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Abstract

We use the heat flow on the loop space of a closed Riemannian manifold
to construct an algebraic chain complex. The chain groups are generated
by perturbed closed geodesics. The boundary operator is defined in the
spirit of Floer theory by counting, modulo time shift, heat flow trajectories
that converge asymptotically to nondegenerate closed geodesics of Morse
index difference one.
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1 Introduction

Let M be a closed Riemannian manifold and denote by ∇ the Levi-Civita con-
nection and by LM the loop space, that is the space of free loops C∞(S1,M).
For x : S1 →M consider the action functional

SV (x) =

∫ 1

0

(
1

2
|ẋ(t)|2 − V (t, x(t))

)
dt.

Here and throughout we identify S1 = R/Z and think of x ∈ LM as a smooth
map x : R → M which satisfies x(t + 1) = x(t). Smooth means C∞ smooth.
The potential is a smooth function V : S1×M → R and we set Vt(q) := V (t, q).
The critical points of SV are the 1-periodic solutions of the ODE

∇tẋ = −∇Vt(x), (1)

where ∇Vt denotes the gradient and ∇tẋ denotes the covariant derivative, with
respect to the Levi-Civita connection, of the vector field ẋ := d

dtx along the loop
x in direction ẋ. By P = P(V ) we denote the set of 1-periodic solutions of (1).
In the case V = 0 these are the closed geodesics.

From now on we assume that SV is a Morse function on the loop space, i.e.
the 1-periodic solutions of (1) are all nondegenerate. We proved in [W02] that
this holds for a generic potential V . In this case the set

Pa(V ) := {x ∈ P(V ) | SV (x) ≤ a}

is finite for every real number a. Now consider the Z-module

Ca
∗ = Ca

∗ (V ) :=
⊕

x∈Pa(V )

Zx.

It is graded by the Morse indices of the closed geodesics. Moreover, this mod-
ule carries a boundary operator whenever SV is Morse–Smale. To define the
boundary operator consider the (negative) L2 gradient flow lines of SV on the
loop space. These are solutions u : R× S1 →M of the heat equation

∂su−∇t∂tu−∇Vt(u) = 0 (2)

satisfying
lim

s→±∞
u(s, t) = x±(t), lim

s→±∞
∂su(s, t) = 0, (3)

where x± ∈ P(V ). The limits are uniform in t together with the first partial
t-derivative, that is in C1(S1); see remark 1.4. The space of solutions of (2)
and (3) will be denoted by M(x−, x+;V ). Call SV Morse–Smale if the operator
Du obtained by linearizing (2) is onto as a linear operator between appropriate
Banach spaces (see (12) below) and this is true for all u ∈ M(x−, x+;V ) and
x± ∈ P(V ). Note that Morse–Smale implies Morse. Under the Morse–Smale
hypothesis the space M(x−, x+;V ) is a smooth manifold whose dimension is
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equal to the difference of the Morse indices of the closed geodesics x±. In the
case of index difference one it follows that the quotient M(x−, x+;V )/R by the
(free) time shift action is a finite set. Counting these elements with appropriate
signs defines a boundary operator on Ca

∗ (V ). Call the homology HMa
∗(LM,SV )

of this chain complex Morse homology or heat flow homology. It is naturally
isomorphic to the singular homology of the free loop space for every regular
value a of SV :

HMa
∗(LM,SV ) ≃ H∗(LaM ;Z), LaM := {x ∈ LM | SV (x) ≤ a}.

It is an open question if SV is Morse–Smale for a generic potential Vt. In sec-
tion 1.1 below we introduce a class of abstract perturbations V : LM → R for
which we can establish transversality. In contrast we call the potentials Vt ge-
ometric perturbations. The isomorphism above follows from the corresponding
isomorphism for abstract perturbations by approximation.

The construction of the Morse complex in finite dimensions goes back to
Thom [T49], Smale [Sm60, Sm61], and Milnor [M65]. It was rediscovered by
Witten [Wi82] and extended to infinite dimensions by Floer [F89a, F89b]. We
refer to [AM05] for an extensive historical account.

