18.700 JORDAN NORMAL FORM NOTES

These are some supplementary notes on how to find the Jordan normal form of a small matrix. First we recall some of the facts from lecture, next we give the general algorithm for finding the Jordan normal form of a linear operator, and then we will see how this works for small matrices.

1. Facts

Throughout we will work over the field \mathbb{C} of complex numbers, but if you like you may replace this with any other algebraically closed field. Suppose that V is a \mathbb{C}-vector space of dimension n and suppose that $T: V \rightarrow V$ is a \mathbb{C}-linear operator. Then the characteristic polynomial of T factors into a product of linear terms, and the irreducible factorization has the form

$$
\begin{equation*}
c_{T}(X)=\left(X-\lambda_{1}\right)^{m_{1}}\left(X-\lambda_{2}\right)^{m_{2}} \ldots\left(X-\lambda_{r}\right)^{m_{r}}, \tag{1}
\end{equation*}
$$

for some distinct numbers $\lambda_{1}, \ldots, \lambda_{r} \in \mathbb{C}$ and with each m_{i} an integer $m_{1} \geq 1$ such that $m_{1}+\cdots+m_{r}=n$.

Recall that for each eigenvalue λ_{i}, the eigenspace $E_{\lambda_{i}}$ is the kernel of $T-\lambda_{i} I_{V}$. We generalized this by defining for each integer $k=1,2, \ldots$ the vector subspace

$$
\begin{equation*}
E_{\left(X-\lambda_{i}\right)^{k}}=\operatorname{ker}\left(T-\lambda_{i} I_{V}\right)^{k} . \tag{2}
\end{equation*}
$$

It is clear that we have inclusions

$$
\begin{equation*}
E_{\lambda_{i}}=E_{X-\lambda_{i}} \subset E_{\left(X-\lambda_{i}\right)^{2}} \subset \cdots \subset E_{\left(X-\lambda_{i}\right)^{e}} \subset \ldots \tag{3}
\end{equation*}
$$

Since $\operatorname{dim}(V)=n$, it cannot happen that each $\operatorname{dim}\left(E_{\left(X-\lambda_{i}\right)^{k}}\right)<\operatorname{dim}\left(E_{\left(X-\lambda_{i}\right)^{k+1}}\right)$, for each $k=1, \ldots, n$. Therefore there is some least integer $e_{i} \leq n$ such that $E_{\left(X-\lambda_{i}\right)^{e_{i}}}=E_{\left(X-\lambda_{i}\right)^{e_{i}+1}}$. As was proved in class, for each $k \geq e_{i}$ we have $E_{\left(X-\lambda_{i}\right)^{k}}=E_{\left(X-\lambda_{i}\right)^{e}}$, and we defined the generalized eigenspace $E_{\lambda_{i}}^{\text {gen }}$ to be $E_{\left(X-\lambda_{i}\right)^{e_{i}}}$.

It was proved in lecture that the subspaces $E_{\lambda_{1}}^{\text {gen }}, \ldots, E_{\lambda_{r}}^{\text {gen }}$ give a direct sum decomposition of V. From this our criterion for diagonalizability of follows: T is diagonalizable iff for each $i=1, \ldots, r$, we have $E_{\lambda_{i}}^{\text {gen }}=E_{\lambda_{i}}$. Notice that in this case T acts on each $E_{\lambda_{i}}^{\text {gen }}$ as λ_{i} times the identity. This motivates the definition of the semisimple part of T as the unique \mathbb{C}-linear operator $S: V \rightarrow V$ such that for each $i=1, \ldots, r$ and for each $v \in E_{\lambda_{i}}^{\text {gen }}$ we have $S(v)=\lambda_{i} v$. We defined $N=T-S$ and observed that N preserves each $E_{\lambda_{i}}^{\text {gen }}$ and is nilpotent, i.e. there exists an integer $e \geq 1$ (really just the maximum of e_{1}, \ldots, e_{r}) such that N^{e} is the zero linear operator. To summarize:
(A) The generalized eigenspaces $E_{\lambda_{1}}^{\text {gen }}, \ldots, E_{\lambda_{r}}^{\text {gen }}$ defined by

$$
\begin{equation*}
E_{\lambda_{i}}^{\mathrm{gen}}=\left\{v \in V \mid \exists e,\left(T-\lambda_{i} I_{V}\right)^{e}(v)=0\right\}, \tag{4}
\end{equation*}
$$

Date: Fall 2001.
give a direct sum decomposition of V. Moreover, we have $\operatorname{dim}\left(E_{\lambda_{i}}^{\text {gen }}\right)$ equals the algebraic multiplicity of λ_{i}, m_{i}.
(B) The semisimple part S of T and the nilpotent part N of T defined to be the unique \mathbb{C}-linear operators $V \rightarrow V$ such that for each $i=1, \ldots, r$ and each $v \in E_{\lambda_{i}}^{\text {gen }}$ we have

$$
\begin{equation*}
S(v)=S^{(i)}(v)=\lambda_{i} v, N(v)=N^{(i)}(v)=T(v)-\lambda_{i} v \tag{5}
\end{equation*}
$$

