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MAT 320 Review Sheet for Final Exam

Remark. The Final Exam will be cumulative, although there will be an emphasis on material
covered since Midterm 2. Please review Midterm 1 and Midterm 2. If you are comfortable with
the material from Midterms 1 and 2, as well as the following, then you will be well prepared for
the final exam.

Exam Policies. You must show up on time for all exams. Please bring your student ID card: ID
cards may be checked, and students may be asked to sign a picture sheet when turning in exams.
Other policies for exams will be announced / repeated at the beginning of the exam.

If you have a university-approved reason for taking an exam at a time different than the scheduled
exam (because of a religious observance, a student-athlete event, etc.), please contact your instructor
as soon as possible. Similarly, if you have a documented medical emergency which prevents you
from showing up for an exam, again contact your instructor as soon as possible.

All exams are closed notes and closed book. Once the exam has begun, having notes or books on
the desk or in view will be considered cheating and will be referred to the Academic Judiciary.

It is not permitted to use cell phones, calculators, laptops, MP3 players, Blackberries or other
such electronic devices at any time during exams. If you use a hearing aid or other such device,
you should make your instructor aware of this before the exam begins. You must turn off your
cell phone, etc., prior to the beginning of the exam. If you need to leave the exam room for any
reason before the end of the exam, it is still not permitted to use such devices. Once the exam has
begun, use of such devices or having such devices in view will be considered cheating and will be
referred to the Academic Judiciary. Similarly, once the exam has begun any communication with a
person other than the instructor or proctor will be considered cheating and will be referred to the
Academic Judiciary.

Review Topics.
Definitions. Please know all of the following definitions. Connected Metric Space. Path
Connected Metric Space. Uniform Metric. Uniform Continuity. Uniformly Cauchy
Sequence of Functions. Uniform Convergence / Uniform Limit of Sequence of Func-
tions. Limit of a Function at a Accumulation / Limit Point of the Domain. Differ-
entiability. Derivative. Partition and Tagged (or Marked) Partition. Refinement of
Partitions. Upper / Lower Darboux Sum. Darboux Integral. Riemann Sum. Mesh.
Riemann Integral. Power Series. Taylor Polynomials and Taylor Series.
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Results. Please know all of the following lemmas, propositions, theorems and corollaries.

Connectedness of the Unit Interval. The unit interval with the Euclidean metric is a connected
metric space.

Connectedness and Path Connectedness. Every path connected metric space is connected.

Uniform Continuity on Compact Domains. For every compact metric space (X, dX), for every
metric space (Y, dY ), every continuous function f from (X, dX) to (Y, dY ) is uniformly continuous.

Completeness of C(X) with Uniform Metric. For every metric space (X, dX), for every
complete metric space (Y, dY ), the set B((X, dX), (Y, dY )) of bounded functions from (X, dX) to
(Y, dY ) endowed with the uniform metric is a complete metric space. The subset C((X, dX), (Y, dY ))
of bounded continuous functions is a closed subset. The subset UC((X, dX), (Y, dY )) of uniformly
continuous functions is also a closed subset.

Basic Properties of Differentiability. Differentiability is preserved by: scalar multiples, sums,
pointwise products, pointwise quotients (where defined), composition. Moreover, (cf)′(a) = c·f ′(a),
(f + g)′(a) = f ′(a) + g′(a), (fg)′(a) = f ′(a) · g(a) + f(a) · g′(a), (f/g)′(a) = [g(a) · f ′(a) − f(a) ·
g′(a)]/(g(a))2, (g ◦ f)′(a) = g′(f(a)) · f ′(a).

Rolle’s Theorem. A continuous (real-valued) function f on [a, b] that is differentiable on (a, b)
and has f(a) = f(b) has a critical point in (a, b).

Mean Value Theorem. A continuous (real-valued) function f on [a, b] that is differentiable on
(a, b) has f ′(c) = [f(b)− f(a)]/(b− a) for some c ∈ (a, b).

