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Abstract

We prove a product estimate that allows to estimate the quadratic first
order nonlinearity of the harmonic map flow in the L

p norm. Then the
parabolic analogue of Weyl’s lemma for the Lapace operator is established.
Both results are applied to prove regularity for the heat flow by parabolic
bootstrapping.

1 Introduction and main results

There are two main results. The first result is a product estimate. It allows
to estimate the quadratic first order nonlinearity of the harmonic map flow in
the Lp norm – instead of the Lp/2 norm in the traditional approach. Another
application in [We] is to obtain quadratic estimates which are good enough to
prove the refined implicit function theorem.

Throughout we identify S1 = R/Z and think of v ∈ C∞(R×S1) as a smooth
function v : R × R → R which satisfies v(s, t + 1) = v(s, t).

Theorem 1.1. Fix 2 ≤ p < ∞. Then there is a positive constant Cp such that

(∫ 0

−T

∫ 1

0

(|∂tv| |∂tw|)p
dtds

)1/p

≤ Cp

(

‖v‖p + ‖∂sv‖p + ‖∂t∂tv‖p

) (

‖∂tw‖p + ‖∂t∂tw‖p

)

for all compactly supported smooth maps v, w : (−T, 0] × S1 → R
k.

The second result is a parabolic analogue of the Weyl lemma in the theory
of elliptic partial differential equations. This seems to be folclore, known to
experts and hidden – if not nonexistent – in the literature. By definition the
closed lower half plane H

− is the set of all reals (s, t) such that s ≤ 0 and t ∈ R.
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Lemma 1.2 (Parabolic Weyl lemma). Let Ω ⊂ H
− be an open subset. If

u ∈ L1
loc(Ω) satisfies

∫

Ω

u (−∂sφ − ∂t∂tφ) = 0 (1)

for every φ ∈ C∞
0 (int Ω), then u ∈ C∞(Ω) and ∂su − ∂t∂tu = 0 on Ω.

Notation. For T > T ′ > 0 abbreviate

Z = ZT = (−T, 0] × S1, Z ′ = ZT ′ = (−T ′, 0] × S1. (2)

Next we define the parabolic Sobolev spaces Wk,p = Wk,p(Z) for integers k ≥ 0
and constants p ≥ 1. Set W0,p = Lp and denote by W1,p the set of all u ∈ Lp

which admit weak derivatives ∂su, ∂tu, and ∂t∂tu in Lp. For k ≥ 2 define

Wk,p = {u ∈ W1,p | ∂su, ∂tu, ∂t∂tu ∈ Wk−1,p}

where the derivatives are weak derivatives. The associated norms are given by

‖u‖Wk,p =





∫

Z

∑

2ν+µ≤2k

|∂ν
s ∂µ

t u|p




1/p

.

Note the difference to the standard Sobolev spaces W k,p with associated norms
‖u‖p

Wk,p =
∫

Z

∑

ν+µ≤k |∂ν
s ∂µ

t u|p.
The parabolic Weyl lemma is the key ingredient to prove part a) of the

following theorem. The proof of part b) is based on theorem 4.1 the parabolic
analogue of the Calderon-Zygmund inequality.

Theorem 1.3 (Interior regularity). Fix constants 1 < q < ∞ and T > 0 and
an integer k ≥ 0. Then the following is true.

a) If u ∈ L1
loc(Z) and f ∈ Wk,q

loc (Z) satisfy

∫

Z

u (−∂sφ − ∂t∂tφ) =

∫

Z

fφ (3)

for every φ ∈ C∞
0 ((−T, 0) × S1), then u ∈ Wk+1,q

loc (Z).

b) For every 0 < T ′ < T there is a constant c = c(k, q, T − T ′) such that

‖u‖Wk+1,q(Z′) ≤ c
(

‖∂su − ∂t∂tu‖Wk,q(Z) + ‖u‖Lq(Z)

)

for every u ∈ C∞(Z).

The subsequent regularity result is proved by parabolic bootstrapping. Here
the main tools are Theorem 1.3 and the product estimate Theorem 1.1.
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Theorem 1.4 (Regularity). Fix constants p > 2, µ0 > 1, and T > 0. Fix
a closed smooth submanifold M →֒ R

N and a smooth family of vector-valued
symmetric bilinear forms Γ : M → R

N×N×N . Assume that F : Z → R
N is

a map of class Lp and u : Z → R
N is a W1,p map taking values in M with

‖u‖W1,p ≤ µ0 such that the perturbed heat equation

∂su − ∂t∂tu = Γ(u) (∂tu, ∂tu) + F (4)

is satisfied almost everywhere. Then the following is true. For every integer
k ≥ 1 such that F ∈ Wk,p(Z) and every T ′ ∈ (0, T ) there is a constant ck

depending on k, p, µ0, T − T ′, ‖Γ‖C2k+2 , and ‖F‖Wk,p(Z) such that

‖u‖Wk+1,p(Z′) ≤ ck.

The theorem shows that if F is smooth, then u is smooth on a slightly smaller
domain. This result is needed in [We] for F (s, t) = (gradV(u(s, ·))(t) where V
is a smooth function on the free loop space of M satisfying certain axioms.

Acknowledgements. For valuable comments and discussions the author would
like to thank K. Ecker, T. Ilmanen, K. Mohnke, J. Naumann, D. Salamon, and
M. Struwe. Partial financial support from SFB 647 is gratefully acknowledged.

2 The product estimate

We prove a version of theorem 1.1 suitable for global analysis.

Proposition 2.1. Let N be a Riemannian manifold with Levi-Civita connection
∇ and Riemannian curvature tensor R. Fix constants 2 ≤ p < ∞ and c0 > 0.
Then there is a constant C = C(p, c0, ‖R‖∞) > 0 such that the following holds.
If u : (a, b] × S1 → N is a smooth map such that ‖∂su‖∞ + ‖∂tu‖∞ ≤ c0 then

(

∫ b

a

∫ 1

0

(|∇tξ| |∇tX|)p
dtds

)1/p

≤ C ‖ξ‖W1,p

(

‖∇tX‖p + ‖∇t∇tX‖p

)

for all smooth compactly supported vector fields ξ and X along u.

Remark 2.2. Proposition 2.1 continues to hold for smooth maps u that are
defined on the whole cylinder R × S1. In this case the (compact) supports of ξ
and X are contained in an interval of the form (a, b].

Lemma 2.3 ([SW, Lemma D.4]). Let x ∈ C∞(S1,M) and p > 1. Then

‖∇tξ‖p ≤ κp

(

δ−1 ‖ξ‖p + δ ‖∇t∇tξ‖p

)

for δ > 0 and smooth vector fields ξ along x. Here κp equals p/(p− 1) for p ≤ 2
and it equals p for p ≥ 2.
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Proof of proposition 2.1. The proof has three steps. Step 2 requires p ≥ 2.
Abbreviate I = (a, b] and for q, r ∈ [1,∞] consider the norm

‖ξ‖q;r := ‖ξ‖Lq(I,Lr(S1)) .

Step 1. Fix reals α ≥ 1 and q, r, q′, r′ ∈ [α,∞] such that 1
q + 1

r = 1
α and

1
q′

+ 1
r′

= 1
α . Then

‖fg‖α ≤ ‖f‖q′;q ‖g‖r′;r

for all functions f, g ∈ C∞(I × S1).

Let fs(t) := f(s, t). Apply Hölder’s inequality twice to obtain

‖fg‖α
Lα(I×S1) =

∫ b

a

‖fsgs‖α
Lα(S1) ds

≤
∫ b

a

(

‖fs‖Lq(S1) ‖gs‖Lr(S1)

)α

ds

= ‖uv‖α
Lα(I)

≤
(

‖u‖Lq′ (I) ‖v‖Lr′ (I)

)α

where u(s) := ‖fs‖Lq(S1) and v(s) := ‖gs‖Lr(S1). This proves Step 1.

Step 2. Given p, c0, and u as in the hypothesis of the Lemma. Then there is a
constant c = c(p, c0) > 0 such that

‖∇tξ‖∞;p ≤ c ‖ξ‖W1,p

for every smooth compactly supported vector field ξ along u : I × S1 → N .

The proof uses the generalized Young inequality: Given reals a, b, c ≥ 0 and
1 < α, β, γ < ∞ such that 1

α + 1
β + 1

γ = 1, then

abc ≤ aα

α
+

bβ

β
+

cγ

γ
. (5)

Abbreviate ξ(s, t) by ξ, then integration by parts shows that

d

ds

∫ 1

0

|∇tξ(s, t)|p dt

= p

∫ 1

0

|∇tξ|p−2 〈∇tξ,∇t∇sξ + [∇s,∇t]ξ〉 dt

= −p

∫ 1

0

(

d

dt
|∇tξ|p−2

)

〈∇tξ,∇sξ〉 dt − p

∫ 1

0

|∇tξ|p−2 〈∇t∇tξ,∇sξ〉 dt

+ p

∫ 1

0

|∇tξ|p−2 〈∇tξ,R(∂su, ∂tu)ξ〉 dt

= −p(p − 2)

∫ 1

0

|∇tξ|p−4 〈∇tξ,∇t∇tξ〉〈∇tξ,∇sξ〉 dt

− p

∫ 1

0

|∇tξ|p−2
(〈∇t∇tξ,∇sξ〉 − 〈∇tξ,R(∂su, ∂tu)ξ〉) dt.
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Take the absolute value of the right hand side, apply the generalized Young
inequality (5) in the case1 p > 2 with α = p/(p − 2), β = p, γ = p, and the
standard Young inequality with α = p/(p − 1), β = p to obtain the inequality

d

ds

∫ 1

0

|∇tξ(s, t)|p dt

≤ p(p − 1)

∫ 1

0

|∇tξ|p−2 |∇t∇tξ| · |∇sξ| dt + pc2
0 ‖R‖∞

∫ 1

0

|∇tξ|p−1 |ξ| dt

≤ p(p − 1)

∫ 1

0

(

p − 2

p
|∇tξ|p +

1

p
|∇t∇tξ|p +

1

p
|∇sξ|p

)

dt

+ pc2
0 ‖R‖∞

∫ 1

0

(

p − 1

p
|∇tξ|p +

1

p
|ξ|p

)

dt

≤ C1

(

‖ξs‖p
Lp(S1) + ‖∇sξs‖p

Lp(S1) + ‖∇t∇tξs‖p
Lp(S1)

)

.