1.1 Perturbations

We introduce a class of abstract perturbations of equation (6) for which the
analysis works. Later in section 7.1 we extract a countable subset and construct
a separable Banach space of perturbations for which transversality works. The
abstract perturbations take the form of smooth maps V : LM → R. For x ∈ LM
let gradV(x) ∈ Ω0(S1, x∗TM) denote the L2-gradient of V; it is defined by

∫ 1

0

〈gradV(u), ∂su〉 dt =
d

ds
V(u)

for every smooth path R → LM : s 7→ u(s, ·). The covariant Hessian of V at a
loop x : S1 →M is the operator

HV(x) : Ω
0(S1, x∗TM) → Ω0(S1, x∗TM)

defined by
HV(u)∂su := ∇sgradV(u) (4)

for every smooth map R → LM : s 7→ u(s, ·). The axiom (V1) below asserts
that this Hessian is a zeroth order operator. We impose the following conditions
on V; here |·| denotes the pointwise absolute value at (s, t) ∈ R× S1 and ‖·‖Lp

denotes the Lp-norm over S1 at time s. Although condition (V1) and the first
part of (V2) are special cases of (V3) we state the axioms in the form below,
because some of our results don’t require all the conditions to hold.

(V0) V is continuous with respect to the C0 topology on LM . Moreover, there
is a constant C = C(V) such that

sup
x∈LM

|V(x)|+ sup
x∈LM

‖gradV(x)‖L∞(S1) ≤ C.
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(V1) There is a constant C = C(V) such that

|∇sgradV(u)| ≤ C
(
|∂su|+ ‖∂su‖L1

)
,

|∇tgradV(u)| ≤ C
(
1 + |∂tu|

)

for every smooth map R → LM : s 7→ u(s, ·) and every (s, t) ∈ R× S1.

(V2) There is a constant C = C(V) such that

|∇s∇sgradV(u)| ≤ C
(
|∇s∂su|+ ‖∇s∂su‖L1 +

(
|∂su|+ ‖∂su‖L2

)2)
,

|∇t∇sgradV(u)| ≤ C
(
|∇t∂su|+

(
1 + |∂tu|

)(
|∂su|+ ‖∂su‖L1

))
,

and
|∇s∇sgradV(u)−HV(u)∇s∂su| ≤ C

(
|∂su|+ ‖∂su‖L2

)2

for every smooth map R → LM : s 7→ u(s, ·) and every (s, t) ∈ R× S1.

(V3) For any two integers k > 0 and ℓ ≥ 0 there is a constant C = C(k, ℓ,V)
such that

∣∣∇ℓ
t∇k

sgradV(u)
∣∣ ≤ C

∑

kj ,ℓj



∏

j
ℓj>0

∣∣∣∇ℓj
t ∇kj

s u
∣∣∣



∏

j
ℓj=0

(
∣∣∇kj

s u
∣∣+
∥∥∇kj

s u
∥∥
Lpj

)

for every smooth map R → LM : s 7→ u(s, ·) and every (s, t) ∈ R×S1; here
pj ≥ 1 and

∑
ℓj=0 1/pj = 1; the sum runs over all partitions k1+· · ·+km =

k and ℓ1 + · · ·+ ℓm ≤ ℓ such that kj + ℓj ≥ 1 for all j. For k = 0 the same
inequality holds with an additional summand C on the right.

Remark 1.1. In (V0) the L∞ bound for gradV is imposed, since occasionally
we need Lp bounds for fixed but arbitrary p. Continuity of V with respect to
the C0 topology is used to prove [SW03, lem. 10.2] and proposition 4.14.

Remark 1.2. Each geometric potential V provides an abstract perturbation V
such that for smooth loops x and smooth vector fields ξ along x we have

V(x) :=
∫ 1

0

Vt(x(t)) dt, gradV(x) = ∇Vt(x), HV(x)ξ = ∇ξ∇Vt(x).

Remark 1.3. To prove transversality in section 7 we use perturbations1 of the
form

V(x) := ρ
(
‖x− x0‖2L2

)∫ 1

0

Vt(x(t)) dt,

where ρ : R → [0, 1] is a smooth cutoff function and x0 : S1 → M is a smooth
loop. Any such perturbation satisfies (V0)–(V3). Here compactness of M is
crucial, in particular, finiteness of the diameter of M .

