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Abstract

In [BOV21] Barutello, Ortega, and Verzini introduced a non-local func-
tional which regularizes the free fall. This functional has a critical point
at infinity and therefore does not satisfy the Palais-Smale condition.

In this article we study the L2 gradient flow which gives rise to a non-
local heat flow. We construct a rich cascade Morse chain complex which
has one generator in each degree k ≥ 1. Calculation reveals a rather poor
Morse homology having just one generator. In particular, there must be
a wealth of solutions of the heat flow equation. These can be interpreted
as solutions of the Schrödinger equation after a Wick rotation.
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1 Introduction

The free fall describes the motion of a particle on a line in the gravitational field
of a heavy body. The particle will after some time collide with the heavy body.
However, collisions can be regularized so that after collision the particle bounces
back. An interesting new approach for regularizing collisions was discovered
in the recent paper [BOV21] by Barutello, Ortega, and Verzini. Change of
time gives rise to a delayed, that is non-local, regularized functional B with an
intriguing mathematical structure.

In fact, there are two non-local functionals describing the free fall, namely,
a Lagrangian version B, defined in (2.1) below, and a Hamiltonian version AH.
The two functionals are Morse-Bott and related to each other by a non-local
Legendre transform as studied in [FW21a]. In the present article we compute
the Morse homology of the Lagrangian version B with respect to an L2 metric.
This is a non-local analogue of the heat flow Morse homology of the second
author [Web13a,Web13b,Web17]. We overcome the additional present difficulty
of Morse-Bott, as opposed to Morse, by using the first authors cascade Morse
complex [Fra04], see also [CF09].

The significance of the free fall lies in the fact that it is the starting point
of the exploration of more complicated systems like the Helium problem which
is an active topic of research of the first named author with Cieliebak and
Volkov [CFV21].

In this paper we introduce the heat flow homology for the Lagrangian func-
tional B of the free fall and compute it. It turns out that there is a rich interplay
between critical points and gradient flow lines. Although the chain groups are
infinite dimensional it turns out that in sharp contrast the heat flow Morse
homology for the free fall is extremely meager, it is actually concentrated in
degree 1. In particular, by the contrast principle “large chain complex – low
homology” many solutions of the heat flow must exist.

To be more precise since the functional B is not Morse, but only Morse-Bott,
one has to modify standard Morse homology. We shall choose cascade Morse
homology, established by the first author in his PhD thesis, see [Fra04], because
it continues to work with the original gradient flow of B; this is not the case if
one perturbs B and does Morse homology with a nearby Morse functional B̃.

Theorem A. The cascade Morse homology of the Morse-Bott functional B is

HM∗(B;Z2) =

{
Z2 , ∗ = 1

0 , else

Proof. Proposition 7.1.

An interesting aspect of the heat flow equation is that after applying a
Wick rotation, that is considering imaginary time, one obtains a solution of the
Schrödinger equation.

In two planned future articles III and IV we intend to study the Hamiltonian
analogue of the heat flow homology in order to obtain a non-local Floer homology
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Figure 1: Cascade complex - the cycles are m1 and all Mk = ∂mk+1

and relate the two by an adiabatic limit in the spirit of [SW06]. In the first
step of this project, article I, we proved [FW21a] that the Fredholm indices in
both theories agree. The gradient flow equations in the Hamiltonian theory are
non-local perturbed holomorphic curve equations which after a Wick rotation
become solutions of a transport equation and hence solve a wave equation.

Theorem A might also be interpreted that the Morse homology of the func-
tional B computes the homology of a Conley pair (N,L) where N is the domain
of B and L := {B < C1} is the sub-level set corresponding to the lowest crit-
ical value. It is therefore conceivable that Theorem A can be proved by an
infinite dimensional Conley index argument as in [Web17]; for a short overview
see [Web14].

In the present paper we follow a different approach by arguing directly with
the Morse complex without reference to the topology of the underlying space.
However, we do not provide a direct existence proof of the heat flow gradient
flow lines. We deduce their existence with some tricks. The crucial observation
is that if one fixes the asymptotics then the heat flow gradient flow lines lie in
some finite dimensional subspaces. This allows us to deduce the existence of
gradient flow lines by considering the finite dimensional Morse homology of the
restriction of the action functional to the finite dimensional subspaces. Now
the crucial step is to chose the auxiliary Morse function on the critical manifold
in such a way that the Morse-Smale condition holds simultaneously on the full
space as well as on the finite dimensional subspaces.

Although triviality of the negative bundles V−Ck over the critical manifolds
Ck is not used in the present article (since we use Z2 coefficients only), triviality
is relevant for Z coefficients and this is why we include the proof as an appendix.
In the appendix we also include the short argument, implicit in [FW21a], that
the functional B is indeed Morse-Bott of nullity 1.