Here C1 > 0 is a constant depending only on p, c0, and ‖R‖∞ and ξs(t) := ξ(s, t).
Note that we used lemma 2.3 to estimate the terms involving ∇tξs. Now fix
σ ∈ (a, b] and integrate this inequality over s ∈ (a, σ] to obtain the estimate

‖∇tξσ‖p
Lp(S1) ≤ c ‖ξ‖p

W1,p((a,b]×S1) .

Here we used compactness of the support of ξ and monotonicity of the integral.
Since the right hand side is independent of σ, the proof of Step 2 is complete.

Step 3. We prove the lemma.

Define f(s, t) := |∇tξ(s, t)| and g(s, t) := |∇tX(s, t)|. By Step 1 with α, q, and
r′ equal to p and with r = q′ = ∞ we have

∫ b

a

∫ 1

0

(|∇tξ(s, t)| |∇tX(s, t)|)p
dtds = ‖fg‖p

p ≤ ‖∇tξ‖p
∞;p ‖∇tX‖p

p;∞ .

Now apply Step 2 to the first factor. For the second one we exploit the fact
that, since the slices s × S1 of our domain are compact, there is the Sobolev
embedding W 1,p(S1) →֒ L∞(S1) with constant µ = µ(p) > 0. It follows that

∫ b

a

‖∇tXs‖p
L∞(S1) ds ≤

∫ b

a

µp ‖∇tXs‖p
W 1,p(S1) ds

= µp

∫ b

a

‖∇tXs‖p
Lp(S1) + ‖∇t∇tXs‖p

Lp(S1) ds.

This concludes the proof of proposition 2.1.

Proof of theorem 1.1. Proposition 2.1 with N = R
k, u ≡ const, ξ = v, and

X = w.

1The case p = 2 is taken care of by the standard Young inequality.
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3 The parabolic Weyl lemma

The structure of proof of lemma 1.2 is the following. First we approximate
u via convolution by a family of smooth solutions uε which converge to u in
L1. The point is that we convolute over individual time slices s × R for almost
all times s using mollifiers defined on R. (It is also possible to carry over the
proof of the original Weyl lemma for the Laplacian using mollifiers supported
in R

2. This leads to restrictions and is explained in a separate section below.)
On the other hand, given any integer k ≥ 0, standard local Ck estimates for
smooth solutions of the linear homogeneous heat equation in terms of the L1

norm (see [Ev, Sec. 2.3 Thm. 9]) provide uniform W k,1 bounds on compact sets
for the family uε of solutions. Here Young’s convolution inequality provides the
crucial estimate ‖uε‖1 ≤ ‖u‖1. Next by Arzela-Ascoli the family uε converges
in Ck−2

loc (Ω) to a map v. Hence u = v by uniqueness of the limit. As this is true
for every k and, moreover, every point is contained in a compact subset of Ω it
follows that u ∈ C∞(Ω). Integration by parts then shows that on the interior
of Ω it is true that

∂su − ∂t∂tu = 0. (6)

Since u is C∞ smooth on Ω this identity continues to hold on Ω.

Proof of lemma 1.2. Every point of Ω is contained in (some translation of) a
parabolic set (−r2, 0] × (−r, r) whose closure is contained in Ω for some r > 0
sufficiently small. Hence we may assume without loss of generality that

Ω = (−r2, 0] × (−r, r), u ∈ L1(Ω).

We prove the lemma in nine steps.
1) We introduce appropriate mollifiers: Fix a smooth function ρ : R → [0, 1]

which is compactly supported in the interval (−1, 1) and satisfies
∫

R
ρ = 1. For

ε > 0 consider the mollifier

ρε(t) :=
1

ε
ρ

(

t

ε

)

.

It is compactly supported in the interval (−ε, ε) and satisfies
∫

R
ρε = 1.

2) For almost every s ∈ R we define the family {ρε ∗ us}ε>0 ⊂ C∞
0 (R) and

calculate the L1 norm of its derivatives: Extend u by zero on R
2 \Ω and denote

the extension again by u. Then u ∈ L1(R2) and

us := u(s, ·) ∈ L1(R)

for almost every s ∈ R. For such s and ε > 0 define

(ρε ∗ us) (t) =

∫

R

ρε(t − τ)us(τ) dτ.

In this case ρε ∗ us ∈ C∞
0 (R),

‖ρε ∗ us − us‖L1(R) → 0 as ε → 0,
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and ρε∗us converges to us, as ε → 0, pointwise almost everywhere on R; see [Jo,
App. A]. Moreover, by Young’s convolution inequality we obtain that

‖ρε ∗ us‖L1(R) ≤ ‖ρε‖L1(R) ‖us‖L1(R) = ‖us‖L1(R)

and, more generally, that
∥

∥

∥

∥

dk

dtk
(ρε ∗ us)

∥

∥

∥

∥

L1(R)

=
∥

∥

∥

(

ρ(k)
ε ∗ us

)∥

∥

∥

L1(R)
≤

∥

∥

∥ρ(k)
ε

∥

∥

∥

L1(R)
‖us‖L1(R)

=

∥

∥ρ(k)
∥

∥

L1(R)

εk
‖us‖L1(R)

for every positive integer k. Here ρ(k) denotes the k-th derivative of ρ.
3) We prove that for ε > 0 the function defined by

uε : R
2 → R, (s, t) 7→ (ρε ∗ us)(t)

is integrable and uε converges to u in L1(R2) as ε → 0. Indeed by step 2)

‖uε‖L1(R2) =

∫

R

‖ρε ∗ us‖L1(R) ds ≤
∫

R

‖us‖L1(R) ds = ‖u‖L1(Ω) .

Now define the family of functions {fε : R → R}ε>0 for almost every s by

fε(s) := ‖ρε ∗ us − us‖L1(R) .

By the last estimate these functions are integrable

‖fε‖L1(R) = ‖uε − u‖L1(R2) ≤ 2 ‖u‖L1(Ω) .

Moreover, they are dominated almost everywhere by an integrable function g.
Namely, by step 2

|fε(s)| ≤ 2 ‖us‖L1(R) =: g(s), ‖g‖L1(R) = 2 ‖u‖L2(Ω) .

Step 2) again shows that fε → 0 as ε → 0 for almost every s. Hence by the
Dominated Convergence Theorem it follows that

lim
ε→0

‖uε − u‖L1(R2) = lim
ε→0

∫

R

‖ρε ∗ us − us‖L1(R) ds

=

∫

R

(

lim
ε→0

fε

)

(s) ds

= 0.

4) The function uε : R
2 → R defined in 3) admits integrable weak t-

derivatives of all orders: Fix ε > 0 and a positive integer k, then
∫

R2

uε ∂k
t ψ dt ds =

∫

R2

(ρε ∗ us) ∂k
t ψ dt ds

= (−1)k

∫

R2

(ρ(k)
ε ∗ us)ψ dt ds
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for every ψ ∈ C∞
0 (R2). Here ρ

(k)
ε denotes the k-th derivative. Moreover, the first

step is by definition of uε and the second step by integration by parts followed
by commuting differentiation and convolution. Next observe that the function

ρ
(k)
ε ∗ us is integrable. Indeed step 2) shows that

∫

R

∥

∥ρ(k)
ε ∗ us

∥

∥

L1(R)
ds ≤ ck

εk
‖u‖L1(Ω)

with constant ck = ck(ρ) = ‖∂k
t ρ‖L1(R). Hence the weak t derivatives of the

function uε : R
2 → R are integrable and given by

∂k
t uε(s, t) = (ρ(k)

ε ∗ us)(t).

5) Fix ε > 0 and consider the subset

Ωε = (−r2, 0] × (−r + ε, r − ε) ⊂ Ω.