satisfy the properties:
(1) S is diagonalizable with $c_{S}(X)=c_{T}(X)$, and the λ_{i}-eigenspace of S is $E_{\lambda_{i}}^{\text {gen }}$ (for $\left.T\right)$.
(2) N is nilpotent, N preserves each $E_{\lambda_{i}}^{\text {gen }}$ and if $N^{(i)}: E_{\lambda_{i}}^{\text {gen }} \rightarrow E_{\lambda_{i}}^{\text {gen }}$ is the unique linear operator with $N^{(i)}(v)=N(v)$, then $\left[N^{(i)}\right]^{e_{i}-1}$ is nonzero but $\left[N^{(i)}\right]^{e_{i}}=0$.
(3) $T=S+N$.
(4) $S N=N S$.
(5) For any other \mathbb{C}-linear operator $T^{\prime}: V \rightarrow V, T^{\prime}$ commutes with $T\left(T^{\prime} T=T T^{\prime}\right)$ iff T^{\prime} commutes with both S and N. Moreover T^{\prime} commutes with S iff for each $i=1, \ldots, r$, we have $T^{\prime}\left(E_{\lambda_{i}}^{\text {gen }}\right) \subset E_{\lambda_{i}}^{\text {gen }}$.
(6) If $\left(S^{\prime}, N^{\prime}\right)$ is any pair of a diagonalizable operator S^{\prime} and a nilpotent operator N^{\prime} such that $T=S^{\prime}+N^{\prime}$ and $S^{\prime} N^{\prime}=N^{\prime} S^{\prime}$, then $S^{\prime}=S$ and $N^{\prime}=N$. We call the unique pair (S, N) the semisimple-nilpotent decomposition of T.
(C) For each $i=1, \ldots, r$, choose an ordered basis $\mathcal{B}^{(i)}=\left(v_{1}^{(i)}, \ldots, v_{m_{i}}^{(i)}\right)$ of $E_{\lambda_{i}}^{\text {gen }}$ and let $\mathcal{B}=\left(\mathcal{B}^{(1)}, \ldots, \mathcal{B}^{(r)}\right)$ be the concatenation, i.e.

$$
\begin{equation*}
\mathcal{B}=\left(v_{1}^{(1)}, \ldots, v_{m_{1}}^{(1)}, v_{1}^{(2)}, \ldots, v_{m_{2}}^{(2)}, \ldots, v_{1}^{(r)}, \ldots, v_{m_{r}}^{(r)}\right) . \tag{6}
\end{equation*}
$$

For each i let $S^{(i)}, N^{(i)}$ be as above and define the $m_{i} \times m_{i}$ matrices

$$
\begin{equation*}
D^{(i)}=\left[S^{(i)}\right]_{\mathcal{B}^{(i)}, \mathcal{B}^{(i)}}, C^{(i)}=\left[N^{(i)}\right]_{\mathcal{B}^{(i)}, \mathcal{B}^{(i)}} \tag{7}
\end{equation*}
$$

Then we have $D^{(i)}=\lambda_{i} I_{m_{i}}$ and $C^{(i)}$ is a nilpotent matrix of exponent e_{i}. Moreover we have the block forms of S and N :

$$
\begin{gather*}
{[S]_{\mathcal{B}, \mathcal{B}}=\left(\begin{array}{cccc}
\lambda_{1} I_{m_{1}} & 0_{m_{1} \times m_{2}} & \ldots & 0_{m_{1} \times m_{r}} \\
0_{m_{2} \times m_{1}} & \lambda_{2} I_{m_{2}} & \ldots & 0_{m_{2} \times m_{r}} \\
\vdots & \vdots & \ddots & \vdots \\
0_{m_{r} \times m_{1}} & 0_{m_{r} \times m_{1}} & \cdots & \lambda_{r} I_{m_{r}}
\end{array}\right)} \tag{8}\\
{[N]_{\mathcal{B}, \mathcal{B}}=\left(\begin{array}{cccc}
C^{(1)} & 0_{m_{1} \times m_{2}} & \cdots & 0_{m_{1} \times m_{r}} \\
0_{m_{2} \times m_{1}} & C^{(2)} & \ldots & 0_{m_{2} \times m_{r}} \\
\vdots & \vdots & \ddots & \vdots \\
0_{m_{r} \times m_{1}} & 0_{m_{r} \times m_{2}} & \cdots & C^{(r)}
\end{array}\right) .} \tag{9}
\end{gather*}
$$

Notice that $D^{(i)}$ has a nice form with respect to ANY basis $\mathcal{B}^{(i)}$ for $E_{\lambda_{i}}^{\text {gen }}$. But we might hope to improve $C^{(i)}$ by choosing a better basis.

A very simple kind of nilpotent linear transformation is the nilpotent Jordan block, i.e. $T_{J_{a}}: \mathbb{C}^{a} \rightarrow \mathbb{C}^{a}$ where J_{a} is the matrix

$$
J_{a}=\left(\begin{array}{cccccc}
0 & 0 & 0 & \ldots & 0 & 0 \tag{10}\\
1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & \ldots & 1 & 0
\end{array}\right)
$$

In other words,

$$
\begin{equation*}
J_{a} \mathbf{e}_{1}=\mathbf{e}_{2}, J_{a} \mathbf{e}_{2}=\mathbf{e}_{3}, \ldots, J_{a} \mathbf{e}_{a-1}=\mathbf{e}_{a}, J_{a} \mathbf{e}_{a}=0 \tag{11}
\end{equation*}
$$

Notice that the powers of J_{a} are very easy to compute. In fact $J_{a}^{a}=0_{a, a}$, and for $d=$ $1, \ldots, a-1$, we have

$$
\begin{equation*}
J_{a}^{d} \mathbf{e}_{1}=\mathbf{e}_{d+1}, J_{a}^{d} \mathbf{e}_{2}=\mathbf{e}_{d+2}, \ldots, J_{a}^{d} \mathbf{e}_{a-d}=\mathbf{e}_{a}, J_{a}^{d} \mathbf{e}_{a+1-d}=0, \ldots, J_{a}^{d} \mathbf{e}_{a}=0 \tag{12}
\end{equation*}
$$