1Here and throughout the difference x − x0 of two loops denotes the difference in some
ambient Euclidean space into which M is (isometrically) embedded. Note that cutting off
with respect to the L2 norm – as opposed to the L∞ norm – prevents us from expressing the
difference in terms of the exponential map.
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1.2 Main results

There are two main purposes of this text. One is to construct the Morse chain
complex for the action functional on the loop space. The other is to provide
proofs of the results announced and used in [SW03] to calculate the adiabatic
limit of the Floer complex of the cotangent bundle. More precisely, in [SW03]
we proved in joint work with D. Salamon that the connecting orbits of the heat
flow are the adiabatic limit of Floer connecting orbits in the cotangent bundle
with respect to the Hamiltonian given by kinetic plus potential energy. The
key idea is to appropriately rescale the metric. Both purposes are achieved
simultaneously by theorems 1.5–1.13.

We enlist the main results. From now on we replace the potential V by an
abstract perturbation V satisfying (V0)–(V3). Then the action is given by

SV(x) =
1

2

∫ 1

0

|ẋ(t)|2 dt− V(x) (5)

for smooth loops x : S1 →M and the heat equation has the form

∂su−∇t∂tu− gradV(u) = 0 (6)

for smooth maps u : R × S1 → M , (s, t) 7→ u(s, t). Here gradV(u) denotes the
value of gradV on the loop us : t 7→ u(s, t). The relevant set P(V) of critical
points of SV consists of the (smooth) loops x : S1 →M that satisfy the ODE

∇tẋ = −gradV(x). (7)

The subset Pa(V) consists of all critical points x with SV(x) ≤ a. For two
nondegenerate critical points x± ∈ P(V) we denote by M(x−, x+;V) the set of
all solutions u of (6) such that

lim
s→±∞

u(s, t) = x±(t), lim
s→±∞

∂su(s, t) = 0. (8)

The limits are uniform in t together with the first partial t-derivative. These
solutions are called connecting orbits. The energy of such a solution is given by

E(u) =

∫ ∞

−∞

∫ 1

0

|∂su|2 dtds = SV(x
−)− SV(x

+). (9)

Remark 1.4 (Asymptotic limits). In (3) and (8) we require convergence in
C1(S1) as opposed to C0(S1) which is standard in elliptic Floer theory. We need
our stronger assumption in theorem 3.10 to establish exponential decay. Actu-
ally W 1,2(S1) convergence already works. Compare [SW03] where the asymp-
totic C0 limits of (u, v) and (∂su,∇sv) are required to be (x±, ∂tx

±) and zero,
respectively. Now v corresponds to ∂tu in the adiabatic limit studied in [SW03]
and we arrive at our choice of topology for the asymptotic limits.

Theorem 1.5 (Regularity). Fix a constant p > 2 and a perturbation V : LM →
R that satisfies (V0)–(V3). Let u : R × S1 → M be a continuous function of
class W1,p

loc , that is u, ∂tu,∇t∂tu, ∂su are locally Lp integrable. Assume further
that u solves the heat equation (6) almost everywhere. Then u is smooth.
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Remark 1.6. It seems unlikely that the assumption u ∈ W1,p
loc can be weakened

to u ∈ W 1,p
loc , as announced in [SW03], unless we also weaken p > 2 to p > 3;

see remark 2.19. However, in the applications of theorem 1.5 in [SW03] and in
the present text the stronger assumption u ∈ W1,p

loc is satisfied.

Theorem 1.7 (Apriori estimates). Fix a perturbation V : LM → R that satis-
fies (V0)–(V1) and a constant c0. Then there is a positive constant C = C(c0,V)
such that the following holds. If u : R × S1 → M is a smooth solution of (6)
such that SV(u(s, ·)) ≤ c0 for every s ∈ R then

‖∂tu‖∞ + ‖∇t∂tu‖∞ + ‖∂su‖∞ + ‖∇t∂su‖∞ + ‖∇s∂su‖∞ ≤ C.