We prove by induction that for every integer k ≥ 1 the weak derivative ∂k
s uε

exists in L1(Ωε) and equals ∂2k
t uε almost everywhere on Ωε. Here assumption (1)

enters.
Case k = 1. Straightforward calculation shows that

∫

Ω

ψ ∂t∂tuε =

∫

R2

ψ(s, t)

(∫

R

∂t∂tρε(t − τ)us(τ) dτ

)

ds dt

=

∫

R3

ψ(s, t)u(s, τ) ∂τ∂τρε(t − τ) dτ ds dt

=

∫

R

(∫

R2

u(s, τ) ∂τ∂τ

(

ρε(t − τ)ψ(s, t)
)

dτ ds

)

dt

= −
∫

R

(∫

R2

u(s, τ) ∂s

(

ρε(t − τ)ψ(s, t)
)

dτ ds

)

dt

= −
∫

R2

(∫

R

ρε(t − τ)us(τ) dτ

)

∂sψ(s, t) ds dt

= −
∫

Ω

uε∂sψ

for every test function ψ ∈ C∞
0 (int Ωε). This identity means that on int Ωε,

hence on Ωε, the weak derivative ∂suε exists and equals ∂t∂tuε which is inte-
grable by 4). To prove the identity note that the first and the final step are
by definition of uε in 3). To obtain the second step we changed the order of
integration and applied the chain rule. Steps three and five are obvious. To
obtain step four we used assumption (1) and the fact that

φt(s, τ) := ρε(t − τ)ψ(s, t)

lies in C∞
0 (int Ω) for every t ∈ R. To prove this assume that φt(s, τ) 6= 0. This

means firstly that ρε(t − τ) 6= 0, hence τ ∈ [−ε + t, ε + t], and secondly that
ψ(s, t) 6= 0. Now fix a sufficiently small constant δ = δ(ε) > 0 such that

suppψ ⊂ [−r2 + δ,−δ] × [−r + ε + δ, r − ε − δ] ⊂ int Ωε.
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It follows that

(s, τ) ∈ [−r2 + δ,−δ] × [−ε + (−r + ε + δ), ε + (r − ε − δ)]

= [−r2 + δ,−δ] × [−r + δ, r − δ] ⊂ int Ω.

Induction step k ⇒ k + 1. The calculation follows the same steps as above. We
only indicate the minor differences. Assume that case k is true, then

∫

Ω

ψ ∂2k+2
t uε = (−1)k+1

∫

R

(∫

R2

u(s, τ) ∂k+1
s

(

ρε(t − τ)ψ(s, t)
)

dτ ds

)

dt

= (−1)k+1

∫

R2

uε(s, t) ∂k+1
s ψ(s, t) ds dt

= −
∫

Ω

(

∂k
s uε

)

∂sψ

for every test function ψ ∈ C∞
0 (int Ωε). Note that to obtain the first step we

applied k+1 times assumption (1) using that φt and therefore also its derivatives
are in C∞

0 (int Ω). In the final step we used the induction hypothesis to integrate
by parts k times the s variable.

6) The function uε is smooth on the closure of Ωε: Fix ε > 0 and positive
integers m and ℓ. Then ∂m

t ∂ℓ
suε equals ∂m+2ℓ

t uε almost everywhere on Ωε by 5)
and the latter function is integrable by 4). This proves that

uε ∈
∞
⋂

k=1

W k,1(Ωε) = C∞(Ωε).

Moreover, by 5) with k = 1, each uε solves the linear heat equation (6) on Ωε.
7) From now on fix a compact subset Q ⊂ Ω. Then for every positive integer

k the family uε is uniformly bounded in the Banach space Ck(Q) by a constant
µk = µk(Q): To see this consider the compact parabolic set of radius r, height
r2, and top center point (s, t) ∈ Q given by

Pr(s, t) := [s − r2, s] × [t − r, t + r].

By compactness of Q there is a constant ε0 = ε0(Q) > 0 such that Q ⊂ Ωε0

and, moreover, there is a constant ρ = ρ(ε0, Q) > 0 such that

P2ρ(s, t) ⊂ Ωε0

for every point (s, t) ∈ Q. By step 6) each function uε with ε ∈ (0, ε0) is a
smooth solution of the linear homogeneous heat equation (6) on the domain Ωε

and therefore on Ωε0
. Now given a point (σ, τ) ∈ Q and a pair of nonnegative

integers m, ℓ there is by [Ev, Sec. 2.3 Thm. 9] a constant cm,ℓ(σ, τ) such that

max
P ρ

2
(σ,τ)

∣

∣∂m
t ∂ℓ

sv
∣

∣ ≤ cm,ℓ(σ, τ)

ρm+2ℓ+3
‖v‖L1(Pρ(σ,τ))
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for all smooth solutions v of the heat equation (6) in P2ρ(σ, τ). By compactness
of Q there are finitely many sets Pρ/2(σν , τν) covering Q. Then the correspond-
ing estimates for v = uε and m, ℓ = 0, 1, . . . , k imply that

‖uε‖Ck(Q) ≤ α ‖uε‖L1(R2) ≤ α ‖u‖L1(Ω)

for every ε ∈ (0, ε0) and where the constant α > 0 depends only on the compact
set Q (since ρ eventually depends on Q only). Here the second inequality is
proved in step 3).

8) We prove that u ∈ C∞(Q). In the setting of step 7) the Arzela-Ascoli
theorem for each k together with choosing a diagonal subsequence yields exis-
tence of a sequence εk → 0, as k → ∞, and a smooth function û defined on Q
such that uεk

→ û in C∞(Q), as k → ∞. On the other hand, the sequence uεk

converges to u in L1(Q) by step 3). Hence u = û by uniqueness of limits.
9) We prove lemma 1.2. Since every point of Ω is contained in a compact

subset Q and u ∈ C∞(Q) by step 8), the function u is smooth on Ω. To prove
the identity ∂su − ∂t∂tu = 0 on Ω assume by contradiction that this identity is
violated at a point (s∗, t∗) of Ω. There are two cases.
If (s∗, t∗) is in the interior of Ω, then by smoothness of u there is a sufficiently
small open neighborhood U of (s∗, t∗) in Ω and a function φ ∈ C∞

0 (U, [0, 1])
with φ(s∗, t∗) = 1 such that assumption (1) fails. (For instance, if c > 0 is the
value of the function ∂su − ∂t∂tu at the point (s∗, t∗), let U be the subset of Ω
on which ∂su − ∂t∂tu > c/2.)
If (s∗, t∗) is in the boundary 0× (−r, r) of Ω, the former argument works for an
interior point of Ω sufficiently close to (s∗, t∗). Existence of such an interior point
uses again smoothness of u on Ω. This proves the parabolic Weyl lemma.

The heat ball approach

A natural first try to prove lemma 1.2 is to carry over the proof of the original
Weyl lemma for the Laplacian; see e.g. [GT, Jo]). This works, but with two
restrictions. Firstly, the set Ω should be open in R

2 and, secondly, the function
u should be locally Lq integrable over Ω for some q > 3.

The original proof is based on the fact that harmonic functions are charac-
terized by their mean value property with respect to balls or spheres. There
is a similar statement for solutions to the heat equation. However, in the cor-
responding parabolic mean value equalities a weight factor different from one
appears and this eventually leads to the restriction q > 3. A further difference
is that balls and spheres over which the means are taken are replaced by heat
balls and their boundaries, respectively. The parabolic mean value property
with respect to boundaries is due to Fulks [Fu] and with respect to heat balls it
is due to Watson [Wa]. Here it is required that Ω is open in R

2.
Recall that the fundamental solution to the heat equation is given by

Φ(s, t) :=











1√
4πs

e
− t2

4s , s > 0, t ∈ R,

0 , s < 0, t ∈ R.

(7)
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For r > 0 we denote by Er = Er(0, 0) the area enclosed by the level set which
is determined by the identity

Φ(−s,−t) =
1√
4πr

.

This level set is parametrized by

t(s) = ±
√

2s ln
−s

r2
, s ∈ (−r2, 0).

For general base point (s, t) ∈ R
2 the set Er(s, t) is defined by translation.

These sets are called heat balls of “radius” r. Following Watson [Wa] we call a
function u defined on an open subset Ω ⊂ R

2 a temperature if ∂t∂tu and ∂su
are continuous functions on Ω and the heat equation ∂su−∂t∂tu = 0 is satisfied
pointwise on Ω. (Note that temperatures are automatically C∞ smooth; see
e.g. [Ev, Sec. 2.3 Thm. 8].)

Theorem 3.1 ([Wa] § 10 Cor. 1). Let u be a continuous function on an open
subset Ω ⊂ R

2. Then the following are equivalent.

(a) The function u is a temperature.

(b) At every point (s, t) ∈ Ω the weighted mean value equality for u holds

u(s, t) =
1

8
√

π · r

∫

Er(s,t)

(t − τ)2

(s − σ)2
u(σ, τ) dτ dσ

whenever Er(s, t) ⊂ Ω.

We sketch the proof of the parabolic Weyl lemma (subject to the two restric-
tions mentioned above) along the lines of the original proof for the Laplacian.
Since smoothness is a local property we may assume without loss of generality
that Ω ⊂ R

2 is bounded. Moreover, we extend u by zero to R
2 \ Ω without

change of notation. Hence u ∈ Lq(Ω) for some q > 3. The main idea is to
mollify the given weak solution u to obtain a family {ur} ⊂ C∞

0 (R2) of smooth
functions converging in L1, hence almost everywhere, to u. Here we use a family
of mollifiers {ρr} which are compactly supported in the heat ball Er ⊂ R

2 and
set ur = ρr ∗ u where ∗ denotes convolution. Assumption (1) is then used to
show that each function ur is a temperature on a slightly smaller set Ωr ⊂ Ω
which by definition consists of all points (s, t) ∈ Ω such that the closure of
the heat ball Er(s, t) is contained in Ω. Hence each ur : Ωr → R satisfies the
weighted mean value equality of theorem 3.1. On the other hand, the family
{ur} is uniformly bounded – here the restriction q > 3 arises – and equicontin-
uous. Hence by Arzela-Ascoli it converges in C0 to a continuous function v as
r → 0. Since the functions ur satisfy the mean value equality, so does their C0

limit v, and therefore v is a temperature by Watson’s result theorem 3.1. But
v = u, since {ur} converges to u almost everywhere.
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As it is essentially the only point where the proof of the original Weyl lemma
for the Laplacian differs we provide the details of uniform boundedness of the
family {ur} on ΩR. More precisely, fix a constant R > 0 and restrict r to the
interval (0, R/2). Then

ΩR ⊂ ΩR/2 ⊂ Ωr ⊂ Ω, ER/2(s, t) ⊂ ΩR/2 ∀(s, t) ∈ ΩR.