Notice that we have $\operatorname{ker}\left(J_{a}^{d}\right)=\operatorname{span}\left(\mathbf{e}_{a+1-d}, \mathbf{e}_{a+2-d}, \ldots, \mathbf{e}_{a}\right)$.
A nilpotent matrix $C \in M_{m \times m}(\mathbb{C})$ is said to be in Jordan normal form if it is of the form

$$
C=\left(\begin{array}{ccccc}
J_{a_{1}} & 0_{a_{1} \times a_{2}} & \ldots & 0_{a_{1} \times a_{t}} & 0_{a_{1} \times b} \tag{13}\\
0_{a_{2} \times a_{1}} & J_{a_{2}} & \ldots & 0_{a_{2} \times a_{t}} & 0_{a_{2} \times b} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0_{a_{t} \times a_{1}} & 0_{a_{t} \times a_{1}} & \ldots & J_{a_{t}} & 0_{a_{t} \times b} \\
0_{b \times a_{1}} & 0_{b \times a_{1}} & \ldots & 0_{b \times a_{t}} & 0_{b \times b}
\end{array}\right),
$$

where $a_{1} \geq a_{2} \geq \cdots \geq a_{t} \geq 2$ and $a_{1}+\cdots+a_{t}+b=m$.
We say that a basis $\mathcal{B}^{(i)}$ puts $T^{(i)}$ in Jordan normal form if $C^{(i)}$ is in Jordan normal form. We say that a basis $\mathcal{B}=\left(\mathcal{B}^{(1)}, \ldots, \mathcal{B}^{(r)}\right)$ puts T in Jordan normal form if each $\mathcal{B}^{(i)}$ puts $T^{(i)}$ in Jordan normal form.

WARNING: Usually such a basis is not unique. For example, if T is diagonalizable, then ANY basis $\mathcal{B}^{(i)}$ puts $T^{(i)}$ in Jordan normal form.

2. Algorithm

In this section we present the general algorithm for finding bases $\mathcal{B}^{(i)}$ which put T in Jordan normal form.

Suppose that we already had such bases. How could we describe the basis vectors? One observation is that for each Jordan block J_{a}, we have that $\mathbf{e}_{d+1}=J_{a}^{d}\left(\mathbf{e}_{1}\right)$ and also that spane ${ }_{1}$ and $\operatorname{ker}\left(J_{a}^{a-1}\right)$ give a direct sum decomposition of \mathbb{C}^{a}.

What if we have two Jordan blocks, say

$$
J=\left(\begin{array}{cc}
J_{a_{1}} & 0_{a_{1} \times a_{2}} \tag{14}\\
0_{a_{2} \times a_{1}} & J_{a_{2}}
\end{array}\right), a_{1} \geq a_{2} .
$$

This is the matrix such that

$$
\begin{equation*}
J \mathbf{e}_{1}=\mathbf{e}_{2}, \ldots, J \mathbf{e}_{a_{1}-1}=\mathbf{e}_{a_{1}}, J \mathbf{e}_{a_{1}}=0, J \mathbf{e}_{a_{1}+1}=\mathbf{e}_{a_{1}+2}, \ldots, J \mathbf{e}_{a_{1}+a_{2}-1}=\mathbf{e}_{a_{1}+a_{2}}, J \mathbf{e}_{a_{1}+a_{2}}=0 \tag{15}
\end{equation*}
$$

Again we have that $\mathbf{e}_{d+1}=J^{d} \mathbf{e}_{1}$ and $\mathbf{e}_{d+a_{1}+1}=J^{d} \mathbf{e}_{a_{1}+1}$. So if we wanted to reconstruct this basis, what we really need is just \mathbf{e}_{1} and $\mathbf{e}_{a_{1}+1}$. We have already seen that a distinguishing feature of \mathbf{e}_{1} is that it is an element of $\operatorname{ker}\left(J^{a_{1}}\right)$ which is not in $\operatorname{ker}\left(J^{a_{1}-1}\right)$. If $a_{2}=a_{1}$, then this is also a distinguishing feature of $\mathbf{e}_{a_{1}+1}$. But if $a_{2}<a_{1}$, this doesn't work. In this case it turns out that the distinguishing feature is that $\mathbf{e}_{a_{1}+1}$ is in $\operatorname{ker}\left(J^{a_{2}}\right)$ but is not in $\operatorname{ker}\left(J^{a_{2}-1}\right)+J\left(\operatorname{ker}\left(J^{a_{2}+1}\right)\right)$. This motivates the following definition:

Definition 1. Suppose that $B \in M_{n \times n}(\mathbb{C})$ is a matrix such that $\operatorname{ker}\left(B^{e}\right)=\operatorname{ker}\left(B^{e+1}\right)$. For each $k=1, \ldots, e$, we say that a subspace $G_{k} \subset \operatorname{ker}\left(B^{k}\right)$ is primitive (for k) if
(1) $G_{k}+\operatorname{ker}\left(B^{k-1}\right)+B\left(\operatorname{ker}\left(B^{k+1}\right)\right)=\operatorname{ker}\left(B^{k}\right)$, and
(2) $G_{k} \cap\left(\operatorname{ker}\left(B^{k-1}\right)+B\left(\operatorname{ker}\left(B^{k+1}\right)\right)\right)=\{0\}$.

Here we make the convention that $B^{0}=I_{n}$.
It is clear that for each k we can find a primitive G_{k} : simply find a basis for $\operatorname{ker}\left(B^{k-1}\right)+$ $B\left(\operatorname{ker}\left(B^{k+1}\right)\right)$ and then extend it to a basis for all of $\operatorname{ker}\left(B^{k}\right)$. The new basis vectors will span a primitive G_{k}.