Idea of proof The functional B is Morse-Bott and its critical manifold C
consists of countably many circles Ck ∼= S1 of odd Morse indices 2k − 1 for
k ∈ N, as illustrated on the left hand side of Figure 1.
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We choose on each of the circles Ck an auxiliary Morse function bk having
exactly one maximum Mk and exactly one minimum mk, as illustrated on the
right hand side of Figure 1. The cascade indices Ind(B,b) are defined and given by

Ind(B,b)(Mk) := IndB(Mk) + Indb(Mk) = 2k

Ind(B,b)(mk) := IndB(mk) + Indb(mk) = 2k − 1

Therefore the cascade chain groups have exactly one generator in each degree

CM`(B, b;Z2) =

{
Z2〈Mk〉 , ` = 2k

Z2〈mk〉 , ` = 2k − 1

whenever ` ∈ N and they are zero else. On each circle Ck there are two gradient
flow lines from Mk to mk. Since we count gradient flow lines modulo two we have
∂Mk = 0. More subtle is to count the cascades from mk+1 to Mk. These are
solutions of the non-local heat flow equation. We do not construct them directly,
but deduce their existence indirectly via the following crucial observation:
the heat flow gradient flow lines lie in finite dimensional subspaces V ×k , in fact
dimV ×k = 4. The restriction Bk of the functional B to V ×k has as critical point
set precisely the circles Ck+1 and Ck. We prove that by careful choice of the
auxiliary Morse function bk on Ck we can achieve that our gradient flow equation
satisfies the Morse-Smale condition simultaneously as well on V ×k as on the full
space. This allows us to consider the cascade complex of Bk as a sub-complex of
the cascade complex of B whose degree is however shifted by 2k−1. On the finite
dimensional subspaces V ×k we can use topology to compute the cascade Morse
homology which turns out to be the homology of the 3-dimensional sphere S3
which has one generator in degree 0 and one generator in degree 3. Therefore
we can conclude that on the finite dimensional subspaces V ×k there is an odd
number of gradient flow lines from mk+1 to Mk.

By our crucial observation the gradient flow lines of B from mk+1 to Mk are
precisely the gradient flow lines of Bk from mk+1 to Mk. Thus ∂mk+1 = Mk.
Here and throughout we count modulo two. In particular, the minima mk+1

are no cycles, while the maxima Mk are cycles but boundaries as well. Hence
the only cycle which is not a boundary is the overall minimum m1. Therefore
the homology has a single generator and this generator sits in degree 1.

Acknowledgements. UF acknowledges support by DFG grant FR 2637/2-2.
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2 The Morse-Bott functional B
A quite new approach to the regularization of collisions was discovered in the
recent paper [BOV21] by Barutello, Ortega, and Verzini where the change of
time leads to a delayed functional. In the case of the 1-dimensional Kepler
problem this functional attains the following form

B : W 1,2
× := W 1,2(S1,R) \ {0} → R

q 7→ 4‖q‖2 1
2‖q̇‖

2 +
1

‖q‖2
(2.1)

where ‖·‖ is the L2 norm associated to the L2 inner product 〈·, ·〉. One might
interpret this functional as a non-local mechanical system consisting of kinetic
minus potential energy. As shown in [FW21a] the differential

dB : W 1,2
× ×W 1,2 := W 1,2(S1,R) \ {0} ×W 1,2(S1,R)→ R

is given by

dB(q, ξ) = 4〈q, ξ〉‖q̇‖2 + 4‖q‖2〈q̇, ξ̇〉 − 2
〈q, ξ〉
‖q‖4

= 4‖q‖2
〈
−q̈ +

(
‖q̇‖2

‖q‖2
− 1

2‖q‖6

)
︸ ︷︷ ︸

=:α

q, ξ

〉

where identity two is valid for sufficiently regular q, say q ∈W 2,2(S1,R) \ {0}.

Lemma 2.1 (Critical points, [FW21a]). The functional B : W 1,2
× → R

The set CritB of critical points of B consists of the functions

qk(t) = ck cos 2πkt, ck =
1

2
1
6 (πk)

1
3

∈ (0, 1), k ∈ N (2.2)

and their time shifts

(σ∗qk) (t) := qk(t+ σ) = ck
(
cos 2πkσ cos 2πkt︸ ︷︷ ︸

=:φk(t)

− sin 2πkσ sin 2πkt︸ ︷︷ ︸
=:ψk(t)

)
(2.3)

where σ, t ∈ S1. The corresponding critical values are given by

B(qk) = B(σ∗qk) = 2
1
3 3(πk)

2
3 (2.4)

and the Morse indices are

Ind(qk) = Ind(σ∗qk) = 2k − 1 (2.5)
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3 L2
q gradient equation and flow lines

We consider the following metric on W 1,2
× . Given a point q ∈ W 1,2

× and two
tangent vectors

ξ1, ξ2 ∈ TqW 1,2
× = W 1,2(S1,R) =: W 1,2

we define what we call the L2
q inner product by

〈ξ1, ξ2〉q := 4‖q‖2〈ξ1, ξ2〉, where 〈ξ1, ξ2〉 :=

∫ 1

0

ξ1(t)ξ2(t) dt (3.6)

Note that 〈·, ·〉 is the standard L2 inner product on L2(S1,R). In this notation

B(q) = 1
2 〈q̇, q̇〉q +

1

‖q‖2
, dB(q, ξ) = 〈−q̈ + αq, ξ〉q

where identity two is valid for q ∈ W 2,2
× := W 2,2(S1,R) \ {0}. The L2

q gradient

of B at q ∈W 2,2
× is denoted and given by

GradB(q) = −q̈ + αq, α = αq :=

(
‖q̇‖2

‖q‖2
− 1

2‖q‖6

)
∈ R (3.7)