Hence by theorem 3.1 each temperature ur satisfies the mean value equality on
all heat balls with base point in ΩR and radius less or equal to R/2. To see that
the family {ur}r∈(0,R/2) is uniformly bounded on ΩR fix a point (s0, t0) ∈ ΩR.
Then by the mean value equality for the temperature ur over the heat ball
ER/2(s0, t0) it follows that

|ur(s0, t0)| ≤
1

4
√

πR

∫

ER/2(s0,t0)

(t0 − τ)2

(s0 − σ)2
|ur(σ, τ)| dτdσ

=
1

4
√

πR

∫

ER/2(0,0)

t2

s2
|ur(s + s0, t + t0)| dtds

≤ 1

4
√

πR

∥

∥t2s−2
∥

∥

Lp(ER/2)
‖ur‖Lq(R2)

≤ cq,R ‖u‖Lq(Ω) .

To obtain step two we introduced new variables t = τ − t0 and s = σ − s0. In
step three we use Hölder’s inequality with 1/p+1/q = 1 and p, q > 1. Since the
weight function t2s−2 is not bounded on ER/2 we can’t get away with pulling
out the sup norm as in the proof of the original Weyl lemma for the Laplacian
where the weight is one. In the last step we used that

‖ur‖Lq(R2) = ‖ρr ∗ u‖Lq(R2) ≤ ‖ρr‖L1(R2) ‖u‖Lq(R2) = ‖u‖Lq(Ω)

by Young’s convolution inequality. Moreover, the constant cq,R is given by
‖t2s−2‖Lp(ER/2)/4

√
πR with p = q

q−1 . To see that it is finite observe that

∥

∥t2s−2
∥

∥

p

Lp(E1)
=

2p+ 3
2

2p + 1

∫ 0

−1

(s ln(−s))
p+ 1

2

(−s)2p
ds

=
2p+ 3

2

2p + 1

∫ ∞

0

xp+ 1
2 e−x( 3

2
−p)dx

=
2p+ 3

2

2p + 1

Γ(p + 3
2 )

(

3
2 − p

)p+ 3
2

.

Here we used the change of variables x = − log(−s) in the second step, the last
step is valid whenever − 3

2 < p < 3
2 , and Γ denotes the gamma function. The

earlier use of Hölder’s inequality further restricts p to the interval (1, 3
2 ) and

this is equivalent to q = p
p−1 > 3. It remains to replace the unit heat ball E1

by ER/2. This leads to a further constant which depends only on R and p.
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4 Local regularity

The parabolic analogue of the Calderon-Zygmund inequality is the following
fundamental Lp estimate. It is used in the proof of theorem 4.2 on local regu-
larity and it implies the interior estimates of theorem 4.4 by induction.

Theorem 4.1 (Fundamental Lp estimate). For every p > 1, there is a constant
c = c(p) > 0 such that

‖∂sv‖p + ‖∂t∂tv‖p ≤ c‖∂sv − ∂t∂tv‖p

for every v ∈ C∞
0 (R2). The same statement is even true for the domain H

−.

Proof. A proof for R
2 is given in [SW, Theorem C.2] by the Marcinkiewicz-

Mihlin multiplier method. In the case of the lower half plane H
− choose a

compactly supported smooth function v on H
− and constants T > 0 and a < b

such that suppu ⊂ (−T/2, 0] × (a, b). Then [Li, Proposition 7.11] with n = 1,
A11 = 1, λ = Λ = 1, the cube K0 = (−T/2, 0] × (a, b) in (−T, 0) × R, and the
function f = ∂su − ∂t∂tu proves the statement. Note that the case H

− implies
the case R

2 by translation.

Theorem 4.2 (Local regularity). Fix a constant 1 < q < ∞, an integer k ≥ 0,
and an open subset Ω ⊂ H

−. Then the following is true.

a) If u ∈ L1
loc(Ω) and f ∈ Wk,q

loc (Ω) satisfy

∫

Ω

u (−∂sφ − ∂t∂tφ) =

∫

Ω

fφ (8)

for every φ ∈ C∞
0 (int Ω), then u ∈ Wk+1,q

loc (Ω).

b) If u ∈ L1
loc(Ω) and f, h ∈ Wk,q

loc (Ω) satisfy

∫

Ω

u (−∂sφ − ∂t∂tφ) =

∫

Ω

fφ −
∫

Ω

h ∂tφ (9)

for every φ ∈ C∞
0 (int Ω), then u and ∂tu are in Wk,q

loc (Ω).

Here int Ω denotes the interior of Ω. While part b) is not needed in this
text it is used in [We] to prove regularity of the solutions of the linearized heat
equation. For convenience of the reader we recall Poincaré’s inequality and its
proof. It is used to prove Theorem 4.2 and Theorem 4.4.

Lemma 4.3 (Poincaré’s inequality). Fix constants q ≥ 1 and r > 0. Then

‖ϕ‖q ≤ 2r ‖∂tϕ‖q

for every ϕ ∈ C∞
0 ((−r, r)).
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Proof. For such ϕ it holds that ϕ(−r) = 0 and hence ϕ(t) =
∫ t

−r
∂tϕ(τ) dτ by

the fundamental theorem of calculus. This implies that

|ϕ(t)| ≤
∫ t

−r

|∂tϕ(τ)| dτ ≤
∫ r

−r

1 · |∂tϕ(τ)| dτ ≤ (2r)1/p ‖∂tϕ‖q

where the last step uses Hölder’s inequality with 1/q + 1/p = 1. Therefore

|ϕ(t)|q ≤ (2r)q−1 ‖∂tϕ‖q
q

and integration over t ∈ (−r, r) concludes the proof of the lemma.

Proof of Theorem 4.2 . Since any given compact subset Q of Ω can be covered
by finitely many parabolic rectangles whose closure is contained in Ω, we may
assume without loss of generality that Ω = (−r2, 0] × (−r, r) for r > 0.
ad a) The proof consists of four steps.

I) Fix two open subsets Ω′ and U of Ω = (−r2, 0] × (−r, r) such that the
closure of Ω′ is contained in U and the closure of U is contained in Ω. Fix a
smooth compactly supported cutoff function β : Ω → [0, 1] such that β = 1
on U . Then βf is compactly supported and Wk,q integrable over Ω. Now
approximate βf in Wk,q(Ω) through a sequence (fi) ⊂ C∞

0 (Ω), i.e.

‖fi − βf‖Wk,q(Ω) −→ 0, as i → ∞.

II) Each smooth problem

(∂s − ∂t∂t)ui = fi (10)

with fi ∈ C∞
0 (Ω) admits a unique solution ui ∈ C∞

0 (Ω); see e.g. [Li, Thm. 5.6].
We prove below that the sequence of solutions ui is a Cauchy sequence in
Wk+1,q(Ω). Therefore it admits a unique limit û ∈ Wk+1,q(Ω). Now the limit û
solves the identity (∂s − ∂t∂t)û = βf almost everywhere on Ω as can be seen as
follows: The sequence ∂sui −∂t∂tui converges to ∂sû−∂t∂tû in Lq, since ui is a
Cauchy sequence in Wk+1,q(Ω), and the sequence fi converges to βf by step I).
Uniqueness of the limit then proves equality in Lq(Ω).
It remains to prove that the sequence ui is Cauchy. All norms are with respect
to the domain Ω. Note that

‖ui − uj‖q ≤ 2r ‖∂t(ui − uj)‖q ≤ (2r)2 ‖∂t∂t(ui − uj)‖q

Here the first inequality follows by integrating Poincaré’s inequality (lemma 4.3)
for ϕ(t) = ui(s, t) − uj(s, t) over s ∈ (−r2, 0). The second inequality follows
similarly. Now use equation (10) to obtain that

‖ui − uj‖q ≤ (2r)2
(

‖∂s(ui − uj)‖q + ‖fi − fj‖q

)

.

More generally, there is a constant C = C(k, r) such that

‖ui − uj‖Wk+1,q ≤ C
(

∥

∥∂k+1
s (ui − uj)

∥

∥

q
+ ‖fi − fj‖Wk,q

)

.
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for all i and j. This follows by inspecting the left hand side term by term replac-
ing any two t-derivatives by one s-derivative and the error term fi according to
equation (10). If an odd number of t-derivatives appears then use lemma 4.3
to obtain an even number. Now the fundamental Lp estimate theorem 4.1 with
constant c = c(q) and function v = ∂k

s (ui − uj) asserts that

‖∂k+1
s (ui − uj)‖q ≤ c‖(∂s − ∂t∂t)∂

k
s (ui − uj)‖q

= c‖∂k
s (fi − fj)‖q

≤ c‖fi − fj‖Wk,q .

Here we used again equation (10). Next use the approximation of βf in step I)
to obtain that the sequence ui in Wk,q(Ω) is Cauchy, namely

‖fi − fj‖Wk,q ≤ ‖fi − βf‖Wk,q + ‖βf − fj‖Wk,q −→ 0, as i, j → ∞.