Theorem 1.8 (Exponential decay). Fix a perturbation V : LM → R that
satisfies (V0)–(V3) and assume SV is Morse.

(F) Let u : [0,∞) × S1 → M be a smooth solution of (6). Then there are
positive constants ρ and c0, c1, c2, . . . such that

‖∂su‖Ck([T,∞)×S1) ≤ cke
−ρT

for every T ≥ 1. Moreover, there is a periodic orbit x ∈ P(V) such that
u(s, ·) converges to x in C2(S1) as s→ ∞.

(B) Let u : (−∞, 0]× S1 → M be a smooth solution of (6) with finite energy.
Then there are positive constants ρ and c0, c1, c2, . . . such that

‖∂su‖Ck((−∞,−T ]×S1) ≤ cke
−ρT

for every T ≥ 1. Moreover, there is a periodic orbit x ∈ P(V) such that
u(s, ·) converges to x in C2(S1) as s→ −∞.

The covariant Hessian of SV at a loop x : S1 → M is the linear operator
Ax :W 2,2(S1, x∗TM) → L2(S1, x∗TM) given by

Axξ := −∇t∇tξ −R(ξ, ẋ)ẋ−HV(x)ξ (10)

where R denotes the Riemannian curvature tensor and the HessianHV is defined
by (4). This operator is self-adjoint with respect to the standard L2 inner
product. The number of negative eigenvalues is finite. It is denoted by indV(Ax)
and called the Morse index of Ax. If x is a critical point of SV we define itsMorse
index by indV(x) := indV(Ax) and we call x nondegenerate if Ax is bijective.
In this notation the linearized operator Du : W1,p

u → Lp
u is given by

Duξ := ∇sξ +Aus
ξ (11)

where us(t) := u(s, t) and the spaces Wu = W1,p
u and Lu = Lp

u are defined
as the completions of the space of smooth compactly supported sections of the
pullback tangent bundle u∗TM → R× S1 with respect to the norms

‖ξ‖L =

(∫ ∞

−∞

∫ 1

0

|ξ|p dtds
)1/p

,

‖ξ‖W =

(∫ ∞

−∞

∫ 1

0

|ξ|p + |∇sξ|p + |∇t∇tξ|p dtds
)1/p

.

(12)
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Theorem 1.9 (Fredholm). Fix a perturbation V : LM → R that satisfies (V0)–
(V3), a constant p > 1, and two nondegenerate critical points x± ∈ P(V).
Assume u : R × S1 → M is a smooth map such that ‖∇t∇t∂sus‖2 is bounded,
uniformly in s ∈ R, and

us = expx±(η±s ),
∥∥η±s

∥∥
W 2,2 → 0, ‖∂sus‖W 1,2 → 0, as s→ ±∞.

Then the operator Du : W1,p
u → Lp

u is Fredholm and

indexDu = indV(x
−)− indV(x

+).

Moreover, the formal adjoint operator D∗
u = −∇s+Aus

: W1,p
u → Lp

u is Fredholm
with indexD∗

u = −indexDu.

Concerning the funny assumption on∇t∇t∂sus see the footnote in section 3.4.

Theorem 1.10 (Implicit function theorem). Fix a perturbation V : LM → R

that satisfies (V0)–(V3). Assume x± are nondegenerate critical points of SV

and Du is onto for every u ∈ M(x−, x+;V). Then M(x−, x+;V) is a smooth
manifold of dimension indV(x

−)− indV(x
+).

Proposition 1.11 (Finite set). Fix a perturbation V : LM → R that satisfies
(V0)–(V3) and assume SV is Morse–Smale below level a in the sense that every
u ∈ M(x−, x+;V) is regular (i.e. the Fredholm operator Du is surjective), for
every pair x± ∈ Pa(V). Then the quotient space

M̂(x−, x+;V) := M(x−, x+;V)/R

is a finite set for every such pair of Morse index difference one. Here the (free)
action of R is given by time shift (σ, u) 7→ u(σ + ·, ·).