Flow lines

A smooth cylinder u : R × S1 → R whose associated path of loops s 7→ us :=
u(s, ·) avoids the zero loop is called a heat flow line1 if it satisfies the scale
ode given by

F(u) := ∂su− ∂t∂tu+ αsu = 0, αs :=
‖∂tus‖2

‖us‖2
− 1

2‖us‖6
(3.8)

Remark 3.1 (Wick rotation). If one considers the above heat flow equa-
tion (3.8) in imaginary time is, corresponding to a Wick rotation, one obtains
the following non-local Schrödinger equation

i∂su− ∂t∂tu+ αsu = 0

Remark 3.2 (Asymptotic boundary values of heat flow lines). If a heat flow
line u, that is any smooth cylinder u : R× S1 → R such that F(u) = 0, admits
a non-empty ω-limit set, then this set ω±(u) = {q±} consists of a single critical
point (2.2) of the functional B (this holds since B is Morse-Bott by Lemma A.1).
In this case it is well known that the gradient flow line s 7→ us := u(s, ·)
converges exponentially to q±, as flow time s → ±∞. The exponential rate of
decay is determined by the spectral gap, namely, the smallest absolute value of
a non-zero eigenvalue.

1 a downward gradient flow line in the L2
q metric of the non-local action functional B
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Figure 2: Monotone cutoff function β and exponential weight γδ

In the case of the functional B, non-emptiness of the ω-limit set ω±(u) is not
guaranteed, neither in the forward direction by trying to exploit the facts that
there is a forward semi-flow and B is bounded below (unfortunately a minimum
is not achieved due to escape to infinity), nor in both directions by imposing a
finite energy condition on u.

Linearization

We shall linearize the map F defined by (3.8) at any smooth cylinder u : R×S1 →
R which has as asymptotic boundary conditions two critical points, see (2.3), of
the Morse-Bott functional B, in symbols

q± := lim
s→±∞

u(s, ·) ∈ CritB (3.9)

where the limit is uniformly in t ∈ S1.

Definition 3.3. Suppose H is a separable Hilbert space. Fix a monotone cutoff
function β ∈ C∞(R, [−1, 1]) with β(s) = −1 for s ≤ −1 and β(s) = 1 for s ≥ 1.
Fix a constant δ ∈ (0, 4π2) and,2 see Figure 2, define a function γδ : R→ R by

γδ(s) := eδβ(s)s.

Pick a constant p ∈ (1,∞). Consider the Hilbert space valued Sobolev spaces
defined for k ∈ N0 by

W k,p
δ (R, H) := {v ∈W k,p(R, H) | γδv ∈W k,p(R, H)} (3.10)

with norm
‖v‖Wk,p

δ
:= ‖γδv‖Wk,p .

These spaces are Banach space, see e.g. [FW21b, App. A.2].

2 The interval (0, 4π2) is contained in the spectral gap of any Hessian operator Aσ∗qk
associated to a critical point; see (A.32).
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Given a smooth cylinder u : R × S1 → R subject to asymptotic boundary
conditions (3.9) and a smooth compactly supported function ξ : R × S1 → R,
pick a family uτ such that u0 = u and d

dτ

∣∣
τ=0

uτ = ξ, say u+ τξ. Abbreviating

W k,2 = W k,2(S1), then the linearization

Du := DF(u) : W 0,2
δ (R,W 2,2) ∩W 1,2

δ (R,W 1,2)→W 0,2
δ (R, L2) (3.11)

is of the form

Duξ : = DF(u)ξ := d
dτ

∣∣
τ=0
F(uτ )

= d
dτ

∣∣
τ=0

(
∂su

τ − ∂2t uτ + αs,τu
τ
)

= ∂sξ − ∂t∂tξ + αsξ +
(
d
dτ

∣∣
τ=0

αs,τ
)
u

Further calculation shows that at any smooth cylinder u we obtain

Duξ = ∂sξ − ∂t∂tξ + αsξ

− 2
〈∂t∂tus, ξs〉
‖us‖2

u− 2

(
‖∂tus‖2

‖us‖4
− 3/2

‖us‖8

)
〈us, ξs〉u

= ∂sξ − ∂t∂tξ + αsξ

− 2

‖us‖2

(
〈 ∂t∂tus︸ ︷︷ ︸
∂sus+αsus

, ξs〉+

(
‖∂tus‖2

‖us‖2
− 3/2

‖us‖6︸ ︷︷ ︸
αs− 1

‖us‖6

)
〈us, ξs〉

)
u

= ∂sξ − ∂t∂tξ + αsξ

− 2

‖us‖2

(
〈∂sus, ξs〉+

(
2αs −

1

‖us‖6

)
〈us, ξs〉

)
u

(3.12)

where the last identity holds whenever u solves the heat equation.