III) The restriction of û − u to the open subset U ⊂ Ω is a weak solution of
the homogeneous problem. More precisely, it is true that

∫

U

(û − u)(−∂sφ − ∂t∂tφ) =

∫

U

(∂sû − ∂t∂tû)φ −
∫

U

u(−∂sφ − ∂t∂tφ)

=

∫

U

(∂sû − ∂t∂tû − βf)φ

= 0

for every test function φ ∈ C∞
0 (int U). Here the first step is by integration by

parts using step II) and the second step is by assumption (8) and the fact that
f = βf on U . The last step uses the identity in step II).

IV) The difference û−u is in L1(U) by step II) and assumption on u. Hence
by the parabolic Weyl lemma 1.2 the function F := û − u is smooth on U .
Together with the fact that û ∈ Wk+1,q(Ω) proved in step II) this shows that
u = û − F is of class Wk+1,q on each bounded open subset of U , in particular
on Ω′. This proves part a) of Theorem 4.2.

ad b) The proof takes four further steps.
V) Let the sets Ω′ and U , the cutoff function β, and the sequence (fi) ⊂

C∞
0 (Ω) be as in step I). Approximate the compactly supported function βh in

Wk,q(Ω) through a sequence (hi) ⊂ C∞
0 (Ω). Now as in steps II) and III) each

smooth problem
(∂s − ∂t∂t)vi = hi (11)

admits a unique solution vi ∈ C∞
0 (Ω) and the sequence (vi) is Cauchy in

Wk+1,q(Ω) with unique limit v̂ which solves the identity (∂s − ∂t∂t)v̂ = βh
almost everywhere on Ω.

VI) Observe that the sequences

wi := ui + ∂tvi, ∂twi = ∂tui + ∂t∂tvi,

converge in Wk,q(Ω) to the limits

ŵ = û + ∂tv̂, ∂tŵ = ∂tû + ∂t∂tv̂,
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respectively. Moreover, each wi satisfies the identity (∂s − ∂t∂t)wi = fi + ∂thi

on Ω. Integration by parts then shows that
∫

Ω

wi (−∂s − ∂t∂t) φ =

∫

Ω

fiφ −
∫

Ω

hi∂tφ

for every φ ∈ C∞
0 (int Ω). Taking the limit i → ∞ we obtain that

∫

Ω

ŵ (−∂s − ∂t∂t) φ =

∫

Ω

βfφ −
∫

Ω

βh ∂tφ (12)

for every φ ∈ C∞
0 (int Ω).

VII) The restriction of ŵ − u to the open subset U of Ω is a weak solution
of the homogeneous problem, meaning that

∫

U

(ŵ − u)(−∂sφ − ∂t∂tφ) =

∫

U

ŵ(−∂s − ∂t∂t)φ −
∫

U

u(−∂sφ − ∂t∂tφ)

=

∫

U

(βfφ − βh ∂tφ) −
∫

U

(fφ − h ∂tφ)

= 0

for every test function φ ∈ C∞
0 (int U). Here step two uses the identity (12) for

ŵ and assumption (9) on u. Step three is true since β = 1 on U .
VIII) Note that the difference ŵ−u is in L1(U) by step VI) and assumption

on u. Hence by the parabolic Weyl lemma 1.2 the function G := ŵ−u is smooth
on U . Since ŵ ∈ Wk,q(Ω) by step VI), this shows that u = ŵ − G is of class
Wk,q on each bounded open subset of U . Since also ∂tŵ ∈ Wk,q(Ω) by step VI),
the function ∂tu = ∂tŵ − ∂tG is of class Wk,q on each bounded open subset of
U , in particular on Ω′. This concludes the proof of Theorem 4.2.

Interior estimates

Theorem 4.4 (Interior estimates). Fix an integer k ≥ 0 and constants 1 < q <
∞ and 0 < r < R. Define Ωr = (−r2, 0] × (−r, r). Then there is a constant
c = c(k, q,R − r) such that

‖u‖Wk+1,q(Ωr) ≤ c
(

‖∂su − ∂t∂tu‖Wk,q(ΩR) + ‖u‖Lq(ΩR) + ‖∂tu‖Lq(ΩR)

)

(13)

for every u ∈ C∞(ΩR).

Proof. The proof is by induction on k.
Case k = 0. Fix a smooth compactly supported cutoff function β : ΩR → [0, 1]
such that β = 1 on Ωr. Then

‖u‖W1,q(Ωr)

≤ ‖βu‖Lq(ΩR) + ‖∂t (βu)‖Lq(ΩR) + ‖∂t∂t (βu)‖Lq(ΩR) + ‖∂s (βu)‖Lq(ΩR)

≤ 2R(1 + 2R) ‖∂t∂t (βu)‖Lq(ΩR) + ‖∂s (βu)‖Lq(ΩR)

≤ c ‖(∂s − ∂t∂t)βu‖Lq(ΩR)

≤ c ‖(∂s − ∂t∂t)u‖Lq(ΩR) + C
(

‖u‖Lq(ΩR) + ‖∂tu‖Lq(ΩR)

)
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where c = cq (1 + 2R(1 + 2R)) with cq being the constant in theorem 4.1 and

C = ‖∂sβ‖∞ + ‖∂t∂tβ‖∞ + 2 ‖∂tβ‖∞ .

The first step uses the fact that β = 1 on Ωr, the definition of the W1,q norm,
and monotonicity of the integral. To obtain step two we fixed s and applied
Poincaré’s inequality lemma 4.3 to the functions βu, ∂t(βu) ∈ C∞

0 (−R,R), then
we integrated over s ∈ (−R2, 0]. Step three is by theorem 4.1.

Induction step k − 1 ⇒ k. Fix k ≥ 1. It suffices to estimate the Wk+1,q

norms of u, ∂tu, ∂t∂tu, and ∂su individually by the right hand side of (13). We
provide details for the least trivial term and leave the others as an exercise. Fix
constants r < r1 < r2 < R. Then by the induction hypothesis in the case k − 1
for the pair of sets Ωr ⊂ Ωr1

and the function v = ∂su we obtain that

‖∂su‖Wk,q(Ωr)

≤ c1

(

‖(∂s − ∂t∂t)∂su‖Wk−1,q(Ωr1
) + ‖∂su‖Lq(Ωr1

) + ‖∂t∂su‖Lq(Ωr1
)

)

≤ c1

(

‖(∂su − ∂t∂t)u‖Wk,q(ΩR) + ‖u‖W1,q(Ωr1
) + ‖∂tu‖W1,q(Ωr1

)

)

for some constant c1 = c1(k − 1, q, r1 − r). To deal with the last term in the
sum we apply the case k = 0 for the pair of sets Ωr1

⊂ Ωr2
and the function

v = ∂tu to obtain that

‖∂tu‖W1,q(Ωr1
)

≤ c2

(

‖(∂s − ∂t∂t)∂tu‖Lq(Ωr2
) + ‖∂tu‖Lq(Ωr2

) + ‖∂t∂tu‖Lq(Ωr2
)

)

≤ c2

(

‖(∂su − ∂t∂t)u‖Wk,q(ΩR) + ‖∂tu‖Lq(ΩR) + ‖u‖W1,q(Ωr2
)

)

for some constant c2 = c2(q, r2 − r1). It remains to estimate the last term in
the sum. We apply again the case k = 0, but now for the pair of sets Ωr2

⊂ ΩR

and the function u to obtain that

‖u‖W1,q(Ωr2
) ≤ c3

(

‖(∂s − ∂t∂t)u‖Lq(ΩR) + ‖u‖Lq(ΩR) + ‖∂tu‖Lq(ΩR)

)

for some constant c3 = c3(q,R − r2). This proves theorem 4.4.

Proof of Theorem 1.3. a) Suppose the parabolic rectangle Ω = (σ−r2, σ]×(τ −
r, τ + r) is contained in the cylinder ZT = (−T, 0] × S1. Then the assumptions
of Theorem 4.2 a) are satisfied for the restrictions of u and f to Ω and therefore

u ∈ Wk+1,q
loc (Ω). Now every compact subset of ZT can be covered by finitely

many parabolic rectangles. Hence u is locally Wk+1,q integrable on ZT .
b) Induction over k based on Theorem 4.4 and a covering argument by

parabolic rectangles proves b).
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5 Parabolic bootstrapping

In this section we establish uniform Sobolev bounds for strong solutions u of
the heat equation (14) by parabolic bootstrapping. This immediately implies
theorem 1.4. In order to deal with the heat equation’s quadratic nonlinearity
in ∂tu we first prove in lemma 5.1 apriori continuity of ∂tu. Then the heat
equation can be treated like a linear equation in the crucial first step ℓ = 1 of
the parabolic bootstrap.

In this section we fix a closed smooth submanifold M →֒ R
N and a smooth

family of vector-valued symmetric bilinear forms Γ : M → R
N×N×N . Recall

that the cylinders Z = ZT and Z ′ = ZT ′ are defined by (2).

Lemma 5.1 (Apriori continuity of ∂tu). Fix constants p > 2, µ0 > 1, and
T > 0. Fix a map F : Z → R

N such that F and ∂tF are of class Lp. Assume
that u : Z → R

N is a W1,p map taking values in M with ‖u‖W1,p ≤ µ0 and
such that the perturbed heat equation

∂su − ∂t∂tu = Γ(u) (∂tu, ∂tu) + F (14)

is satisfied almost everywhere. Then ∂tu is continuous. More precisely, for
every T ′ ∈ (0, T ) there is a constant c = c(p, µ0, T, T ′, ‖Γ‖C1) such that

‖∂tu‖C0(Z′) ≤ c
(

1 + ‖∂tF‖Lp(Z)

)

.