Theorem 1.12 (Refined implicit function theorem). Fix a perturbation V :
LM → R that satisfies (V0)–(V3) and a pair of nondegenerate critical points
x± ∈ P(V) with SV(x

+) < SV(x
−) and Morse index difference one. Then, for

every p > 2 and every large constant c0 > 1, there are positive constants δ0
and c such that the following holds. Assume SV is Morse–Smale below level 2c20.
Assume further that u : R×S1 →M is a smooth map such that u(s, ·) converges
in W 1,2(S1) to x±, as s→ ±∞, and such that

|∂su(s, t)| ≤
c0

1 + s2
, |∂tu(s, t)| ≤ c0, |∇t∂tu(s, t)| ≤ c0,

for all (s, t) ∈ R× S1 and

‖∂su−∇t∂tu− gradV(u)‖p ≤ δ0.

Then there exist elements u∗ ∈ M(x−, x+;V) and ξ ∈ imD∗
u∗

∩W satisfying

u = expu∗
(ξ), ‖ξ‖W ≤ c ‖∂su−∇t∂tu− gradV(u)‖p .
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In the previous theorem “c0 large” means that the constant c0 should be
larger than the constant C0 in axiom (V0).

Theorem 1.13 (Transversality). Fix a perturbation V : LM → R that satis-
fies (V0)–(V3) and assume SV is Morse. Then for every regular value a there is
a Banach manifold Oa = Oa(V) of perturbations supported on the sublevel set
{SV ≤ a} and satisfying (V0)–(V3) such that the following is true. For every
v ∈ Oa the functionals SV and SV+v have the same critical points on LM and
the same sublevel set with respect to a. Moreover, there is a residual subset
Oa

reg ⊂ Oa such that the perturbed functional SV+v is Morse–Smale below level
a whenever v ∈ Oa

reg.

Contrary to what we expected in view of excellent previous work by Ab-
bondandolo and Majer [AM05, AM06] on C1 flows on Banach manifolds, we
do not get the natural isomorphism between heat flow homology and singular
homology of the loop space as a simple byproduct. The reason is that the heat
equation generates only a C1 semiflow on the loop space. To overcome the prob-
lems we propose to generalize the notion of Conley index pairs to our infinite
dimensional situation. In section 9.2 we give a detailed sketch of how to prove
the isomorphism in theorem 1.14. Full details will be provided in a forthcoming
paper. In this sense theorem 1.14 should be understood as an announcement.

Theorem 1.14. Let V : LM → R be a perturbation that satisfies (V0)–(V3),
let c be a regular value of SV , and assume that SV is Morse–Smale below level
c. Then, for every regular value a < c of SV and every principal ideal domain
R, there is a natural isomorphism

HMa
∗(LM,SV ;R) ∼= H∗(LaM ;R), LaM := {x ∈ LM | SV(x) ≤ a}.

If M is not simply connected then there is a separate isomorphism for each com-
ponent of the loop space. The isomorphism commutes with the homomorphisms
HMa

∗(LM,SV) → HMb
∗(LM,SV) and H∗(LaM) → H∗(LbM) for b ∈ (a, c).

Overview

In chapter 2 we prove local regularity and provide interior estimates for the
linear heat equation ∂su − ∂t∂tu = 0 for real-valued maps u defined on the
lower half plane H

− or on cylindrical sets. The main result is theorem 2.1 on
regularity of solutions to a perturbed heat equation. The proof is by parabolic
bootstrapping and uses a subtle product estimate which is provided in sec-
tion 2.3. The quadratic estimates required in our proof of the refined implicit
function theorem 1.10 are also based on that product estimate.

In chapter 3 we study the solutions to the linearized version of the heat
equation (6). In other words, the kernel of the operator Du given by (11). In
theorem 3.1 we show that these solutions are smooth, even if they are only
weak solutions. In section 3.2 we derive pointwise bounds in terms of the L2

norm. Section 3.3 then establishes exponential decay of these L2 norms. The
combination of these results is used in section 3.4 to prove that the operator

10



Du is Fredholm for a rather general class of smooth cylinders u in M with
nondegenerate asymptotic limits x± ∈ P(V). The main result is theorem 1.9.