The adjoint of the linearization

Given a smooth cylinder u : R × S1 → R, consider the L2
u inner product

defined by

〈ξ, η〉u :=

∫ ∞
−∞
〈ξs, ηs〉us ds :=

∫ ∞
−∞

4‖us‖2 〈ξs, ηs〉 ds

for compactly supported smooth functions ξ, η : R× S1 → R.
The L2

u adjoint operator of Du, notation D∗u, is determined by the identity

〈Duξ, η〉u = 〈ξ,D∗uη〉u

for compactly supported smooth vector fields ξ and η along the cylinder u. To
get a formula for D∗u we rewrite the inner product as follows. In the first step
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we use for Duξ the equality (3.12) and in the second step we apply partial
integration with respect to s to obtain

〈Duξ, η〉u

=

∫ ∞
−∞

4‖us‖2 ·
(
〈∂sξs, ηs〉 − 〈∂t∂tξs, ηs〉+ 〈αsξs, ηs〉

)
ds

+

∫ ∞
−∞

4‖us‖2
(
− 2
〈∂t∂tus, ξs〉
‖us‖2

− 2
‖∂tus‖2

‖us‖4
〈us, ξs〉+

3

‖us‖8
〈us, ξs〉

)
〈us, ηs〉 ds

=

∫ ∞
−∞

(
−8 〈us, ∂sus〉 〈ξs, ηs〉+ 4‖us‖2 〈ξs,−∂sηs − ∂t∂tηs + αsηs〉

)
ds

− 2

∫ ∞
−∞

(
〈∂t∂tus, ξs〉us
‖us‖2

+
‖∂tus‖2

‖us‖4
〈us, ξs〉us −

3/2

‖us‖8
〈us, ξs〉us

)
〈us, ηs〉 ds

= 〈ξ,−∂sη − ∂t∂tη − αη〉u − 2

∫ ∞
−∞

〈us, ∂sus〉
‖us‖2

〈ξs, ηs〉us ds

− 2

∫ ∞
−∞

(
〈ξs, ∂t∂tus〉us

〈us, ηs〉
‖us‖2

+ 〈ξs, us〉us

(
‖∂tus‖2

‖us‖4
− 3/2

‖us‖8

)
〈us, ηs〉

)
ds

= 〈ξ,D∗uη〉u

Hence the L2
u adjoint of the linearization Du is of the form

D∗uη = −∂sη − ∂t∂tη + αsη − 2
〈us, ∂sus〉
‖us‖2

η

− 2
〈us, ηs〉
‖us‖2

∂t∂tu− 2

(
‖∂tus‖2

‖us‖4
− 3/2

‖us‖8

)
〈us, ηs〉u

(3.13)

where the yellow extra term arose when we integrated by parts the s variable.

4 Fourier mode intervals and isolating neighbor-
hoods

Flow lines

We write u(s, t) for any fixed time s ∈ R as a Fourier series in the form

us(t) := u(s, t) = a0(s) +

∞∑
k=1

(ak(s) cos 2πkt+ bk(s) sin 2πkt) (4.14)

Proposition 4.1 (Isolating neighborhood – Fourier mode interval). Assume
that u is a solution of the delayed heat equation (3.8) with asymptotic boundary
conditions (3.9), that is

q±(t) := lim
s→±∞

u(s, t) = ak± cos 2πk±t+ bk± sin 2πk±t (4.15)
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for every t ∈ S1, uniformly in t, and for some positive integers k± ∈ N and
constants ak± and bk± ; cf. (2.3). Then the Fourier coefficients ak(s) ≡ 0 and
bk(s) ≡ 0 vanish identically for all k outside the interval [k+, k−].

Proof. Pick a Fourier mode k ∈ N0. With the constants defined by

a±k :=

{
0 , k 6= k±

ak± , k = k±
, b±k :=

{
0 , k 6= k±

bk± , k = k±
(4.16)

we obtain the identity lims→±∞ ak(s) = a±k . Taking one s derivative and two t
derivatives of the Fourier series (4.14) the heat equation (3.8) implies that

a′k(s) +
(
(2πk)2 + αs

)
ak(s) = 0 (4.17)

for every s ∈ R. Being a first order ode we conclude that

ak(0) 6= 0 ⇒ ak(s) 6= 0 ∀s ∈ R

So we assume that ak(0) 6= 0. It is useful to calculate the derivative

d

ds
ln
(
ak(s)2

)
=

2ak(s)a′k(s)

ak(s)2
= 2

a′k(s)

ak(s)
= −2(2πk)2 − 2αs

where in the last equality we used the ode (4.17).

Step 1. k < k+ ⇒ ak ≡ 0
The proof of Step 1 works by showing that the assumption ak(0) 6= 0 produces
a contradiction. Since k < k+ we get that

d

ds

(
ln
(
ak(s)2

)
− ln

(
ak+(s)2

))
= 2(2πk)2(k+

2 − k2) > 0

This shows that for s > 0 there is the inequality

ln
(
ak(s)2

)
− ln

(
ak+(s)2

)
> ln

(
ak(0)2

)
− ln

(
ak+(0)2

)
or equivalently

ln
(
ak(s)2

)
− ln

(
ak(0)2

)
> ln

(
ak+(s)2

)
− ln

(
ak+(0)2

)
for every s > 0. Exponentiating we get that

ak(s)2

ak(0)2
>
ak+(s)2

ak+(0)2

Taking the limit, as s→∞, of the right hand side we obtain

lim
s→∞

ak+(s)2

ak+(0)2
=

a2k+
ak+(0)2

> 0
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since lims→∞ us = q+. On the other hand, taking the limit, as s → ∞, of the
left hand side we obtain

lim
s→∞

ak(s)2

ak(0)2
=

0

ak(0)2
= 0

Here we used that the Fourier coefficient for k in q+ vanishes. The last three dis-
played formulas contradict each other. Therefore the assumption that ak(0) 6= 0
had to be wrong. We conclude that ak ≡ 0 vanishes identically if k < k+.