Now we are ready to state the algorithm. Suppose that T is as in the previous section. For each eigenvalue λ_{i}, choose any basis \mathcal{C} for V and let $A=[T]_{\mathcal{C}, \mathcal{C}}$. Define $B=A-\lambda_{i} I_{n}$. Let $1 \leq k_{1}<\cdots<k_{u} \leq n$ be the distinct integers such that there exists a nontrivial primitive subspace $G_{k_{j}}$. For each $j=1, \ldots, u$, choose a basis $\left(v[j]_{1}, \ldots, v[j]_{p_{j}}\right)$ for $G_{k_{j}}$. Then the desired basis is simply

$$
\begin{aligned}
& \mathcal{B}^{(i)}=\left(v[u]_{1}, B v[u]_{1}, \ldots, B^{u-1} v[u]_{1},\right. \\
& \\
& \quad v[u]_{2}, B v[u]_{2}, \ldots, B^{k_{u}-1} v[u]_{2}, \ldots, v[u]_{p_{u}}, \ldots, B^{k_{u}-1} v[u]_{p_{1}}, \ldots, \\
& \quad v[j]_{i}, B v[j]_{i}, \ldots, B^{k_{j}-1} v[j]_{i}, \ldots, v[1]_{1}, \ldots, B^{k_{1}-1} v[1]_{1}, \ldots, \\
& \left.\quad v[1]_{p_{1}}, \ldots, B^{k_{1}-1} v[1]_{p_{1}}\right) .
\end{aligned}
$$

When we perform this for each $i=1, \ldots, r$, we get the desired basis for V.

3. Small cases

The algorithm above sounds more complicated than it is. To illustrate this, we will present a step-by-step algorithm in the 2×2 and 3×3 cases and illustrate with some examples.
3.1. Two-by-two matrices. First we consider the two-by-two case. If $A \in M_{2 \times 2}(\mathbb{C})$ is a matrix, its characteristic polynomial $c_{A}(X)$ is a quadratic polynomial. The first dichotomy is whether $c_{A}(X)$ has two distinct roots or one repeated root.

Two distinct roots Suppose that $c_{A}(X)=\left(X-\lambda_{1}\right)\left(X-\lambda_{2}\right)$ with $\lambda_{1} \neq \lambda_{2}$. Then for each $i=1,2$ we form the matrix $B_{i}=A-\lambda_{i} I_{2}$. By performing Gauss-Jordan elimination we may find a basis for $\operatorname{ker}\left(B_{i}\right)$. In fact each kernel will be one-dimensional, so let v_{1} be a basis
for $\operatorname{ker}\left(B_{1}\right)$ and let v_{2} be a basis for $\operatorname{ker}\left(B_{2}\right)$. Then with respect to the basis $\mathcal{B}=\left(v_{1}, v_{2}\right)$, we will have

$$
[A]_{\mathcal{B}}=\left(\begin{array}{cc}
\lambda_{1} & 0 \tag{16}\\
0 & \lambda_{2}
\end{array}\right)
$$

Said a different way, if we form the matrix $P=\left(v_{1} \mid v_{2}\right)$ whose first column is v_{1} and whose second column is v_{2}, then we have

$$
A=P\left(\begin{array}{cc}
\lambda_{1} & 0 \tag{17}\\
0 & \lambda_{2}
\end{array}\right) P^{-1}
$$

To summarize:

$$
\begin{gather*}
\operatorname{span}\left(v_{1}\right)=E_{\lambda_{1}}=\operatorname{ker}\left(A-\lambda_{1} I_{2}\right)=\operatorname{ker}\left(A-\lambda_{1} I_{2}\right)^{2}=\cdots=E_{\lambda_{1}}^{\text {gen }} \tag{18}\\
\operatorname{span}\left(v_{2}\right)=E_{\lambda_{2}}=\operatorname{ker}\left(A-\lambda_{2} I_{1}\right)=\operatorname{ker}\left(A-\lambda_{2} I_{2}\right)^{2}=\cdots=E_{\lambda_{2}}^{\text {gen }} \tag{19}
\end{gather*}
$$

Setting $\mathcal{B}=\left(v_{1}, v_{2}\right)$ and $P=\left(v_{1} \mid v_{2}\right)$, We also have

$$
[A]_{\mathcal{B}, \mathcal{B}}=\left(\begin{array}{cc}
\lambda_{1} & 0 \tag{20}\\
0 & \lambda_{2}
\end{array}\right), A=P\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) P^{-1}
$$

Also $S=A$ and $N=0_{2 \times 2}$.
Now we consider an example. Consider the matrix

$$
A=\left(\begin{array}{ll}
38 & -70 \tag{21}\\
21 & -39
\end{array}\right)
$$

The characteristic polynomial is $X^{2}-\operatorname{trace}(A) X+\operatorname{det}(A)$, which is $X^{2}+X-12$. This factors as $(X+4)(X-3)$, so we are in the case discussed above. The two eigenvalues are -4 and 3 .

First we consider the eigenvalue $\lambda_{1}=-4$. Then we have

$$
B_{1}=A+4 I_{2}=\left(\begin{array}{cc}
42 & -70 \tag{22}\\
21-35 &
\end{array}\right) .
$$

Performing Gauss-Jordan elimination on this matrix gives a basis of the kernel: $v_{1}=(5,3)^{\dagger}$.
Next we consider the eigenvalue $\lambda_{2}=3$. Then we have

$$
B_{2}=A-3 I_{2}=\left(\begin{array}{ll}
35 & -70 \tag{23}\\
21 & -42
\end{array}\right)
$$

Performing Gauss-Jordan elimination on this matrix gives a basis of the kernel: $v_{2}=(2,1)^{\dagger}$.
We conclude that:

$$
\begin{equation*}
E_{-4}=\operatorname{span}\left(\binom{5}{3}\right), E_{3}=\operatorname{span}\left(\binom{2}{1}\right) . \tag{24}
\end{equation*}
$$

and that

$$
A=P\left(\begin{array}{cc}
-4 & 0 \tag{25}\\
0 & 3
\end{array}\right) P^{-1}, P=\left(\begin{array}{cc}
5 & 2 \\
3 & 1
\end{array}\right)
$$