Note that by the Sobolev embedding theorem the assumption p > 2 guaran-
tees that the W1,p map u is continuous. Hence it makes sense to specify that u
takes values in the submanifold M of R

N . Abbreviate Wk,p(Z) = Wk,p(Z, RN ).

Remark 5.2. Since the proof of lemma 5.1 relies heavily on the product es-
timate theorem 1.1 it seems unlikely that the assumption u ∈ W1,p can be
weakened to u ∈ W 1,p – unless we also replace the assumption p > 2 by p > 3.

Proposition 5.3. Under the assumptions of lemma 5.1 the following is true for
every integer k ≥ 1 such that F and ∂tF are in Wk−1,p(Z) and every constant
T ′ ∈ (0, T ).

(i) There is a constant ak depending on p, µ0, T , T ′, ‖Γ‖C2k+2 , and the
Wk−1,p(Z) norms of F and ∂tF such that

‖∂tu‖Wk,p(Z′) ≤ ak.

(ii) If ∂sF ∈ Wk−1,p(Z) then there is a constant bk depending on p, µ0, T ,
T ′, ‖Γ‖C2k+2 , and the Wk−1,p(Z) norms of F , ∂tF , and ∂sF such that

‖∂su‖Wk,p(Z′) ≤ bk.

(iii) If ∂t∂tF ∈ Wk−1,p(Z) then there is a constant ck depending on p, µ0, T ,
T ′, ‖Γ‖C2k+2 , and the Wk−1,p(Z) norms of F , ∂tF , and ∂t∂tF such that

‖∂t∂tu‖Wk,p(Z′) ≤ ck.

18



Notation. In the proofs of lemma 5.1 and proposition 5.3 we use the following
notation. The parabolic Ck norm of a smooth function u is given by

‖u‖Ck :=
∑

2ν+µ≤2k

‖∂ν
s ∂µ

t u‖∞ . (15)

Compare this to standard space Ck with norm ‖u‖Ck =
∑

ν+µ≤k‖∂ν
s ∂µ

t u‖∞.
Given two constants T > T ′ > 0 consider the sequence

Tk := T ′ +
T − T ′

k
, k ∈ N. (16)

Note that T1 = T . This definition also makes sense if we replace k by a real
number r ≥ 1. Now consider the cylinders Zr = (−Tr, 0] × S1. By intZr we
denote the interior (−Tr, 0)×S1 of Zr. It is useful to memorize that Zr+1 ⊂ Zr.
For each positive integer k fix a smooth compactly supported cutoff function

ρk : (−Tk, 0] → [0, 1] (17)

such that ρk = 1 on Zk+1 and ‖∂sρ‖∞ ≥ 1.

Proof of lemma 5.1. Denote the nonlinear part of the heat equation (14) by

h = h(u) = Γ(u) (∂tu, ∂tu) + F

and the first cutoff function fixed in (17) by ρ = ρ1. Then h ∈ Lp(Z2), namely

‖h‖Lp(Z2)
≤

∥

∥ρ2h
∥

∥

Lp(Z1)

≤ ‖Γ‖∞ ‖|∂t(ρu)| · |∂t(ρu)|‖Lp(Z1)
+

∥

∥ρ2F
∥

∥

Lp(Z1)

≤ Cp ‖Γ‖∞ ‖∂sρ‖2
∞ ‖u‖2

W1,p(Z) + ‖F‖Lp(Z)

where in step one and two we used that ρ2 = 1 on Z2 and independence of
ρ on the t variable, respectively. The last step is by the product estimate
theorem 1.1 with constant Cp > 0 applied to the compactly supported W1,p

map ρu : Z → R
N using density. Compactness of M implies that ‖Γ‖∞ < ∞.

Next observe that

∂th = dΓ(u) (∂tu, ∂tu, ∂tu) + 2Γ(u) (∂t∂tu, ∂tu) + ∂tF. (18)

Now we indicate the main idea of proof. Suppose we knew that ∂th ∈
Lχ(Zk+1) for some χ > 1 and some k ∈ N, then

∫

Zk+1

∂tu (−∂sφ − ∂t∂tφ) = −
∫

Zk+1

∂su ∂tφ +

∫

Zk+1

∂t∂tu ∂tφ

= −
∫

Zk+1

h ∂tφ

=

∫

Zk+1

∂thφ

(19)
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for every φ ∈ C∞
0 (int Zk+1). Here all steps use integration by parts. Step

two is by definition of h and the assumption that u satisfies the heat equa-
tion (14) almost everywhere. Theorem 1.3 on interior regularity then asserts
that ∂tu ∈ W1,χ(Zk+2). Hence we have improved the regularity of ∂tu which in
turn improves the of regularity ∂th as given by (18). Now start over again. We
prove below that under this iteration χ eventually converges to p. But p > 2,
hence continuity of ∂tu follows by the Sobolev embedding W1,χ →֒ C0.

To get the iteration started at k = 1 we need to first prove that ∂th ∈ Lχ(Z2)
for some χ > 1. As a first try recall that u ∈ W1,p(Z1) by assumption, therefore
the first term in (18) is in Lp/3 only whereas the second term is in Lp/2. Hence
∂th ∈ Lp/3, but p/3 is not necessarily larger than 1. Fortunately, using the
product estimate theorem 1.1 we can do better. Recall that p > 2 is fixed by
assumption. Consider the function

χ = χp(q) =
pq

p + q

and observe that 1/p + 1/q = 1/χ. Apply Hölder’s inequality to obtain

‖∂th‖Lχ(Zk+1)
≤

∥

∥ρk
2∂th

∥

∥

Lχ(Zk)

≤ ‖dΓ‖∞ ‖|∂t(ρku)| · |∂t(ρku)|‖Lp(Zk) ‖∂tu‖Lq(Zk)

+ 2 ‖Γ‖∞ ‖∂t∂tu‖Lp(Zk) ‖∂tu‖Lq(Zk) + ‖∂tF‖Lχ(Zk)

≤ Cp ‖dΓ‖∞ ‖∂sρk‖2
∞ ‖u‖2

W1,p(Z) ‖∂tu‖Lq(Zk)

+ 2 ‖Γ‖∞ ‖∂t∂tu‖Lp(Z) ‖∂tu‖Lq(Zk) + ‖∂tF‖Lp(Zk)

≤ α ‖∂tu‖Lq(Zk) + ‖∂tF‖Lp(Z) .

(20)

Here the third step is by the product estimate theorem 1.1 with constant Cp and
the constant α in the last line depends on p, µ0, ‖Γ‖C1 , and ρk. We used again
one of the cutoff functions in (17) to produce a compactly supported function
as required by the product estimate. Consequently the domain shrinks.

Now we start the iteration with initial value q1 = p. Then χ(q1) = p/2 > 1.
Hence ∂th ∈ Lp/2(Z2) by (20) for k = 1. Therefore by (19) theorem 1.3 applies

for the functions ∂tu and f = ∂th and proves that ∂tu ∈ W1,p/2
loc (Z2) and

‖∂tu‖W1,p/2(Z3)
≤ c2

(

‖∂th‖Lp/2(Z2)
+ µ0

)

≤ c2

(

αµ0 + ‖∂tF‖Lp(Z) + µ0

) (21)

for some constant c2 = c2(p, T2−T3). Step two uses (20) for k = 1 and q = p/2,
the fact that ‖∂tu‖p/2 ≤ ‖∂tu‖p, and the assumption ‖∂tu‖p ≤ µ0.
Now there are three cases: If p > 4 then we are done by the Sobolev embed-
ding W 1,p/2 →֒ C0 on the domain Z3; see e.g. [MS, App. B.1] for the relevant
embedding theorems. If p < 4, then the value of χ = χp(q1) = p/2 is in the
interval (1, 2) and in this case there is the Sobolev embedding

W1,χ(Z3) ⊂ W 1,χ(Z3) →֒ L2χ/(2−χ)(Z3) = Lq2(Z3)
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with constant C2 = C2(p, T3) > 0. Here we abbreviated

q2 :=
2χ

2 − χ
=

2pq1

2p + 2q1 − pq1
=

2p

4 − p
.

Hence ∂tu ∈ L2p/(4−p)(Z3). Since 2p/(4 − p) > p is equivalent to 2 < p < 4,
this means that the regularity of ∂tu has been improved – on the expense of a
smaller domain though. The case p = 4 means that u : Z → R

N is a W1,4 map
to start with. But then it is also a W1,3 map and we are in the former case.

Repeating the same argument with new initial value q2 proves that ∂tu ∈
W1,χp(q2)(Z5). Again this space embedds either in C0(Z5) and we are done or
it embedds in Lq3(Z5) where q3 = 2pq2/(2p + 2q2 − pq2) > q2. It is crucial that
in (20) the value of p is fixed. Firstly, because the product estimate theorem 1.1
requires p ≥ 2 and, secondly, because we only know that ∂t∂tu ∈ Lp. Proceeding
this way we obtain the sequence qk determined by

qk+1 =
2pqk

2p + 2qk − pqk
, q1 = p. (22)

Observe again that the condition p > 2 implies that qk+1 > qk. Hence the
sequence is strictly monotone increasing. Next we prove that qk → ∞ as k → ∞.
Assume by contradiction that this is not true. Then by strict monotonicity the
sequence is bounded and admits a unique limit, say q. By (22) this limit satisfies
q = 2pq/(2p + 2q − pq). But this is equivalent to p = 2 contradicting p > 2. It
follows that χp(qk) converges to p as k → ∞. But p > 2, hence whenever k is
sufficiently large there is the Sobolev embedding

W1,χp(qk)(Z2k+1) →֒ C0(Z2k+1) ⊂ C0(Z ′)

and this implies the estimate in lemma 5.1. Clearly ∂tu is continuous on the
whole cylinder Z since every point is contained in some subcylinder Z ′.

