, σ̃ · t : τ 7→ σ(t(σ−1τ)).
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Proposition 2.4. The E-algebra isomorphism T is left G-equivariant, i.e., T ((σ̂ ·f) equals σ̃ ·T (f)
for every σ in G and every f in F ⊗E F . Every left F -subalgebra of F ⊗E F which is mapped to
itself by every σ̂· is of the form T−1(Image(F q)) for the quotient q : G → G/H associated to a
unique subgroup H of G.

Proof. It is straightforward to verify that T (σ̂(c⊗ b)), i.e., T (σ(c)⊗ b), is the set map sending each
element τ to σ(c)τ(b). But this is the same as σ(t(τ−1σ)) where t is the set map ρ 7→ c⊗ ρ(b), i.e.,
t equals T (c⊗ b). Thus T (σ̂(c⊗ b)) equals σ̃T (c⊗ b).
By Corollary 2.3, every left F -subalgebra of F ⊗E F comes from a unique partition q : G → Θ of
G. And Image(F q) is spanned by the elements eT for elements T of the partition. If this algebra
is mapped to itself by σ̃, then in particular σ̃(eT ) is contained in the algebra. But this element is
simply eσ·T . So for every partition set T in Θ, σ ·T is a union of partition sets in Θ. By considering
the minimal partition sets, it follows that the partition is G-invariant. And then by Proposition
1.9, there exists a unique subgroup H ≤ G such that the partition Θ is simply G/H, the set of H-
cosets in G. Conversely, it is straightforward to verify that for every subgroup H of G, the algebra
corresponding to the partition G/H is G-invariant. Therefore the G-invariant F -subalgebras of FG

are precisely the subalgebras arising from the partitions G/H of subgroups H of G.

There are also right actions of G on F ⊗E F and on FG by E-algebra isomorphisms defined as
follows,

·σ̂ : F ⊗E F → F ⊗E F, (c⊗ b) · σ̂ := c⊗ σ(b).

Notice that ·σ̂ is left F -linear, but it is not right F -linear. There is also a right action of G on FG

by F -algebra isomorphisms ·σ̃ defined as follows,

·σ̃ : FG → FG, t · σ̃ : τ 7→ t(τσ).

Proposition 2.5. The F -algebra isomorphism T is right G-equivariant, i.e., T (f ·σ̂) equals T (f)·σ̃
for every σ in G and every f in F ⊗E F . For every left F -subalgebra B of F ⊗E F which is mapped
to itself by every σ̂·, there exists a unique subgroup H of G such that B equals F ⊗E FixH(F ).

Proof. Just as in the proof of Proposition 2.4, it is straightforward to check that T is right G-
equivariant (in fact this is even easier than checking that T is left G-equivariant). In Proposition
2.5 we already characterized the subalgebras B as above as T−1(Image(F q)) coming from the
quotient q : G → G/H for a unique subgroup H. The last step is to observe that F q is the F -
algebra of all set functions t : G→ F which are constant on every fiber of q. But since these fibers
are left cosets τH = {τσ|σ ∈ H}, this is precisely the same as saying that (t · σ̃)(τ) equals t(τ) for
every σ̃ in H. And this is the same as saying that t · σ̃ equals t for every σ in H. Using that T is
an F -algebra isomorphism which is G-equivariant, it follows that B is the set of elements,

B = {f ∈ F ⊗E F |∀σ ∈ H, f · σ̂ = f}.

Choose a basis (ci)i∈I for F over E. Then every f in F ⊗E F is of the form

f =
∑
i∈I

ci ⊗ bi
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for a unique I-tuple (ci)i∈I of elements ci ∈ F . And

f · σ̂ =
∑
i∈I

ci ⊗ σ(bi).

Thus f · σ̂ equals f if and only if every σ(bi) equals bi. Thus f · σ̂ equals f for every σ in H if
and only if every bi is in the fixed field FixH(F ). Therefore B is precisely F ⊗E FixH(F ) for a
unique subgroup H of G, and for every subgroup H of B, F ⊗E FixH(F ) is a left G-invariant, left
F -subalgebra of F ⊗E F .

Now we can prove the Fundamental Theorem of Galois Theory. But first we need to set up a little
notation. With F , G and E as above, define a function,

Fix•(F ) : {SubgroupsH ≤ G} → {FieldsL|E ⊆ L ⊆ F}, H 7→ FixH(F ).

Similarly, define a function

Fix•(G) : {FieldsL|E ⊆ L ⊆ F} → {SubgroupsH ≤ G}, L 7→ FixL(G)

where we define
FixL(G) := {σ ∈ G|∀b ∈ L, σ(b) = b}.