One repeated root: Next suppose that $c_{A}(X)$ has one repeated root: $c_{A}(X)=\left(X-\lambda_{1}\right)^{2}$. Again we form the matrix $B_{1}=A-\lambda_{1} I_{2}$. There are two cases depending on the dimension of $E_{\lambda_{1}}=\operatorname{ker}\left(B_{1}\right)$. The first case is that $\operatorname{dim}\left(E_{\lambda_{1}}\right)=2$. In this case A is diagonalizable. In fact, with respect to some basis \mathcal{B} we have

$$
[A]_{\mathcal{B}, \mathcal{B}}=\left(\begin{array}{cc}
\lambda_{1} & 0 \tag{26}\\
0 & \lambda_{1}
\end{array}\right)
$$

But, if you think about it, this means that A has the above form with respect to ANY basis. In other words, our original matrix, expressed with respect to any basis, is simply $\lambda_{1} I_{2}$. This case is readily identified, so if A is not already in diagonal form at the beginning of the problem, we are in the second case.

In the second case $E_{\lambda_{1}}$ has dimension 1. According to our algorithm, we must find a primitive subspace $G_{2} \subset \operatorname{ker}\left(B_{1}^{2}\right)=\mathbb{C}^{2}$. Such a subspace necessarily has dimension 1, i.e. it is of the form $\operatorname{span}\left(v_{1}\right)$ for some v_{1}. And the condition that G_{2} be primitive is precisely that $v_{1} \notin \operatorname{ker}\left(B_{1}\right)$. In other words, we begin by choosing ANY vector $v_{1} \notin \operatorname{ker}\left(B_{1}\right)$. Then we define $v_{2}=B\left(v_{1}\right)$. We form the basis $\mathcal{B}=\left(v_{1}, v_{2}\right)$, and the transition matrix $P=\left(v_{1} \mid v_{2}\right)$. Then we have $E_{\lambda_{1}}=\operatorname{span}\left(v_{2}\right)$ and also

$$
[A]_{\mathcal{B}, \mathcal{B}}=\left(\begin{array}{cc}
\lambda & 0 \tag{27}\\
1 & \lambda
\end{array}\right), A=P\left(\begin{array}{cc}
\lambda & 0 \\
1 & \lambda
\end{array}\right) P^{-1} .
$$

This is the one case where we have nontrivial nilpotent part:

$$
S=\lambda_{1} I_{2}=\left(\begin{array}{cc}
\lambda & 0 \tag{28}\\
0 & \lambda
\end{array}\right), N=A-\lambda_{1} I_{2}=B_{1}=P\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) P^{-1}
$$

Let's see how this works in an example. Consider the matrix from the practice problems:

$$
A=\left(\begin{array}{cc}
-5 & -4 \tag{29}\\
1 & -1
\end{array}\right)
$$

The trace of A is -6 and the determinant is $(-5)(-1)-(-4)(1)=9$. So $c_{A}(X)=X^{2}+$ $6 X+9=(X+3)^{2}$. So the characteristic polynomial has a repeated root of $\lambda_{1}=-3$. We form the matrix $B_{1}=A+3 I_{2}$,

$$
B_{1}=A+3 I_{2}=\left(\begin{array}{cc}
-2 & -4 \tag{30}\\
1 & 2
\end{array}\right)
$$

Performing Gauss-Jordan elimination (or just by inspection) a basis for the kernel is given by $(2,-1)^{\dagger}$. So for v_{1} we choose ANY vector which is not a multiple of this vector, for example $v_{1}=\mathbf{e}_{1}=(1,0)^{\dagger}$. Then we find that $v_{2}=B_{1} v_{1}=(-2,1)^{\dagger}$. So we define

$$
\mathcal{B}=\left(\binom{1}{0},\binom{-2}{1}\right), P=\left(\begin{array}{cc}
1 & -2 \tag{31}\\
0 & 1
\end{array}\right)
$$

Then we have

$$
[A]_{\mathcal{B}, \mathcal{B}}=\left(\begin{array}{cc}
-3 & 0 \tag{32}\\
1 & -3
\end{array}\right), A=P\left(\begin{array}{cc}
-3 & 0 \\
1 & -3
\end{array}\right) P^{-1}
$$

The semisimple part is just $S=-3 I_{2}$, and the nilpotent part is:

$$
N=B_{1}=P\left(\begin{array}{ll}
0 & 0 \tag{33}\\
1 & 0
\end{array}\right) P^{-1}
$$

3.2. Three-by-three matrices. This is basically as in the last subsection, except now there are more possible types of A. The first question to answer is: what is the characteristic polynomial of A. Of course we know this is $c_{A}(X)=\operatorname{det}\left(X I_{3}-A\right)$. But a faster way of calculating this is as follows. We know that the characteristic polynomial has the form

$$
\begin{equation*}
c_{A}(X)=X^{3}-\operatorname{trace}(A) X^{2}+t X-\operatorname{det}(A) \tag{34}
\end{equation*}
$$

for some complex number $t \in \mathbb{C}$. Usually $\operatorname{trace}(A)$ and $\operatorname{det}(A)$ are not hard to find. So it only remains to determine t. This can be done by choosing any convenient number $c \in \mathbb{C}$ other than $c=0$, computing $\operatorname{det}\left(c I_{2}-A\right)$ (here it is often useful to choose c equal to one of the diagonal entries to reduce the number of computations), and then solving the one linear equation

$$
\begin{equation*}
c t+\left(c^{3}-\operatorname{trace}(A) c^{2}-\operatorname{det}(A)\right)=\operatorname{det}\left(c I_{2}-A\right) \tag{35}
\end{equation*}
$$

to find t. Let's see an example of this:

$$
D=\left(\begin{array}{ccc}
2 & 1 & -1 \tag{36}\\
-1 & 1 & 2 \\
0 & -1 & 3
\end{array}\right)
$$

