PROBLEM SET 9

(1) Let F be a field and let A be an associative F-algebra with 1 . Let S be a subset of A which commutes, i.e., for every pair s, t in S, st equals $t s$. Let B be the smallest F-subalgebra of B which contains S and 1 . Prove that B commutes. Deduce the claim from the exercise in the middle of p. 9 of the notes on the spectral theorem.
(2) For the following linearly indepdendent subset of $\mathbb{R}^{3},\left(\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right)$, find the orthonormal basis $\left(\hat{u}_{1}, \hat{u}_{2}, \hat{u}_{3}\right)$ satisfying the conditions of the Gram-Schmidt theorem.

$$
\vec{v}_{1}=\left[\begin{array}{r}
-2 \\
3 \\
6
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{r}
5 \\
3 \\
-8
\end{array}\right], \vec{v}_{3}=\left[\begin{array}{r}
2 \\
4 \\
25
\end{array}\right] .
$$

(3) Let $n \geq 2$ be an integer, and let a, b, c be integers. Define an \mathbb{R}-linear operator,

$$
T_{a, b, c}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

by

$$
T_{a, b, c}\left(\mathbf{e}_{i}\right)=\left\{\begin{array}{cr}
b \mathbf{e}_{1}+c \mathbf{e}_{2}, & i=1, \\
a \mathbf{e}_{i-1}+b \mathbf{e}_{i}+c \mathbf{e}_{i+1}, & 2 \leq i \leq n-1, \\
a \mathbf{e}_{n-1}+b \mathbf{e}_{n}, & i=n
\end{array}\right.
$$

Prove that $T_{a, b, c}$ is normal if and only if $a^{2}=c^{2}$. And when $a=c$ and $n=2,3$, diagonalize this matrix.
(4) Polar decomposition of normal operators. Let V be a finite dimensional, complex Hermitian space and let T be an invertible, normal operator on T. Prove that there exists a unique factorization

$$
T=|T| U
$$

of T into a product of commuting operators $|T|$ and U on V such that
(i) $|T|$ is a positive operator, i.e., $\langle | T|\vec{v}, \vec{v}\rangle$ is a positive real number for every nonzero \vec{v} in V,
(ii) and U is unitary.

Hint. For such a factorization, relate $T^{*} T$ and $|T|$. Use this to define $|T|$ and then prove the factor $(|T|)^{-1} T$ is unitary.