In chapter 4 we study the solutions u to the (nonlinear) heat equation (6).
Since ∂su solves the linearized equation the results of chapter 3 apply. In
section 4.1 we prove smoothness of W1,p

loc solutions and a compactness result
for sequences with uniformly bounded gradient in appropriate norms. In sec-
tions 4.2–4.4 the following assumption is crucial. Fix a positive constant c0.
Then all solutions u of (6) with

sup
s∈R

SV(us) ≤ c0

admit a uniform apriori estimate for ‖∂tu‖∞ (theorem 4.5), uniform energy
bounds (lemma 4.8), uniform gradient bounds (theorem 4.9), and uniform L2

exponential decay (theorem 4.10). In section 4.5 we study compactness of the
moduli spaces M(x−, x+;V) in case that SV : LM → R is a Morse function.

Chapter 5 deals with implicit function type theorems. Here, in addition to
the Morse condition, the Morse–Smale condition enters: To prove that the mod-
uli spaces are smooth manifolds we not only need nondegeneracy of the asymp-
totic boundary data, that is the critical points x±, but in addition surjectivity of
the linearized operators. Under these assumptions we prove (proposition 1.11)
that modulo time shift there are only finitely many heat flow lines from x− to x+

in case of Morse index difference one. Here the compactness results of section 4.5
enter. Furthermore, we prove the refined implicit function theorem 1.12, a major
technical tool in [SW03]. Here the product estimate provided by lemma 2.14 is
the crucial ingredient to obtain the required quadratic estimates. Furthermore,
the choice of the sublevel set on which SV needs to be Morse–Smale requires
care. The reason is that one starts out only with an approximate solution u
along which the action is not necessarily decreasing. However, the assumptions
guarantee that all loops us are contained in the sublevel set {SV ≤ 2c20}.

In chapter 6 we prove unique continuation for the heat equation (6) and its
linearization. The proof is based on an extension of a result by Agmon and
Nirenberg. In contrast to forward unique continuation the result on backward
unique continuation is surprising at first sight. Of course, there is an assumption.
Namely, the action along the two semi-infinite backward trajectories u, v which
coincide at time s = 0 must be bounded. In this case we obtain that u = v.

In chapter 7 we construct a separable Banach space Y of abstract pertur-
bations that satisfy axioms (V0)–(V3). Assume SV is Morse and a is a regular
value. Then we define a Banach submanifold Oa(V) of admissible perturbations
v supported in {SV ≤ a}. They have the property that SV and SV+v do have
the same critical points on the whole loop space LM and, moreover, their sub-
level sets with respect to a coincide. The proof that there is a residual subset
Oa

reg(V) of regular perturbations for which SV+v is Morse-Smale below level a
requires unique continuation for the linearized heat equation and the fact that
the action is strictly decreasing along nonconstant heat flow trajectories.

In chapter 8 we define Morse homology in terms of the heat flow. In sec-
tion 8.1 we define the unstable manifold of a critical point x of the action
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functional SV : LM → R as the set of endpoints at time zero of all backward
halfcylinders solving the heat equation (6) and emanating from x at −∞. The
main result is theorem 8.1 saying that if the critical point x is nondegener-
ate, then this is a contractible submanifold of the loop space and its dimension
equals the Morse index of x. Section 8.2 puts together all results to construct
the Morse complex for the negative L2 gradient of the action functional on the
loop space.

The aim of chapter 9 is to relate heat flow homology and singular homology
of the loop space. The geometric idea is that only the unstable manifolds are
relevant in homology, since all other loops move under the heat flow into a neigh-
borhood of the unstable manifolds. To make this precise we solve in section 9.1
the forward time Cauchy problem for the heat equation (6) for initial values in
the Hilbert manifold ΛM =W 1,2(S1,M). As a result we obtain a C1 semiflow
ϕ : (0,∞) × ΛM → ΛM which extends continuously to zero. In section 9.2 we
sketch the proof of theorem 1.14.