Here we easily compute trace $(D)=6$ and $\operatorname{det}(D)=8$. Finally to compute the coefficient t, we set $c=2$ and we get

$$
\operatorname{det}\left(2 I_{2}-A\right)=\operatorname{det}\left(\begin{array}{ccc}
0 & -1 & 1 \tag{37}\\
-1 & 1 & -2 \\
0 & 1 & -1
\end{array}\right)=0
$$

Plugging this in, we get

$$
\begin{equation*}
(2)^{3}-6(2)^{2}+t(2)-8=0 \tag{38}
\end{equation*}
$$

or $t=12$, i.e. $c_{A}(X)=X^{3}-6 X^{2}+12 X-8$. Notice from above that 2 is a root of this polynomial (since $\operatorname{det}\left(2 I_{3}-A\right)=0$). In fact it is easy to see that $c_{A}(X)=(X-2)^{3}$.

Now that we know how to compute $c_{A}(X)$ in a more efficient way, we can begin our analysis. There are three cases depending on whether $c_{A}(X)$ has three distinct roots, two distinct roots, or only one root.

Three roots: Suppose that $c_{A}(X)=\left(X-\lambda_{1}\right)\left(X-\lambda_{2}\right)\left(X-\lambda_{3}\right)$ where $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are distinct. For each $i=1,2,3$ define $B_{i}=\lambda_{1} I_{3}-A$. By Gauss-Jordan elimination, for each B_{i} we can compute a basis for $\operatorname{ker}\left(B_{i}\right)$. In fact each $\operatorname{ker}\left(B_{i}\right)$ has dimension 1 , so we can find a vector v_{i} such that $E_{\lambda_{1}}=\operatorname{ker}\left(B_{i}\right)=\operatorname{span}\left(v_{i}\right)$. We form a basis $\mathbf{B}=\left(v_{1}, v_{2}, v_{3}\right)$ and the transition matrix $P=\left(v_{1}\left|v_{2}\right| v_{3}\right)$. Then we have

$$
[A]_{\mathcal{B}, \mathcal{B}}=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \tag{39}\\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right), A=P\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right) P^{-1} .
$$

We also have $S=A$ and $N=0$.

Let's see how this works in an example. Consider the matrix

$$
A=\left(\begin{array}{lll}
7 & -7 & 2 \tag{40}\\
8 & -8 & 2 \\
4 & -4 & 1
\end{array}\right)
$$

It is easy to see that $\operatorname{trace}(A)=0$ and also $\operatorname{det}(A)=0$. Finally we consider the determinant of $I_{3}-A$. Using cofactor expansion along the third column, this is:

$$
\operatorname{det}\left(\begin{array}{ccc}
-6 & 7 & -2 \tag{41}\\
-8 & 9 & -2 \\
-4 & 4 & 0
\end{array}\right)=-2((-8) 4-9(-4))-(-2)((-6) 4-7(-4))=-2(4)+2(4)=0
$$

So we have the linear equation

$$
\begin{equation*}
1^{3}-0 * 1^{2}+t * 1-0=0, t=-1 . \tag{42}
\end{equation*}
$$

Thus $c_{A}(X)=X^{3}-X=(X+1) X(X-1)$. So A has the three eigenvalues $\lambda_{1}=-1, \lambda_{2}=$ $0, \lambda_{3}=1$. We define $B_{1}=A-(-1) I_{3}, B_{2}=A, B_{3}=A-I_{3}$. By Gauss-Jordan elimination we find

$$
\begin{array}{r}
E_{-1}=\operatorname{ker}\left(B_{1}\right)=\operatorname{span}\left(\left(\begin{array}{l}
3 \\
4 \\
2
\end{array}\right)\right), E_{0}=\operatorname{ker}\left(B_{2}\right)=\operatorname{span}\left(\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right) \\
E_{1}=\operatorname{ker}\left(B_{3}\right)=\operatorname{span}\left(\left(\begin{array}{l}
2 \\
2 \\
1
\end{array}\right)\right) .
\end{array}
$$

We define

$$
\mathcal{B}=\left(\left(\begin{array}{l}
3 \tag{43}\\
4 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
2 \\
2 \\
1
\end{array}\right)\right), P=\left(\begin{array}{lll}
3 & 1 & 2 \\
4 & 1 & 2 \\
2 & 0 & 1
\end{array}\right) .
$$

Then we have

$$
[A]_{\mathcal{B}, \mathcal{B}}=\left(\begin{array}{ccc}
-1 & 0 & 0 \tag{44}\\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), A=P\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) P^{-1}
$$

Two roots: Suppose that $c_{A}(X)$ has two distinct roots, say $c_{A}(X)=\left(X-\lambda_{1}\right)^{2}\left(X-\lambda_{2}\right)$. Then we form $B_{1}=A-\lambda_{1} I_{3}$ and $B_{2}=A-\lambda_{2} I_{3}$. By performing Gauss-Jordan elimination, we find bases for $E_{\lambda_{1}}=\operatorname{ker}\left(B_{1}\right)$ and for $E_{\lambda_{2}}=\operatorname{ker}\left(B_{2}\right)$. There are two cases depending on the dimension of $E_{\lambda_{1}}$.

The first case is when $E_{\lambda_{1}}$ has dimension 2. Then we have a basis $\left(v_{1}, v_{2}\right)$ for $E_{\lambda_{1}}$ and a basis v_{3} for $E_{\lambda_{2}}$. With respect to the basis $\mathcal{B}=\left(v_{1}, v_{2}, v_{3}\right)$ and defining $P=\left(v_{1}\left|v_{2}\right| v_{3}\right)$, we have

$$
[A]_{\mathcal{B}, \mathcal{B}}=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \tag{45}\\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right), A=P\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right) P^{-1} .
$$

In this case $S=A$ and $N=0$.