Proof of proposition 5.3. We prove the following claim by induction on ℓ. Recall
from (16) the definition of the reals Tℓ and the cylinders Zℓ.

Claim. Given 0 < T ′ < T and k ≥ 1 such that F and ∂tF are in Wk−1,p, then
the following is true for every ℓ ∈ {1, . . . , k}.

(a) ∂tu ∈ Wℓ,p
loc(Z3ℓ−1) and there exists a constant Aℓ depending on p, µ0,

‖Γ‖C2ℓ+2 , ‖F‖Wℓ−1,p , and ‖∂tF‖Wℓ−1,p such that

‖∂tu‖Wℓ,p(Z3ℓ)
≤ Aℓ.

(b) If ∂sF ∈ Wk−1,p then ∂su ∈ Wℓ,p
loc(Z3ℓ) and there exists a constant Bℓ

depending on p, µ0, ‖Γ‖C2ℓ+2 , ‖F‖Wℓ−1,p , ‖∂tF‖Wℓ−1,p , and ‖∂sF‖Wℓ−1,p

such that
‖∂su‖Wℓ,p(Z3ℓ+1)

≤ Bℓ.

21



(c) If ∂t∂tF ∈ Wk−1,p then ∂t∂tu ∈ Wℓ,p
loc(Z3ℓ+1) and there exists a con-

stant Cℓ depending on p, µ0, ‖Γ‖C2ℓ+2 , ‖F‖Wℓ−1,p , ‖∂tF‖Wℓ−1,p , and
‖∂t∂tF‖Wℓ−1,p such that

‖∂t∂tu‖Wℓ,p(Z3ℓ+2)
≤ Cℓ.

Here and throughout the domain of all norms is Z = ZT , unless specified
otherwise. An exception are the various norms of Γ appearing below for which
the domain is the compact manifold M . We abbreviate h = Γ(u) (∂tu, ∂tu)+F .

Case ℓ = 1. By lemma 5.1 with T ′ = T2 there is a constant C0 depending on p,
µ0, T , T2, and ‖Γ‖C1 , such that

‖∂tu‖C0(Z2)
≤ C0

(

1 + ‖∂tF‖p

)

. (23)

(a) Recall that ∂th is given by (18). Straightforward calculation shows that

‖∂th‖Lp(Z2)
≤ ‖dΓ‖∞ ‖∂tu‖2

C0(Z2)
‖∂tu‖Lp(Z2)

+ ‖∂tF‖Lp(Z2)

+ 2 ‖Γ‖∞ ‖∂tu‖C0(Z2)
‖∂t∂tu‖Lp(Z2)

≤ α
(

1 + ‖∂tF‖2
p

)

for some constant α = α(p, µ0, T, T2, ‖Γ‖C1). We used (23) and the assumption
‖u‖W1,p ≤ µ0. Recall from (19) that ∂tu satisfies

∫

Z2

∂tu (−∂sφ − ∂t∂tφ) =

∫

Z2

∂thφ

for every φ ∈ C∞
0 (int Z2). Hence theorem 1.3 on interior regularity for q = p,

T = T2, T ′ = T3, k = 0, and the functions f = ∂th and ∂tu in Lp(Z2) proves
that ∂tu ∈ W1,p

loc (Z2) and

‖∂tu‖W1,p(Z3)
≤ µ

(

‖∂th‖Lp(Z2)
+ ‖∂tu‖Lp(Z2)

)

for some constant µ = µ(p, T2, T3). Now use the estimate for ∂th to see that

‖∂tu‖W1,p(Z3)
≤ A

(

1 + ‖∂tF‖2
p

)

for some constant A = A(p, µ0, T, T2, T3, ‖Γ‖C1).

(b) Straightforward calculation shows that

‖∂sh‖Lp(Z3)
≤ ‖dΓ‖∞ ‖∂tu‖2

C0(Z3)
‖∂su‖Lp(Z3)

+ ‖∂sF‖Lp(Z3)

+ 2 ‖Γ‖∞ ‖∂tu‖C0(Z3)
‖∂s∂tu‖Lp(Z3)

≤ β
(

1 + ‖∂tF‖3
p

)

+ ‖∂sF‖p
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for some constant β = β(p, µ0, T, T2, T3, ‖Γ‖C1) > 1. Here we estimated the Lp

norm of ∂s∂tu by the W1,p estimate for ∂tu just proved in (a). We also used
the C0 estimate (23). Next observe that

∫

Z3

∂su (−∂sφ − ∂t∂tφ) = −
∫

Z3

(∂su − ∂t∂tu) ∂sφ

= −
∫

Z3

(Γ(u) (∂tu, ∂tu) + F (u)) ∂sφ

=

∫

Z3

∂shφ

(24)

for every φ ∈ C∞
0 (int Z3). Here steps one and three are by integration by parts.

Step two uses the assumption that u satisfies the heat equation (14) almost
everywhere. Now theorem 1.3 proves that ∂su ∈ W1,p

loc (Z3) and

‖∂su‖W1,p(Z4)
≤ µ

(

‖∂sh‖Lp(Z3)
+ ‖∂su‖Lp(Z3)

)

for some constant µ = µ(p, T3, T4). Now use the estimate for ∂sh to see that

‖∂su‖W1,p(Z4)
≤ B

(

1 + ‖∂tF‖3
p + ‖∂sF‖p

)

for some constant B = B(p, µ0, T, T2, T3, T4, ‖Γ‖C1).

(c) Straighforward calculation shows that

‖∂t∂th‖Lp(Z4)
≤

∥

∥d2Γ
∥

∥

∞
‖∂tu‖3

C0(Z4)
‖∂tu‖Lp(Z4)

+ ‖∂t∂tF‖Lp(Z4)

+ 4 ‖dΓ‖∞ ‖∂tu‖2
C0(Z4)

‖∂t∂tu‖Lp(Z4)

+ 2 ‖Γ‖∞ ‖∂tu‖C0(Z4)
‖∂t∂t∂tu‖Lp(Z4)

+ 2 ‖Γ‖∞ ‖∂t∂tu‖C0(Z4)
‖∂t∂tu‖Lp(Z4)

≤ γ
(

1 + ‖∂tF‖4
p

)

+ ‖∂t∂tF‖p

for some constant γ = γ(p, µ0, T, T2, T3, T4, ‖Γ‖C2). In the final inequality we
used the C0 estimate (23) for ∂tu and the W1,p estimate for ∂tu proved above
in (a). This takes care of all terms but one, namely the C0 norm of ∂t∂tu. Here
we use that ∂t∂t∂tu and ∂s∂t∂tu = ∂t∂t∂su are in Lp(Z4) by (a) and (b), re-
spectively. Hence ∂t∂tu ∈ C0 by the Sobolev embedding W 1,p →֒ C0. Similarly
to the calculation in (19) it follows that

∫

Z4

∂t∂tu (−∂sφ − ∂t∂tφ) =

∫

Z4

∂t∂thφ

for every φ ∈ C∞
0 (int Z4). Theorem 1.3 then proves that ∂t∂tu ∈ W1,p

loc (Z4) and

‖∂t∂tu‖W1,p(Z5)
≤ µ

(

‖∂t∂th‖Lp(Z4)
+ ‖∂t∂tu‖Lp(Z4)

)
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for some constant µ = µ(p, T4, T5). Now use the estimate for ∂t∂th to see that

‖∂t∂tu‖W1,p(Z5)
≤ C

(

1 + ‖∂tF‖4
p + ‖∂t∂tF‖p

)

for some constant C = C(p, µ0, T, T2, T3, T4, T5, ‖Γ‖C2).

Induction step ℓ ⇒ ℓ+1. Fix an integer ℓ ∈ {1, . . . , k−1} and assume that (a–c)
are true for this choice of ℓ. We indicate this by the notation (a–c)ℓ. The task
at hand is to prove (a–c)ℓ+1. Recall the parabolic Cℓ norm (15). An immediate
consequence of the induction hypothesis (a–c)ℓ is that

‖u‖Wℓ+1,p(Z3ℓ+2)
≤ D′

ℓ+1

for some constant D′
ℓ+1 = D′

ℓ+1(p, µ0, ‖Γ‖C2ℓ+2 , ‖F‖Wℓ,p). Hence

‖u‖Cℓ(Z3ℓ+2)
≤ Dℓ+1 (25)

for some constant Dℓ+1 = Dℓ+1(p, µ0, ‖Γ‖C2ℓ+2 , ‖F‖Wℓ,p). To see this observe
that up to a constant the Cℓ norm can be estimated by the Wℓ+1,p norm. (This
boils down to the Sobolev embedding W 1,p →֒ C0 for each individual derivative
of u showing up in Cℓ.)