Notation. If f = f(s, t) is a map or more generally a section, then fs abbreviates
the map f(s, ·) : t 7→ f(s, t). In contrast partial derivatives are denoted by ∂sf
and ∂tf . By Ω0(B,E) we denote the set of smooth sections of a vector bundle
E → B.
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2 Parabolic regularity

By H
− we denote the closed lower half plane, that is the set of pairs of reals (s, t)

with s ≤ 0. In this section, unless specified differently, all maps are real-valued
and the domains of the various Banach spaces which appear are understood to
be either open subsets Ω of R2 or H

− or (cylindrical subsets of) the cylinder
Z = R×S1. To deal with the heat equation it is useful to consider the anisotropic
Sobolev spaces W k,2k

p . We call them parabolic Sobolev spaces and denote them

by Wk,p. For constants p ≥ 1 and integers k ≥ 0 these spaces are defined as
follows. Set W0,p = Lp and denote by W1,p the set of all u ∈ Lp which admit
weak derivatives ∂su, ∂tu, and ∂t∂tu in Lp. For k ≥ 2 define

Wk,p = {u ∈ W1,p | ∂su, ∂tu, ∂t∂tu ∈ Wk−1,p}

where the derivatives are again meant in the weak sense. The norm

‖u‖Wk,p :=



∫ ∫ ∑

2ν+µ≤2k

|∂νs ∂µt u(s, t)|
p
dtds




1/p

(13)

gives Wk,p the structure of a Banach space. Here ν and µ are nonnegative
integers. For k = 1 we obtain that

‖u‖pW1,p = ‖u‖pp + ‖∂su‖pp + ‖∂tu‖pp + ‖∂t∂tu‖pp

and occasionally we abbreviate W = W1,p. Note the difference to (standard)
Sobolev space W k,p where the norm is given by

‖u‖pk,p =
∑

ν+µ≤k

‖∂νs ∂µt u‖
p
p .

A rectangular domain is a set of the form I × J where I and J are bounded
intervals. For rectangular (or more generally Lipschitz) domains Ω the parabolic
Sobolev spaces Wk,p can be identified with the closure of C∞(Ω) with respect
to the Wk,p norm; see e.g. [MS04, appendix B.1]. Similarly, we define the Ck

(or Wk,∞) norm by

‖u‖Ck :=
∑

2ν+µ≤2k

‖∂νs ∂µt u‖∞ . (14)

Again C0 = C0 and

‖u‖C1 = ‖u‖∞ + ‖∂su‖∞ + ‖∂tu‖∞ + ‖∂t∂tu‖∞ .

Throughout we use the notation

ZT = (−T, 0]× S1.

The main result in this section is the following.
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Theorem 2.1 (Parabolic regularity). Fix constants p > 2, µ0 > 1, and T > 0.
Fix a closed smooth submanifold M →֒ R

N and a smooth family of vector-valued
symmetric bilinear forms Γ : M → R

N×N×N . Assume that F : ZT → R
N is

a map of class Lp and u : ZT → R
N is a W1,p map taking values in M with

‖u‖W1,p ≤ µ0 and such that the perturbed heat equation

∂su− ∂t∂tu = Γ(u) (∂tu, ∂tu) + F (15)

is satisfied almost everywhere. Then the following is true. For every integer
k ≥ 1 such that F ∈ Wk,p(ZT ) and every T ′ ∈ (0, T ) there is a constant ck
depending on k, p, µ0, T − T ′, ‖Γ‖C2k+2(M), and ‖F‖Wk,p(ZT ) such that

‖u‖Wk+1,p(ZT ′ ) ≤ ck.

The theorem shows that if F is smooth, then u is smooth on domains which
extend slightly less into the past. The refined version proposition 2.18 of this
result is used in section 4.1 to prove regularity and compactness properties of
solutions to the nonlinear heat equation (6). The proof of theorem 2.1 in sec-
tion 2.4 is by parabolic bootstrapping. The main technical tool is the following.