Step 2. k > k− ⇒ ak ≡ 0
To prove this note that since k > k− we get that

d

ds

(
ln
(
ak(s)2

)
− ln

(
ak−(s)2

))
= 2(2πk)2(k−

2 − k2) < 0

This shows that for s < 0 there is the inequality

ln
(
ak(s)2

)
− ln

(
ak−(s)2

)
> ln

(
ak(0)2

)
− ln

(
ak−(0)2

)
or equivalently

ln
(
ak(s)2

)
− ln

(
ak(0)2

)
> ln

(
ak−(s)2

)
− ln

(
ak−(0)2

)
for every s > 0. Exponentiating we get that

ak(s)2

ak(0)2
>
ak−(s)2

ak−(0)2

Taking the limit as s→ −∞ of the right hand side we obtain

lim
s→−∞

ak−(s)2

ak−(0)2
=

a2k−
ak−(0)2

> 0

since lims→−∞ us = q−. On the other hand, taking the limit as s→ −∞ of the
left hand side we obtain

lim
s→−∞

ak(s)2

ak(0)2
=

0

ak(0)2
= 0

Here we used that the Fourier coefficient for k in q− vanishes. The last three dis-
played formulas contradict each other. Therefore the assumption that ak(0) 6= 0
had to be wrong. We conclude that ak(s) ≡ 0 vanishes identically if k < k−.
The proof for bk(s) is analogous.

Linearization

We write u(s, t) for any fixed time s ∈ R as a Fourier series in the form of
equation (4.14). Similarly we write ξ : R× S1 → R for any fixed time s ∈ R as
a Fourier series in the form

ξs(t) := ξ(s, t) = A0(s) +

∞∑
k=1

(Ak(s) cos 2πkt+Bk(s) sin 2πkt) (4.18)
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Proposition 4.2 (The kernel of Du has the same Fourier mode interval as u).
Let u be a solution of the delayed heat equation (3.8) with asymptotic boundary
conditions (4.15), namely, two critical points

q± := lim
s→±∞

u(s, ·) ∈ CritB

where q± is determined by a positive integer k± ∈ N and two constants ak± , bk± .
Suppose that ξ is an element of the kernel of Du, that is Duξ = 0. For s ∈ R
write ξs := ξ(s, ·) : S1 → R in the form of the Fourier series (4.18). Then
Ak(s) ≡ 0 and Bk(s) ≡ 0 vanish identically for all k outside the interval [k+, k−].

Proof. Pick a common Fourier mode k ∈ N0 of u and ξ. Consider the constants
a±k and b±k defined by (4.16) and let A±k and B±k be defined analogously. Taking
one s derivative and two t derivatives of the Fourier series (4.18) the equation
Duξ = 0, see (3.12), and the heat equation (3.8) for u provide the ode

A′k(s) +
(
(2πk)2 + αs

)
Ak(s)− (Φ∗ξs) · ak(s) = 0 (4.19)

for the function Ak(s). Here the function ak(s) satisfies the ode (4.17) and

Φ∗ξs := − 2

‖us‖2

(
〈∂t∂tus, ξs〉+

(
αs −

1

‖us‖6

)
〈us, ξs〉

)
Once we recall that for k outside the interval [k+, k−] the functions ak ≡ 0 and
bk ≡ 0 vanish identically, the proof of the present proposition reduces to the one
of Proposition 4.1. Indeed for k /∈ [k+, k−] the ode (4.19) reduces to the ode

A′k(s) +
(
(2πk)2 + αs

)
Ak(s) = 0

for Ak(s). But this is exactly the ode (4.17) for which we already showed the
assertion. The proof for Bk(s) is analogous.

5 Restriction to 4-dimensional subspaces Vk

Fix k ∈ N and define functions

φk(t) := cos 2πkt, ψk(t) := sin 2πkt

Consider the 4-dimensional vector subspace of the free loop space W 1,2(S1,R)
spanned by the following four functions (cf. Lemma 2.1)

Vk = span {φk, ψk, φk+1, ψk+1}, V ×k := Vk \ {0}

The following corollary tells that flow lines from Ck+1 to Ck critical points
lie in one and the same Vk.

Corollary 5.1. Suppose u : R × S1 → R is a gradient flow line of GradB,
see (3.7), which asymptotically converges to critical points lying in Vk. Then
the whole gradient flow line us := u(s, ·) lies in V ×k for all s ∈ R.
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qk+1 = Cq−φk+1 +Dq−ψk+1

qk = Cq+φk +Dq+ψk

us := u(s, ·) φk(t) := cos 2πkt

ψk(t) := sin 2πkt

V ×
k

Bk

2
1
3 3π

2
3 k

2
3

2
1
3 3π

2
3 (k + 1)

2
3

Figure 3: Flow lines connecting consecutive critical manifold components Ck+1

and Ck lie in a 4-dimensional space Vk

Proof. Proposition 4.1.