Increasing and Decreasing Functions. A continuous (real-valued) function f on [a, b] that
is differentiable on (a, b) is nondecreasing, resp. nonincreasing, if and only if f ′(c) ≥ 0, resp.
f ′(c) ≤ 0, for every c ∈ (a, b). If for every c ∈ (a, b), f ′(c) is positive, resp. negative, then f is
strictly increasing, resp. strictly decreasing.

Derivative of an Inverse Function. For a strictly increasing, surjective function f : [a, b] →
[ã, b̃], for c ∈ (a, b) such that f ′(c) is defined and nonzero, then the inverse function f−1 is differen-
tiable at f(c) with (f−1)′(f(c)) = 1/f ′(c).

Darboux Sums of Refinements. For a bounded (real-valued) function f on [a, b], for a partition
P of [a, b], for a refinement Q of P , the upper and lower Darboux sums satisfy

inf(f) · (b− a) ≤ L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ) ≤ sup(f) · (b− a).

Computation of Darboux Integral. For a bounded (real-valued) function f on [a, b], f is (Dar-
boux) integrable if and only if there exists a sequence of partitions (Pn)n∈N such that limn U(f, Pn)−
L(f, Pn) = 0, in which case the (Darboux) integral equals limn L(f, Pn) = limn U(f, Pn).

Riemann Integrals and Darboux Integrals. For a bounded (real-valued) function f on [a, b],
f is Darboux integrable if and only if it is Riemann integrable, in which case the Darboux integral
equals the Riemann integral.
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Properties of Integrals. For integrable functions f and g on [a, b], every scalar multiple c · f is

integrable with
∫ b

a
c · f(x)dx = c ·

∫ b

a
f(x)dx, the sum f + g is integrable with

∫ b

a
(f(x) + g(x))dx =

(
∫ b

a
f(x)dx)+(

∫ b

a
g(x)dx). If f ≤ g, then

∫ b

a
f(x)dx ≤

∫ b

a
g(x)dx. The function |f | is integrable with∫ b

a
f(x)dx ≤

∫ b

a
|f(x)|dx. In particular, the Euclidean distance between

∫ b

a
f(x)dx and

∫ b

a
g(x)dx is

bounded by dunif(f, g) · (b− a).

Integrability of Monotone and Piecewise Continuous Functions. Every bounded monon-
tone function on [a, b] is integrable. Every bounded, piecewise continuous function on [a, b] is
integrable.

Fundamental Theorem of Calculus. For a continuous function F on [a, b] that is differentiable

on (a, b) and whose derivative f is integrable,
∫ b

a
f(x)dx equals F (b)− F (a). For every continuous

function f on [a, b], the function F (x) =
∫ x

a
f(t)dt is differentiable on (a, b) with derivative f .

Integration by Parts. For continuous function f , g on [a, b] that are differentiable on (a, b) and
whose derivatives are integrable,∫ b

a

f ′(x)g(x)dx+

∫ b

a

f(x)g′(x)dx = f(b)g(g)− f(a)g(a).

Change of Variables Formula. For a strictly increasing, surjective function u : [a, b] → [ã, b̃]

such that u is differentiable on (a, b), for every continuous, bounded function f on [ã, b̃],∫ b

a

f(u(x)) · u′(x)dx =

∫ b̃

ã

f(t)dt.

Re-expansion of Analytic Functions. For a power series
∑

m am(x − x0)
m with radius of

convergence R > 0, for every 0 < R1 < R, the partial sums
∑n

m=1 am(x− a0)m converge uniformly
to a uniformly continuous function F (x) on [x0 − R1, x0 + R1]. For every x1 ∈ (x0 − R, x0 + R),
there is a power series

∑
m bm(x − x1)m with radius of convergence R′ ≥ R − |x0 − x1| > 0 that

agrees with f(x) on the common domain.

Infinite Differentiability of Analytic Functions. For a power series F (x) =
∑

m am(x− x0)m
with radius of convergence R > 0, the power series f(x) =

∑
m(m+ 1)am+1(x− x0)m has radius of

convergence R > 0 and
∫ x

x0
f(t)dt equals F (x)−F (0). Thus F is differentiable on (x0−R, x0 +R).