The second case is when $E_{\lambda_{1}}$ has dimension 2. Using Gauss-Jordan elimination we find a basis for $E_{\lambda_{1}}^{\text {gen }}=\operatorname{ker}\left(B_{1}^{2}\right)$. Choose any vector $v_{1} \in E_{\lambda_{1}}^{\text {gen }}$ which is not in $E_{\lambda_{1}}$ and define $v_{2}=B_{1} v_{1}$. Also using Gauss-Jordan elimination we may find a vector v_{3} which forms a basis for $E_{\lambda_{2}}$. Then with respect to the basis $\mathcal{B}=\left(v_{1}, v_{2}, v_{3}\right)$ and forming the transition matrix $P=\left(v_{1}\left|v_{2}\right| v_{3}\right)$, we have

$$
[A]_{\mathcal{B}, \mathcal{B}}=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \tag{46}\\
1 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right), A=P\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
1 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right) P^{-1}
$$

Also we have

$$
[S]_{\mathcal{B}, \mathcal{B}}=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \tag{47}\\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right), S=P\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right) P^{-1}
$$

and

$$
[N]_{\mathcal{B}, \mathcal{B}}=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{48}\\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), A=P\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) P^{-1}
$$

Let's see how this works in an example. Consider the matrix

$$
A=\left(\begin{array}{ccc}
3 & 0 & 0 \tag{49}\\
0 & 3 & -1 \\
-1 & 0 & 2
\end{array}\right)
$$

It isn't hard to show that $c_{A}(X)=(X-3)^{2}(X-2)$. So the two eigenvalues are $\lambda_{1}=3$ and $\lambda_{2}=2$. We define the two matrices

$$
B_{1}=A-3 I_{3}=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{50}\\
0 & 0 & -1 \\
-1 & 0 & -1
\end{array}\right), B_{2}=A-2 I_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 0
\end{array}\right)
$$

By Gauss-Jordan elimination we calculate that $E_{2}=\operatorname{ker}\left(B_{2}\right)$ has a basis consisting of $v_{3}=$ $(0,1,1)^{\dagger}$. By Gauss-Jordan elimination, we find that $E_{3}=\operatorname{ker}\left(B_{1}\right)$ has a basis consisting of $(0,1,0)^{\dagger}$. In particular it has dimension 1 , so we have to keep going. We have

$$
B_{1}^{2}=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{51}\\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right)
$$

By Gauss-Jordan elimination (or inspection), we conclude that a basis consists of $(1,0,-1)^{\dagger},(0,1,0)^{\dagger}$. A vector in $E_{3}^{\text {gen }}=\operatorname{ker}\left(B_{1}^{2}\right)$ which isn't in E_{3} is $v_{1}=(1,0,-1)^{\dagger}$. We define $v_{2}=B_{1} v_{1}=$ $(0,1,0)^{\dagger}$. Then with respect to the basis

$$
\mathcal{B}=\left(\left(\begin{array}{c}
1 \tag{52}\\
0 \\
-1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)\right), P=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
-1 & 0 & 1
\end{array}\right) .
$$

we have

$$
[A]_{\mathcal{B}, \mathcal{B}}=\left(\begin{array}{ccc}
3 & 0 & 0 \tag{53}\\
1 & 3 & 0 \\
0 & 0 & 2
\end{array}\right), A=P\left(\begin{array}{lll}
3 & 0 & 0 \\
1 & 3 & 0 \\
0 & 0 & 2
\end{array}\right) P^{-1}
$$

We also have that

$$
\begin{gather*}
{[S]_{\mathcal{B}, \mathcal{B}}=\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{array}\right), S=P\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{array}\right) P^{-1}=\left(\begin{array}{ccc}
3 & 0 & 0 \\
-1 & 3 & -1 \\
-1 & 0 & 2
\end{array}\right),} \tag{54}\\
{[N]_{\mathcal{B}, \mathcal{B}}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), N=P\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) P^{-1}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)} \tag{55}
\end{gather*}
$$

One root: The final case is when there is only a single root of $c_{A}(X)$, say $c_{A}(X)=$ $\left(X-\lambda_{1}\right)^{3}$. Again we form $B_{1}=A_{1}-\lambda_{1} I_{3}$. This case breaks up further depending on the dimension of $E_{\lambda_{1}}=\operatorname{ker}\left(B_{1}\right)$. The simplest case is when $E_{\lambda_{1}}$ is three-dimensional, because in this case A is diagonal with respect to ANY basis and there is nothing more to do.

Dimension 2 Suppose that $E_{\lambda_{1}}$ is two-dimensional. This is a case in which both G_{1} and G_{2} are nontrivial. We begin by finding a basis $\left(w_{1}, w_{2}\right)$ for $E_{\lambda_{1}}$. Choose any vector v_{1} which is not in $E_{\lambda_{1}}$ and define $v_{2}=B_{1} v_{1}$. Then find a vector v_{3} in $E_{\lambda_{1}}$ which is NOT in the span of v_{2}. Define the basis $\mathcal{B}=\left(v_{1}, v_{2}, v_{3}\right)$ and the transition matrix $P=\left(v_{1}\left|v_{2}\right| v_{3}\right)$. Then we have

$$
[A]_{\mathcal{B}, \mathcal{B}}=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \tag{56}\\
1 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{1}
\end{array}\right), A=P\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
1 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{1}
\end{array}\right) P^{-1}
$$

Notice that there is a Jordan block of size 2 and a Jordan block of size 1. Also, $S=\lambda_{1} I_{3}$ and we have $N=B_{1}$.