In view of the above corollary we want to study in detail the restriction of
the functional

B(q) = 4‖q‖2 1
2‖q̇‖

2 +
1

‖q‖2

to the pointed 4-dimensional subspace V ×k , notation

Bk := B|V ×k : V ×k → (0,∞)

Lemma 5.2 (Morse indices of the restricted functional). For k ∈ N it holds
that CritB|Vk ⊂ CritB and that

IndB|Vk (qk+1) = 2, IndB|Vk (qk) = 0

Proof. This follows from the computation of the eigenvalues and eigenvectors
in (A.31).

We write q as a linear combination of the four basis elements of Vk to obtain
the estimate

‖q̇‖2 ≥ (2πk)2‖q‖2

Since k ≥ 1 the restriction of B to V ×k goes to infinity when ‖q‖ moves to infinity
or to zero. In particular, the restriction of B to V ×k is a coercive function (pre-
images of compacta are compact). Therefore Morse homology of the coercive
functional B represents singular homology of the domain V ×k of B. But V ×k is
homotopy equivalent to the 3-sphere S3. We summarize these findings in

Lemma 5.3 (Morse complex of the restriction Bk : Vk → R). For k ∈ N it holds

HM∗(Bk;Z2) ' H∗(V
×
k ;Z2) ' H∗(S3;Z2) =

{
Z2 , ∗ = 0, 3

0 , else

13



6 Construction of a cascade Morse complex
for B

We choose on each critical manifold Ck a point mk, that is for each k ∈ N. We
consider the unstable manifold of mk+1 with respect to the restriction Bk of B
to V ×k , notation Wu

−∇Bk(mk+1).
Since the Morse index of Bk along Ck+1 is 2, this unstable manifold is a

2-dimensional sub-manifold of Vk. Since Bk is coercive each point p 6= mk+1

of the unstable manifold Wu
−∇Bk(mk+1) converges under the negative gradient

flow of Bk in positive time to a point y on Ck. Hence we obtain a well defined
evaluation map given by

ev : Wu
−∇Bk(mk+1) \ {mk+1} → Ck, p 7→ lim

t→+∞
ϕt−∇Bk(p)

We choose a regular value of ev different from mk, notation Mk.
On each Ck (it is diffeomorphic to S1) we choose a Morse function bk with

exactly two critical points, namely a maximum at Mk and a minimum at mk.
Let b denote the resulting Morse function on the set C = ∪kCk of critical points
of B. Note that the Morse index of the critical points is zero or one, namely
Indb(mk) = 0 and Indb(Mk) = 1.

Hence in view of (2.5) for the cascade index Ind(B,b) we obtain

Ind(B,b)(Mk) := IndB(Mk) + Indb(Mk) = 2k

Ind(B,b)(mk) := IndB(mk) + Indb(mk) = 2k − 1
(6.20)

From Mk to mk there are 2 gradient flow lines of b and since we count modulo
2 we have for the Morse boundary operator

∂Mk = 0 (6.21)

It remains to compute ∂mk+1. Before we can do that we have to make sure
that we have a well defined count of cascades from mk+1 to Mk.
Hence we consider a gradient flow line u of B from mk+1 to Mk and we need
to show that Du is surjective. In view of these specific asymptotic boundary
conditions, we know by Proposition 4.1 that s 7→ us := u(s, ·) takes values in
Vk. We consider the restriction of Du to Vk as an operator

Du|Vk : W 1,2
δ (R, Vk)→W 0,2

δ (R, Vk)

It follows by Proposition 4.2

kerDu = kerDu|Vk (6.22)

Since Mk was chosen as a regular value of the evaluation map ev we have

dim kerDu|Vk = index(Du|Vk) (6.23)

14



Furthermore, it is well known that the Fredholm index of the linearization is
given by the cascade index difference of the asymptotic boundary conditions
and this shows the first and the final identity in the following

index(Du|Vk) = Ind(Bk,b)(mk+1)− Ind(Bk,b)(Mk)

= IndBk(mk+1) + Indb(mk+1)− (IndBk(Mk) + Indb(Mk))

= 2 + 0− (0 + 1) = 1

= (2(k + 1)− 1)− 2k

= Ind(B,b)(mk+1)− Ind(B,b)(Mk)

= index(Du)

(6.24)

Here equality two is by definition of the cascade index, equality three is by
Lemma 5.2, and the penultimate equality is by (6.20).

Summarizing, apply successively the results (6.22), (6.23), and (6.24) to
obtain

dim kerDu = dim kerDu|Vk
= index(Du|Vk)

= index(Du)

: = dim kerDu − dim cokerDu

Hence cokerDu is trivial and therefore the linearized operator Du is surjective.