It follows that F is infinitely differentiable on (x0 − R, x0 + R). There exists 0 < R1 < R such
that (|F (n)(x)|/n!)n=0,1,2,... is simultaneously uniformly bounded on (x0−R1, x0 +R1). Conversely,
every infinitely differentiable function F (x) such that (|F (n)(x)|/n!)n is simulteneously, uniformly
bounded on (x0 − R, x0 + R) for some R > 0 is analytic on some interval (x0 − R1, x0 + R1) with
0 < R1 < R.

Taylor’s Theorem. For an n-times differentiable function f on (a, b), for x0 ∈ (a, b), for the
Taylor polynomial Tn(f, x0, x) =

∑n−1
m=0 f

(m)(x0)/m!(x − x0)m and with remainder Rn(f, x0, x) =
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f(x) − Tn(f, x0, x), for every x ∈ (a, b) there exists y between x0 and x (inclusive) such that
Rn(f, x0, x) equals f (n)(y)/n!(x− x0)n. Also,

Rn(f, x0, x) =

∫ x

x0

(x− t)n−1

(n− 1)!
f (n)(t)dt.

Thus there exists y between x0 and x (inclusive) such that Rn(f, x0, x) equals (x − y)n−1/(n −
1)!f (n)(y)(x− x0).
Please review all of the homework exercises. In addition the following theoretical problems are
good practice for the new material.

Practice Problems.

(1) For a metric space (X, dX), for a complete metric space (Y, dY ), for a subset A ⊂ X, and for a
uniformly continuous function f : (A, dX |A)→ (Y, dY ), prove that there exists a unique continuous

function f̃ : (A, dX |A) → (Y, dY ) whose restriction to A ⊂ A equals f . Moreover, prove that f̃ is
uniformly continuous.

(2) Inside (C([a, b]), dunif), let A be the subset of continuous piecewise linear functions, i.e., the set
of functions g such that there exists a partition P of [a, b] such that the restriction of g to every
P -interval is linear. Prove that A is dense, i.e., A equals the entire metric space. Hint. For a
continuous f in C([a, b]), for every ε > 0, since f is uniformly continuous, there exists δ > 0 such
that |f(x)− f(y)| < ε whenever |x− y| < δ. Let P be a partition with mesh < δ, and let fP be the
piecewise function that agrees with f on the endpoints of P -intervals. Prove that dunif(f, fP ) < 3ε.

(3) With A as above, define I : (A, dunif) → (R, dEucl) to be the integral of the piecewise linear
function g by the “usual” formula, i.e., if g is linear on the P -intervals of a partition P , then

I(g) =
∑

[x,y]∈P

(y − x)(f(y) + f(x))

2
.

Prove that this is compatible with refinement of partitions. Use this to prove that for f and g in
A, |I(g) − I(f)| ≤ dunif(f, g)(b − a). Conclude that I is uniformly continuous, and hence extends
to a uniformly continuous function

I : (C([a, b]), dunif)→ (R, dEucl).

Conclude that this extension agrees with the usual Darboux and Riemann integrals.

(4) Define f(x) on R by f(x) = e−1/x
2

for x 6= 0 and f(0) = 0. Prove that f is infinitely
differentiable and all derivatives of f vanish at x = 0. Conclude that for every R > 0, the collection
(|f (n)(x)|/n!)n=0,1,2,... is not uniformly bounded [−R,R].

(5) Let b > 1 be a real number. For every n ∈ N, define qn = n
√
b, and define Pn to be the partition

of [1, b] with xk = qkn. For r ≥ 0, for f(x) = xr, compute L(f, Pn) and U(f, Pn). Prove that
limn L(f, Pn) = limn U(f, Pn) = (br+1 − 1)/(r + 1).
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(6) Find an example of strictly increasing, differentiable function on [−1, 1] such that the derivative
is not always positive. Can you find such an example where the derivative is 0 for infinitely many
x ∈ (−1, 1)? Can you find such an example where the derivative is 0 for uncountably many x?

