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Homework Policy. Please read through all the problems. Please write up solutions of the
required problems. Please also read and attempt the extra problems, but please do not write up
those solutions for grading. I will be happy to discuss the extra problems during office hours.

Each student is encouraged to work on problem sets with other students, but each submitted
problem set must be in the student’s own words and based on the student’s own understanding. It
is against university policy to copy answers from other students or from any other resource (such
as a webpage).

Required Problems.

Problem 1. Let V be a finite-dimensional vector space, say Rn, and let 〈•, •〉 : V × V → R be an
inner product.

(a) Prove that f(b, c) = 〈b, c〉 is differentiable as a function from V ×V to R. For (b, c) ∈ V ×V ,
describe Dfb,c : V × V → R.

(b) Let U be an open subset of Rm, and let g : U → V be a differentiable function. Denote by
h : U → R the composite function h(a) = f(g(a), g(a)) = 〈g(a), g(a)〉. For a ∈ U , use the Chain
Rule to describe Dha in terms of Dga.

(c) Assume now that h is minimized at a, and assume also that Dga is surjective. Prove that g(a)
equals 0.

Problem 2. Statement of the Picard-Lindelöf Theorem: For every open rectangle S =
(t0 − a, t0 + a) × (y0 − b, y0 + b) ⊂ R2, for every continuous F : S → R that is C-Lipschitz in y,
i.e., |F (t, y) − F (t, ỹ)| ≤ C|y − ỹ| for all (t, y), (t, ỹ) ∈ S, there exists real ε with 0 < ε < a, and
a unique differentiable function u : (t0 − ε, t0 + ε) → (y0 − b, y0 + b) such that u(t0) equals y0 and
u′(t) = F (t, u(t)) for every t ∈ (t0 − ε, t0 + ε).

There is a second proof of the Inverse Function Theorem that uses the Contraction Mapping Fixed
Point Theorem, the same theorem used to prove the above Picard-Lindelöf Theorem. In this
exercise, you will prove the n = 1 case of the Inverse Function Theorem directly from the Picard-
Lindelöf Theorem. Thus, let f : (y0 − b, y0 + b) → (t0 − a, t0 + a) be a C2 function such that
f(y0) = t0 and 1/r < f ′(y) < r for some real r > 0 and for all y ∈ (y0 − b, y0 + b) (the hypothesis
on r is our usual hypothesis that the derivative is nonzero, but note the strong hypothesis that f
is C2).
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(a) Up to replacing b by a smaller positive number, prove that F : S → R by F (t, y) = 1/f ′(y) is
continuous and C-Lipschitz in y for some real C (this is where the C2 hypothesis is useful).

(b) Use the Picard-Lindelöf Theorem to conclude that there exists real ε > 0 and a unique differ-
entiable function u : (t0− ε, t0 + ε)→ (y0− b, y0 + b) such that u(t0) equals y0 and u′(t) = 1/f ′(u(t))
for all t ∈ (t0 − ε, t0 + ε).

(c) Use the Chain Rule to prove that the derivative of f(u(t)) equals 1. Equivalently, prove that
the derivative of f(u(t))− t equals 0.

(d) Use the Mean Value Theorem to prove that f(u(t))− t equals 0 on (t0− ε, t0 + ε). In particular,
conclude that (t0 − ε, t0 + ε) is contained in the image of f . Repeating this argument for every
t0 = f(y0) in the image of f , it follows that f is an open mapping (this is the hard step in the
textbook proof of the Inverse Function Theorem).

(e) As a matter of consistency, use the formula for u′(t) and the hypothesis that f is C2 to prove
that also u is C2.

Problem 3 Let A ⊂ R2 and B ⊂ R2 be open subsets. Let F : A → R3, G : B → R3 be C1

functions. Let a ∈ A and b ∈ B be elements such that F (a) equals G(b), and such that the images
of DFa and DGb are 2-dimensional subspace of R3 that have 1-dimensional intersection.

Prove that there exists an open subset C ⊂ R, there exist C1 functions f : C → A, g : C → B,
and there exists an element c ∈ C such that F ◦ f equals G ◦ g, such that f(c) = a and g(c) = b,
and such that Dfc and Dgc each have rank 1. In this sense, the intersection in R3 at F (a) = G(b)
of the transverse surfaces F (A) and G(B) is the curve F (f(C)) = G(g(C)) (compare Exercise 5,
p. 79).

Problem 4(Problem 6, p. 79) Let U ⊂ Rm be an open subset. Let F : U → Rn be a C1 function.
For every point a ∈ U such that DFa has rank n, for every δ > 0, prove that there exists ε > 0
such that F (Bδ(a)) contains Bε(F (a)).

Problem 5(Problem 3, p. 90) Let F : [0, 1] × [0, 1] → R be defined by F (x, y) = 0 if x 6= y,
F (x, y) = 1 if x = y. Prove that F is integrable over [0, 1]× [0, 1].

Problem 6(Problem 5, p. 90) Let F : [0, 1] → R be defined by F (p/q) = 1/q if p and q are
positive integers with no common factor other than 1, and F (x) = 0 if x is irrational. Prove that
F is integrable over [0, 1].
Extra Problems.

pp. 78—79, Exercises 1, 2, 3; p. 90, Exercises 1, 2, 4.
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