(a)ℓ+1 Straightforward calculation shows that

‖∂th‖Wℓ,p(Z3ℓ+2)

≤ ‖dΓ‖C2ℓ dℓ ‖u‖2
Cℓ(Z3ℓ+2)

‖∂tu‖Wℓ,p(Z3ℓ+2)
+ ‖∂tF‖Wℓ,p(Z3ℓ+2)

+ 2 ‖Γ‖C2ℓ dℓ ‖u‖Cℓ(Z3ℓ+2)

(

‖∂tu‖Wℓ,p(Z3ℓ+2)
+ ‖∂t∂tu‖Wℓ,p(Z3ℓ+2)

)

≤ αℓ+1 + ‖∂tF‖Wℓ,p

for some constant αℓ+1 = αℓ+1(p, µ0, ‖Γ‖C2ℓ+2 , ‖F‖Wℓ,p). The first inequality
follows from the identity (18) and the last two estimates of corollary 5.5 with
constant dℓ. Notice the difference between the standard Cℓ and the parabolic
Cℓ norms. To obtain the second inequality we applied (25) and the induc-
tion hypotheses (a)ℓ and (c)ℓ to estimate the Wℓ,p norms of ∂tu and ∂t∂tu,
respectively. Next observe that theorem 1.3 applies by (19) and shows that

∂tu ∈ Wℓ+1,p
loc (Z3ℓ+2) and

‖∂tu‖Wℓ+1,p(Z3ℓ+3)
≤ µ

(

‖∂th‖Wℓ,p(Z3ℓ+2)
+ ‖∂tu‖Lp(Z3ℓ+2)

)

for some constant µ = µ(p, Z3ℓ+2, Z3ℓ+3). Now the assumption ‖u‖W1,p ≤ µ0

and the estimate for ∂th conclude the proof of (a)ℓ+1. For latter reference we
remark that (a)ℓ+1 implies – similarly to (25) – the estimate

‖∂tu‖Cℓ(Z3ℓ+3)
≤ Eℓ (26)

for some constant Eℓ = Eℓ(p, µ0, ‖Γ‖C2ℓ+2 , ‖F‖Wℓ,p , ‖∂tF‖Wℓ,p).
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(b)ℓ+1 Straightforward calculation using the Wℓ+1,p estimate for ∂tu just proved
and the induction hypotheses (a–c)ℓ implies that

‖∂sh‖Wℓ,p(Z3ℓ+3)
≤ ‖dΓ‖C2ℓ ‖∂tu‖2

Cℓ(Z3ℓ+3)
‖∂su‖Wℓ,p(Z3ℓ+3)

+ ‖∂sF‖Wℓ,p(Z3ℓ+3)

+ 2 ‖Γ‖C2ℓ ‖∂tu‖Cℓ(Z3ℓ+3)
‖∂s∂tu‖Wℓ,p(Z3ℓ+3)

≤ βℓ+1 + ‖∂sF‖Wℓ,p

for some constant βℓ+1 = βℓ+1(p, µ0, ‖Γ‖C2ℓ+2 , ‖F‖Wℓ,p , ‖∂tF‖Wℓ,p). To obtain
the first inequality we simply pulled out the Cℓ norms. In the second inequality
we used (26), the induction hypothesis (b)ℓ to estimate the Wℓ,p norm of ∂su,
and the induction hypothesis (a)ℓ+1 just proved to estimate the Wℓ,p norm
of ∂s∂tu. Next observe that theorem 1.3 applies by the identity (24) with Z3

replaced by Z3ℓ+3 and shows that ∂su ∈ Wℓ+1,p
loc (Z3ℓ+3) and

‖∂su‖Wℓ+1,p(Z3ℓ+4)
≤ µ

(

‖∂sh‖Wℓ,p(Z3ℓ+4)
+ ‖∂tu‖Lp(Z3ℓ+4)

)

for some constant µ = µ(p, Z3ℓ+3, Z3ℓ+4). Now use the estimate for ∂sh.

(c)ℓ+1 Straighforward calculation shows that

‖∂t∂th‖Wℓ,p(Z3ℓ+3)
≤

∥

∥d2Γ
∥

∥

C2ℓ ‖∂tu‖3
Cℓ ‖∂tu‖Wℓ,p

+ 5 ‖dΓ‖C2ℓ ‖∂tu‖2
Cℓ ‖∂t∂tu‖Wℓ,p

+ 2 ‖Γ‖C2ℓ ‖∂tu‖Cℓ ‖∂t∂t∂tu‖Wℓ,p + ‖∂t∂tF‖Wℓ,p

+ 2 ‖Γ‖C2ℓ C ′
k ‖∂tu‖Cℓ ‖∂t∂tu‖Wℓ,p .

Here all norms are taken on the domain Z3ℓ+3 except those involving Γ which
are taken over M . Notice that in the first three terms of the sum we simply
pulled out the Cℓ norms. However, in the last term there appears originally
the product ∂t∂tu times ∂t∂tu. To deal with this product we applied the first
estimate of corollary 5.5 (where in both factors u is replaced by ∂tu).
Now the Cℓ estimate (26) for ∂tu and the Wℓ+1,p estimate for ∂tu established
in (a)ℓ+1 above prove that

‖∂t∂th‖Wℓ,p(Z3ℓ+3)
≤ γℓ+1 + ‖∂t∂tF‖Wℓ,p

for some constant γℓ+1 = γℓ+1(ℓ, p, µ0, ‖Γ‖C2ℓ+2 , ‖F‖Wℓ,p , ‖∂tF‖Wℓ,p). Apply

again theorem 1.3 to see that ∂t∂tu ∈ Wℓ+1,p
loc (Z3ℓ+3) and

‖∂t∂tu‖Wℓ+1,p(Z3ℓ+4))
≤ µ

(

‖∂t∂th‖Wℓ,p(Z3ℓ+3)
+ ‖∂t∂tu‖Lp(Z3ℓ+3)

)

for some constant µ = µ(p, Z3ℓ+3, Z3ℓ+4). The estimate for ∂t∂th then proves (c)
in the case ℓ + 1. This completes the proof of the induction step and therefore
of the claim. The claim with ℓ = k proves proposition 5.3.

The following product estimates have been used in the parabolic bootstrap
iteration above. Recall the definition (15) of the parabolic Ck norm.

25



Lemma 5.4. Fix a constant p > 2 and a bounded open subset Ω ⊂ R
2 with area

|Ω|. Then for every integer k ≥ 1 there is a constant c = c(k, |Ω|) such that

‖∂tu · v‖Wk,p ≤ c (‖∂tu‖Wk,p ‖v‖∞ + ‖u‖Ck ‖v‖Wk,p)

for all functions u, v ∈ C∞(Ω).

Proof. The proof is by induction on k. By definition of the Wℓ,p norm

‖∂tu · v‖Wℓ+1,p ≤ ‖∂tu · v‖Wℓ,p + ‖∂t∂tu · v + ∂tu · ∂tv‖Wℓ,p

+ ‖∂t∂t∂tu · v + 2∂t∂tu · ∂tv + ∂tu · ∂t∂tv‖Wℓ,p

+ ‖∂s∂tu · v + ∂tu · ∂sv‖Wℓ,p .

(27)

Case k = 1. Estimate (27) for ℓ = 0 shows that

‖∂tu · v‖W1,p ≤
(

‖∂tu‖p + ‖∂t∂tu‖p + ‖∂t∂t∂tu‖p + ‖∂s∂tu‖p

)

‖v‖∞
+

(

‖∂tu‖∞ + 2 ‖∂t∂tu‖∞
)

‖∂tv‖p

+ ‖∂tu‖∞
(

‖∂t∂tv‖p + ‖∂sv‖p

)

and this proves the lemma for k = 1.

Induction step k ⇒ k + 1. Consider estimate (27) for ℓ = k, then inspect the
right hand side term by term using the induction hypothesis to conclude the
proof. To illustrate this we give full details for the last term in (27), namely

‖∂tu · ∂sv‖Wk,p ≤ c (‖∂tu‖Wk,p ‖∂sv‖∞ + ‖u‖Ck ‖∂sv‖Wk,p)

≤ c (c′ |Ω| ‖∂tu‖Ck ‖∂sv‖W1,p + ‖u‖Ck ‖v‖Wk+1,p)

≤ c (c′ |Ω| ‖u‖Ck+1 ‖v‖W2,p + ‖u‖Ck ‖v‖Wk+1,p) .

Step one is by the induction hypothesis. In step two we pulled out the L∞ norms
of all derivatives of ∂tu and for the term ∂sv we used the Sobolev embedding
W1,p ⊂ W 1,p →֒ C0 with constant c′. Here the assumptions p > 2 and Ω
bounded enter. Step three is obvious. Now Wk+1,p →֒ W2,p since k ≥ 1.

Corollary 5.5. Fix a constant p > 2 and a bounded open subset Ω ⊂ R
2. Then

for every integer k ≥ 1 there is a constant d = d(k, |Ω|) such that

‖∂tu · ∂tu‖Wk,p ≤ dk ‖u‖Ck ‖∂tu‖Wk,p

‖∂tu · ∂t∂tu‖Wk,p ≤ dk ‖u‖Ck (‖∂tu‖Wk,p + ‖∂t∂tu‖Wk,p)

‖∂tu · ∂tu · ∂tu‖Wk,p ≤ dk ‖u‖2
Ck ‖∂tu‖Wk,p

for every function u ∈ C∞(Ω).

Proof. All three estimates follow from lemma 5.4. To obtain the first and the
second estimate set v = ∂tu and v = ∂t∂tu, respectively, and use that

‖∂tu‖∞ ≤ ‖u‖Ck , ‖∂t∂tu‖∞ ≤ ‖u‖Ck .

To obtain the third estimate set v = ∂tu · ∂tu and use in addition the first
estimate of corollary 5.5.

Proof of theorem 1.4. The Wk+1,p norm of u is equivalent to the sum of the
Wk,p norms of u, ∂tu, ∂su, and ∂t∂tu. Apply proposition 5.3 (i–iii).
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