7 Proof of the main theorem

Proposition 7.1 (Cascade chain complex). The cascade chain groups of the
Morse-Bott functional B and with respect to the auxiliary Morse function b on
C := CritB carefully chosen in Section 6 are given by

CM`(B, b;Z2) =

{
Z2〈Mk〉 , ` = 2k

Z2〈mk〉 , ` = 2k − 1
(7.25)

whenever ` ∈ N and they are zero else. All maxima are cycles

∂Mk = 0, Mk = ∂mk+1, k ∈ N (7.26)

but also boundaries. There is exactly one more cycle, the lowest minimum

∂m1 = 0 (7.27)

and m1 is not a boundary. Thus m1 generates the Morse homology.

Proof of Proposition 7.1. Assertion (7.25) follows from (6.20). The first equa-
tion in (7.26) follows from (6.21).
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It remains to prove the second equation ∂mk+1 = Mk in (7.26). In order to
do that we consider the cascade complex of the restriction Bk of the functional
B to the 4-dimensional space V ×k = Vk \ {0}.
The cascade complex of the pair (Bk, b) has four generators, namely
Mk+1,mk+1,Mk,mk. By Lemma 5.2 it holds that

ind(Bk,b)(Mk+1) := indBk(Mk+1) + indb(Mk+1) = 2 + 1 = 3

ind(Bk,b)(mk+1) := indBk(mk+1) + indb(mk+1) = 2 + 0 = 2

ind(Bk,b)(Mk) := indBk(Mk) + indb(Mk) = 0 + 1 = 1

ind(Bk,b)(mk) := indBk(mk) + indb(mk) = 0 + 0 = 0

According to Lemma 5.3 the cascade homology of (Bk, b) on the 4-dimensional
space V ×k vanishes in degrees 1 and 2. Therefore there has to exist an odd
number of gradient flow lines of the restricted functional Bk from mk+1 to Mk.
According to Corollary 5.1 these are precisely the gradient flow lines of the
unrestricted functional B from mk+1 to Mk. Therefore ∂mk+1 = Mk.

Because there are no generators of degree lower than the degree one of m1,
it holds that ∂m1 = 0.

A Morse-Bott and trivial negative bundles

The connected components of the critical manifold C := CritB consist of cir-
cles Ck labelled by k ∈ N. In [FW21a] we already showed that the kernel of
the Hessian of B at each point of Ck is 1-dimensional. Since the kernel always
contains the tangent space to the critical manifold which in our case is of dimen-
sion one, the two are equal. But this is the definition of Morse-Bott. Thus
from [FW21a] we know that Ck ' S1 is Morse-Bott of index 2k − 1. Since Ck
is Morse-Bott there is the splitting

TCkW
1,2
× = TCk ⊕ V−Ck ⊕ V+Ck

which at each point corresponds to the splitting in zero/negative/positive
eigenspaces of the Hessian. Note that the rank of V−Ck corresponds to the
Morse index of Ck. The above argument proves the following lemma.

Lemma A.1 (Morse-Bott functional). The functional B defined by (2.1) is
Morse-Bott and every critical point is of nullity 1.

In this section we show additionally that the negative bundle V−Ck is trivial
for each Ck. This plays an important role in order to compute Conley indices
of the critical components Ck.

Lemma A.2 (Trivial negative normal bundles). For each k ∈ N the negative
normal bundle V−Ck over the Morse-Bott manifold Ck is a) trivial and b) of
rank 2k − 1.
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The proof of this lemma covers the following three pages and ends after
equation (A.33). The proof follows the computation of the Morse index in our
previous paper [FW21a]. The new aspect that the line bundle is trivial is to
choose a global trivialization of the restriction of the tangent bundle of W 1,2

× to
Ck which has the property that the eigenvalues and eigenvectors with respect
to this global trivialization are independent of the base point. This then proves
that the negative and the positive normal bundles are both trivial.

The Hessian operator – with respect to L2
q

The Hessian operator Aq of the Lagrange functional B is the derivative of the
L2
q gradient at a critical point q, that is by (3.7) the derivative of the equation

0 = GradB(q) = −q̈ + αq, α = αq :=

(
‖q̇‖2

‖q‖2
− 1

2‖q‖6

)
∈ R

Here q ∈W 1,2(S1,R) \ {0} is automatically smooth since it is a critical point.

Lemma A.3 ( [FW21a]). The Hessian operator of B at a critical point q is
given by

Aq : W 2,2(S1,R)→ L2(S1,R)

ξ 7→ −ξ̈ + αξ − 2

‖q‖2

(
2α− 1

‖q‖6

)
〈q, ξ〉q

(A.28)

By (2.3) the critical points of the functional B are of the form

(σ∗qk) (t) := qk(t+ σ) = ck
(
cos 2πkσ cos 2πkt︸ ︷︷ ︸

=:φk(t)

− sin 2πkσ sin 2πkt︸ ︷︷ ︸
=:ψk(t)

)
(A.29)

for k ∈ N and σ, t ∈ S1 and where ck = 2−
1
6 (πk)−

1
3 ∈ (0, 1). From now on we

fix a critical point σ∗qk, that is k ∈ N and σ ∈ S1 are fixed from now on. Taking
two t derivatives we conclude that

d2

dt2
(σ∗qk) = −(2πk)2σ∗qk

Since d2

dt2 (σ∗qk) = α · (σ∗qk) we obtain

α = α(σ∗qk) = −(2πk)2 = − 2

c6k

where the last equality is (2.2). The formula of the Hessian operator Aσ∗qk
involves the L2 norm of σ∗qk and, in addition, the formula of the non-local
Lagrange functional B involves ‖σ∗q̇k‖2. Straightforward calculation shows that