(7) Define `(x) on (0,∞) by `(x) =
∫ x

1
(1/t)dt. For 1 < a and 1 < b, use the change of variables

formula to prove that
∫ ab

a
(1/t)dt =

∫ b

1
(1/t)dt. Conclude that `(ab) equals `(a) + `(b). Similarly,

prove that `(1) = 0, `(1/a) = −l(a), and `(ar) = r`(a). For every a > 0 with a 6= 1, conclude
that loga(b) = `(b)/`(a). In particular, for the unique real number e > 0 with `(e) = 1, prove
that `(b) = loge(b) (assuming we have already made sense of exponentiation and logarithms for
arbitrary real numbers).

(8) Combine the previous problem with the derivative of the inverse function to conclude that
there exists a strictly increasing function E(x) such that E ′(x) = E(x), E(0) = 1, E(x + y) =
E(x) ·E(y), E(−x) = 1/E(x), and E(rx) = E(x)r. Finally, assuming we have already made sense
of exponentiation for real numbers, prove that E(x) equals ex with e as above.

(9) Repeate the previous two exercises with the function

T−1(x) :=

∫ x

0

1

1 + t2
dt

to make sense of the arctangent function T−1 and thus the tangent function T (x). Use the identities
S(x) = T (x/2)/(1+(T (x/2))2) and C(x) = (1−(T (x/2))2)/(1+(T (x/2))2) to make sense of the sine
and cosine functions. Which trigonometric identities can you prove directly from these definitions?

(10) Give an example of a bounded function f(x) that is not integrable, yet such that |f(x)| is
integrable.

(11) Let (fn)n∈N be a sequence of bounded, integrable functions on [a, b], and let f be a bounded,
integrable function on [a, b]. Assume that for every x ∈ [a, b], (fn(x))n∈N is a nondecreasing sequence

of real numbers that converges to f(x). Prove that (
∫ b

a
fn(x)dx)n∈N is a nondecreasing sequence of

real numbers that converges to
∫ b

a
f(x)dx.

(12) Find a sequence (fn)n∈N of bounded, integrable functions on [a, b] that converges pointwise

to a bounded, integrable function f on [a, b] yet such that (
∫ b

a
fn(x)dx)n∈N does not converge to∫ b

a
f(x)dx. (This is a challenging exercise, more challenging than would be asked on the final exam.)

(13) Let F be a bounded, continuous function on [a, b] such that for some partition P , the restriction
of F to every P -interval is differentiable on the interior of the interval and the derivative f is
uniformly continuous. Apply the usual integration by parts to each P -interval to prove that for
every continuously differentiable function u on [a, b],∫ b

a

f(x)u(x)dx+

∫ b

a

F (x)u′(x)dx = F (b)u(b)− F (a)u(a).

Thus, as far as integration by parts is concerned, it is as if F is everywhere differentiable with
derivative f , i.e., f is a “weak derivative” of F .
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(13) Let (F, f) be a pair as in the previous exercise, and let (G, g) be another such pair. Prove
that (cF, cf), (F +G, f + g) and (FG, fG+ Fg) are also such pairs.

(14) Let (Fn)n∈N be a sequence of continuous functions on [a, b] that converges uniformly to F .
Assume that every Fn is differentiable on (a, b) and the sequence (F ′n)n∈N is a sequence of continuous
functions that converges uniformly to a continuous function f . Prove that F is differentiable and
the derivative equals f .

(15) Find a uniformly convergent sequence (Fn)n∈N of continuous functions that are differentiable
and such that (F ′n)n∈N are continuous functions that converges pointwise to a function f , yet such
that the limit F is not everywhere differentiable. Is your (F, f) a pair as in (13)? (As with (12),
this is a challenging problem.)

(16) For every subset A of [a, b], define

µ(A) = inf{
∫ b

a

f(x)dx|f integrable , f ≥ 0, f |A ≥ 1}.

Prove that for every finite union of intervals, µ(A) is the sum of the lengths of the intervals. Prove
that µ([a, b] ∩Q) equals µ([a, b]).
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