Let's see how this works in an example. Consider the matrix

$$
A=\left(\begin{array}{ccc}
-1 & -1 & 0 \tag{57}\\
1 & -3 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

It is easy to compute $c_{A}(X)=(X+2)^{3}$. So the only eigenvalue of A is $\lambda_{1}=-2$. We define $B_{1}=A-(-2) I_{3}$, and we have

$$
B_{1}=\left(\begin{array}{ccc}
1 & -1 & 0 \tag{58}\\
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

By Gauss-Jordan elimination, or by inspection, we see that $E_{-2}=\operatorname{ker}\left(B_{1}\right)$ has a basis $\left((1,1,0)^{\dagger},(0,0,1)^{\dagger}\right)$. Since this is 2 -dimensional, we are in the case above. So we choose any vector not in E_{-2}, say $v_{1}=(1,0,0)^{\dagger}$. We define $v_{2}=B_{1} v_{1}=(1,1,0)^{\dagger}$. Finally, we choose a vector in $E_{\lambda_{1}}$ which is not in the span of v_{2}, say $v_{3}=(0,0,1)^{\dagger}$. Then we define

$$
\mathcal{B}=\left(\left(\begin{array}{l}
1 \tag{59}\\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right), P=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

We have

$$
[A]_{\mathcal{B}, \mathcal{B}}=\left(\begin{array}{ccc}
-2 & 0 & 0 \tag{60}\\
1 & -2 & 0 \\
0 & 0 & -2
\end{array}\right), A=P\left(\begin{array}{ccc}
-2 & 0 & 0 \\
1 & -2 & 0 \\
0 & 0 & -2
\end{array}\right) P^{-1}
$$

We also have $S=-2 I_{3}$ and $N=B_{1}$.
Dimension One In the final case for three by three matrices, we could have that $c_{A}(X)=$ $\left(X-\lambda_{1}\right)^{3}$ and $E_{\lambda_{1}}=\operatorname{ker}\left(B_{1}\right)$ is one-dimensional. In this case we must also have $\operatorname{ker}\left(B_{1}^{2}\right)$ is two-dimensional. By Gauss-Jordan we compute a basis for $\operatorname{ker}\left(B_{1}^{2}\right)$ and then choose ANY vector v_{1} which is not contained in $\operatorname{ker}\left(B_{1}^{2}\right)$. We define $v_{2}=B_{1} v_{1}$ and $v_{3}=B_{1} v_{2}=B_{1}^{2} v_{1}$. Then with respect to the basis $\mathcal{B}=\left(v_{1}, v_{2}, v_{3}\right)$ and the transition matrix $P=\left(v_{1}\left|v_{2}\right| v_{3}\right)$, we have

$$
[A]_{\mathcal{B}, \mathcal{B}}=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \tag{61}\\
1 & \lambda_{1} & 0 \\
0 & 1 & \lambda_{1}
\end{array}\right), A=P\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
1 & \lambda_{1} & 0 \\
0 & 1 & \lambda_{1}
\end{array}\right) P^{-1}
$$

We also have $S=\lambda_{1} I_{3}$ and $N=B_{1}$.
Let's see how this works in an example. Consider the matrix

$$
A=\left(\begin{array}{ccc}
5 & -4 & 0 \tag{62}\\
1 & 1 & 0 \\
2 & -3 & 3
\end{array}\right)
$$

The trace is visibly 9 . Using cofactor expansion along the third column, the determinant is $+3(5 * 1-1(-4))=27$. Finally, we compute $\operatorname{det}\left(3 I_{3}-A\right)=0$ since $3 I_{3}-A$ has the zero vector for its third column. Plugging in this gives the linear relation

$$
\begin{equation*}
(3)^{3}-9(3)^{2}+t(3)-27=0, t=27 \tag{63}
\end{equation*}
$$

So we have $c_{A}(X)=X^{3}-9 X^{2}+27 X-27$. Also we see from the above that $X=3$ is a root. In fact it is easy to see that $c_{A}(X)=(X-3)^{3}$. So A has the single eigenvalue $\lambda_{1}=3$.

We define $B_{1}=A_{1}-3 I_{3}$, which is

$$
B_{1}=\left(\begin{array}{ccc}
2 & -4 & 0 \tag{64}\\
1 & -2 & 0 \\
2 & -3 & 0
\end{array}\right)
$$

By Gauss-Jordan elimination we see that $E_{3}=\operatorname{ker}\left(B_{1}\right)$ has basis $(0,0,1)^{\dagger}$. Thus we are in the case above. Now we compute

$$
B_{1}^{2}=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{65}\\
0 & 0 & 0 \\
1 & -2 & 0
\end{array}\right)
$$

Either by Gauss-Jordan elimination or by inspection, we see that $\operatorname{ker}\left(B_{1}^{2}\right)$ has basis $\left.\left((2,1,0)^{\dagger},(0,0,1)^{\dagger}\right)\right)$. So for v_{1} we choose any vector not in the span of these vectors, say $v_{1}=(1,0,0)^{\dagger}$. Then we define $v_{2}=B_{1} v_{1}=(2,1,2)^{\dagger}$ and we define $v_{3}=B_{1} v_{2}=B_{1}^{2} v_{1}=(0,0,1)^{\dagger}$. So with respect to
the basis and transition matrix

$$
\mathcal{B}=\left(\left(\begin{array}{l}
1 \tag{66}\\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right), P=\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1
\end{array}\right),
$$

we have

$$
[A]_{\mathcal{B}, \mathcal{B}}=\left(\begin{array}{ccc}
3 & 0 & 0 \tag{67}\\
1 & 3 & 0 \\
0 & 1 & 3
\end{array}\right), A=P\left(\begin{array}{lll}
3 & 0 & 0 \\
1 & 3 & 0 \\
0 & 1 & 3
\end{array}\right) P^{-1}
$$

We also have $S=3 I_{3}$ and $N=B_{1}$.