‖σ∗qk‖2 = ‖qk‖2
(2.2)
=

c2k
2

=
1

2
4
3 (πk)

2
3

,
∥∥ d
dt (σ∗qk)

∥∥2 = (2πk)2
c2k
2

= 2
2
3 (πk)

4
3
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Thus

B(σ∗qk) = 2‖σ∗qk‖2‖ ddt (σ∗qk)‖2 +
1

‖σ∗qk‖2
= 2

1
3 3(πk)

2
3

To calculate the formula of Aσ∗qk we write ξ as a Fourier series

ξ = ξ0 +

∞∑
n=1
n6=k

(ξn cos 2πnt+ ξn sin 2πnt) + ξk cos 2πk(t+ σ) + ξk sin 2πk(t+ σ)

where we shifted the kth modes for the reasons explained next. That the coef-
ficients ξ· and ξ· do in fact not depend on σ we will see right after (A.31).

Remark A.4 (Global trivialization). The above (partially shifted) Fourier basis
depends on the point σ∗qk ∈ Ck of the kth component of the critical manifold
C. But note that this S1-family of Fourier bases gives a new global trivialization
of the restriction of the tangent bundle of W 1,2

× to Ck, namely

TCkW
1,2
× ' Ck ×W 1,2(S1,R).

We use the orthogonality relation

〈σ∗(cos 2πk·), ξ〉 = 〈cos 2πk(·+ σ), ξ〉 =
1

2
ξk

to calculate the product

〈σ∗qk, ξ〉 = 〈ck cos 2πk(·+ σ), ξ〉 =
1

2
ckξk.

Putting everything together we recover for the slightly more general case σ∗qk
the result we derived in [FW21a] for qk, namely

Lemma A.5 (Critical values and Hessian). The critical points of B are of the
form (A.29) and at any such σ∗qk the value of B is

B(σ∗qk) = 2
1
3 3(πk)

2
3

and the Hessian operator (A.28) of B is

Aσ∗qkξ = −ξ̈ − (2πk)2ξ + 12(2πk)2ξk cos 2πk(·+ σ) (A.30)

for every ξ ∈W 2,2(S1,R).

Eigenvalues and Morse index

Recall that k ∈ N and σ ∈ S1 are fixed, that is we consider the given critical
point σ∗qk. For the Hessian Aσ∗qk given by (A.30) we are looking for solutions
of the eigenvalue problem

Aσ∗qkξ = µξ

18



for µ = µ(ξ; k, σ) ∈ R and ξ ∈W 2,2(S1,R) \ {0}. Observe that

−ξ̈(t) =

∞∑
n=1
n 6=k

(2πn)2 (ξn cos 2πnt+ ξn sin 2πnt)

+ (2πk)2ξk cos 2πk(t+ σ) + (2πk)2ξk sin 2πk(t+ σ)

−(2πk)2ξ(t) = −(2πk)2ξ0 − (2πk)2
∞∑
n=1
n 6=k

(ξn cos 2πnt+ ξn sin 2πnt)

− (2πk)2ξk cos 2πk(t+ σ)− (2πk)2ξk sin 2πk(t+ σ).

Comparing coefficients in the eigenvalue equation Aσ∗qkξ = µξ we obtain eigen-
vectors (left hand side) and eigenvalues (right hand side) as follows

cos 2πk(t+ σ)
{
µξk = 12(2πk)2ξk

sin 2πk(t+ σ)
{
µξk = 0

cos 2πnt
{
µξn = 4π2

(
n2 − k2

)
ξn , ∀n ∈ N0 \ {k}

sin 2πnt
{
µξn = 4π2

(
n2 − k2

)
ξn , ∀n ∈ N \ {k}

(A.31)

We observe that the right hand sides do not depend on σ. Therefore the eigen-
values µ, as well as the coefficients ξ· and ξ· of the σ-dependent Fourier basis,
are all σ-independent. Since the σ-dependent Fourier basis gives rise to the
global trivialization we observe that the negative and the positive part of the
normal bundle are both trivial. This proves part a) of Lemma A.2.

For the Hessian Aσ∗qk one obtains the same eigenvalues and multiplicities
as we obtained in [FW21a] in the unshifted case qk. Indeed the eigenvalues of
the Hessian Aσ∗qk are given by

µn := 4π2(n2 − k2), n ∈ N \ {k} (A.32)

and by
µ0 := −4π2k2, µk := 0, µ̂k := 12(2πk)2

Moreover, their multiplicity (the dimension of the eigenspace) is given by

m(µn) = 2, n ∈ N \ {k}, m(µ0) = m(µk) = m(µ̂k) = 1

Observe that the eigenvalue µ̂k 6= µn is different from µn for every n ∈ N0.
Indeed, suppose by contradiction that µ̂k = µn for some n ∈ N0, that is

48π2k2 = 4π2(n2 − k2) ⇔ 13k2 = n2 (A.33)

which contradicts that n is an integer. This proves part b) of Lemma A.2.
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