Both sets are partially ordered under inclusion, and each is in fact a lattice. A lattice is a partially
ordered set together with two operations known as meet and join satisfying all of the axioms
familiar from the lattice of subsets of a fixed set, where meet is union and join is intersection. For
subgroups of G, the meet of a collection of subgroups is the smallest subgroup of G containing all
the given subgroups. And the join of a collection of subgroups is the intersection of the collection
of subgroups. For subextensions of F/E, the meet of a collection of subextensions is the composite
extension. And the joint of a collection of subextension is the intersection of the collection of fields.

Theorem 2.6. The two correspondences above are inverse bijections. Each one is inclusion re-
versing, and interchanges meets with joins. For every subgroup H of G, and for every subgroup
K of H, [FixK(F ) : FixH(F )] equals [H : K]. For every subextension L = FixH(F ), the group of
automorphisms of L which fix E is canonically isomorphic to NG(H)/H. In particular, L/E is
Galois if and only if H is normal in G.

Proof. Let H be a subgroup of G, and let L be FixH(F ). Let H ′ be FixL(G). By definition, H is
contained in H ′. Also by definition, L is contained in L := FixH

′
(F ). So #H ′ is ≥ #H and [F : L′]

is ≤ [F : L]. And by Theorem 2.2, we have

#H = [F : L],#H ′ = [F : L′].

Thus #H equals #H ′, i.e., H ′ equals H. So Fix•(F ) is injective, and Fix•(G) is a left inverse of
this injective map.
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For every subextension L of F/E, consider the F -subalgebra BL := F ⊗E L of F ⊗E F . The field
L is the set of elements b in F such that 1 ⊗ b is in BL, so the number of subextensions L is no
greater than the number of F -subalgebras BL. But BL is a left G-invariant, left F -subalgebra of
F ⊗E F . By Proposition 2.4, the number of such F -subalgebras equals the number of subgroups H
of G. And since Fix•(F ) is injective, the number of extensions of the form L = FixH(F ) also equals
the number of subgroups of G. Therefore every subextension L of F/E is of the form FixH(F ) for
some subgroup H of G. So Fix•(F ) is surjective. Thus Fix•(F ) is a bijection. And since Fix•(G)
is a left inverse, it is the inverse bijection.

It is straightforward to check that both bijections are order reversing. Since they are inverses, it
follows that both are strictly order reversing, i.e., one element is greater than a second element if
and only if the image of the first is less than the image of the second. Thus they strictly reverse
upper bounds and lower bounds, i.e., meets and joins.

Let L be FixH(F ). Since [F : E] equals [F : L][L : E], and since [F : E] = #G and [F : L] = #H,
it follows that [L : E] equals [G : H]. Iterating gives [FixK(F ) : FixH(F )] equals [H : K].

Finally, let L be FixH(F ). For every σ in NG(H) and for every τ in H, τ ′ := στσ−1 is also in H,
and every τ ′ in H arises in this way. Thus for every b in L,

τ ′σ(b) = στ(b) = σ(b),

so that σ(b) is fixed by every τ ′ in H, i.e., σ(b) is again in L. Therefore the action of NG(H)
on F maps L back into itself. So there is a homomorphism from NG(H) to Aut(L/E). By the
definition of L, the kernel of this homomorphism is H. Thus there is an injective homomorphism
NG(H)/H → Aut(L/E). The claim is that every E-automorphism θ : L → L is in the image of
this homomorphism, i.e., this homomorphism is an isomorphism.

Every E-automorphism θ : L→ L determines an F -algebra automorphism,

IdF ⊗ θ : F ⊗E L→ F ⊗E L, c⊗ b 7→ c⊗ θ(b).

And this F -algebra automorphism commutes with the left G-action by σ̂·. Of course we can recover
θ for IdF ⊗ θ by applying this to elements of the form 1 ⊗ b. So the number of E-automorphisms
of L is no greater than the number of F -algebra automorphisms of F ⊗E L which commute with
the left G-action. Using T , every such automorphism is equivalent to an F -algebra automorphism
of the F -subalgebra FG/H of FG which commutes with the left G-action by σ̃·. By Corollary
1.8, every automorphism of FG/H is of the form F t for a unique bijection t : G/H → G/H.
Finally, since θ commutes with the left G-action on F ⊗E L, t commutes with the left G-action
on G/H. Thus, by Proposition 1.10, there exists a unique coset k0H in NG(H)/H such that
t(kH) = kk0H for every kH in G/H. Therefore the number of such automorphisms is bounded by
[NG(H) : H]. But we already produced an injective homomorphism from NG(H)/H into the group
of such automorphisms. Therefore this injective homomorphism is an isomorphism, i.e., Aut(L/E)
equals NG(H)/H.

In particular, since [L : E] equals [G : H], the size of Aut(L/E) equal [L : E] if and only if NG(H)
equals all of G, i.e., if and only if H is normal in G. Therefore, using Theorem 2.2 once more,
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E equals FixAut(L/E)(L) if and only if H is normal in G, i.e., L/E is Galois if and only if H is a
normal subgroup of G. And in this case Aut(L/E) equals NG(H)/H.
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