Theorem 2.2 (Interior regularity). Fix constants 1 < q < ∞ and T > 0 and
an integer k ≥ 0. Then the following is true.

a) If u ∈ L1
loc(ZT ) and f ∈ Wk,q

loc (ZT ) satisfy

∫

ZT

u (−∂sφ− ∂t∂tφ) =

∫

ZT

fφ (16)

for every φ ∈ C∞
0 ((−T, 0)× S1), then u ∈ Wk+1,q

loc (ZT ).

b) For every 0 < T ′ < T there is a constant c = c(k, q, T − T ′) such that

‖u‖Wk+1,q(ZT ′ ) ≤ c
(
‖∂su− ∂t∂tu‖Wk,q(ZT ) + ‖u‖Lq(ZT )

)

for every u ∈ C∞(ZT ).

The prove part a) it is useful to prove in a first step the case where f = 0
and Ω is an open subset of the lower half plane. The corresponding statement
for the Laplace operator is called Weyl lemma.

2.1 The parabolic Weyl lemma

Lemma 2.3. Let Ω ⊂ H
− be an open subset. If u ∈ L1

loc(Ω) satisfies

∫

Ω

u (−∂sφ− ∂t∂tφ) = 0 (17)

for every φ ∈ C∞
0 (intΩ), then u ∈ C∞(Ω) and ∂su− ∂t∂tu = 0 on Ω.
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The proof of lemma 2.3 is based on approximating u via convolution by a
family of smooth solutions uε converging to u in L1. The point is that con-
volution is carried out over individual time slices for almost all times s using
mollifiers defined on R. (It is also possible to carry over the proof of the original
Weyl lemma for the Laplacian using mollifiers supported in R

2. However, this
leads to restrictions and is explained in a separate section below.) On the other
hand, given any integer k ≥ 0, standard local Ck estimates for smooth solu-
tions of the linear homogeneous heat equation in terms of the L1 norm apply;
see [Ev98, sec. 2.3 thm. 9]. They provide Ck bounds on compact sets in terms
of ‖uε‖1. Now by Young’s convolution inequality ‖uε‖1 ≤ ‖u‖1. Hence these
bounds are uniform in ε. Therefore by Arzela-Ascoli the family uε converges in
Ck−1

loc (Ω) to a map v. Hence u = v by uniqueness of the limit. As this is true
for every k and, moreover, every point is contained in a compact subset of Ω it
follows that u ∈ C∞(Ω). Integration by parts then shows that

∂su− ∂t∂tu = 0 (18)

on the interior of Ω. Since u is C∞ on Ω this identity continues to hold on Ω.

Proof of lemma 2.3. Every point of Ω is contained in (some translation of) a
parabolic set (−r2, 0] × (−r, r) whose closure is contained in Ω for some suf-
ficiently small r > 0. Hence we may assume without loss of generality that
Ω = (−r2, 0]× (−r, r) and u ∈ L1(Ω). We prove the lemma in nine steps.

1) We introduce appropriate mollifiers: Fix a smooth function ρ : R → [0, 1]
which is compactly supported in the interval (−1, 1) and satisfies

∫
R
ρ = 1. For

ε > 0 consider the mollifier ρε(t) :=
1
ε ρ
(
t
ε

)
. It is compactly supported in the

interval (−ε, ε) and satisfies
∫
R
ρε = 1.

2) For almost every s ∈ R we define the family {ρε ∗ us}ε>0 ⊂ C∞
0 (R) and

calculate the L1 norm of its derivatives: From now on we extend u by zero to
R

2 \ Ω and denote the extension again by u. Then u ∈ L1(R2) and

us := u(s, ·) ∈ L1(R)

for almost every s ∈ R. For such s and ε > 0 consider the convolution

(ρε ∗ us) (t) :=
∫

R

ρε(t− τ)us(τ) dτ.

In this case ρε ∗ us ∈ C∞
0 (R),

‖ρε ∗ us − us‖L1(R) → 0, as ε→ 0,

and ρε ∗ us converges to us, as ε → 0, pointwise almost everywhere on R;
see [Jo98, app. A]. Moreover, by Young’s convolution inequality we obtain that

‖ρε ∗ us‖L1(R) ≤ ‖ρε‖L1(R) ‖us‖L1(R) = ‖us‖L1(R)
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and, more generally, that
∥∥∥∥
dk

dtk
(ρε ∗ us)

∥∥∥∥
L1(R)

=
∥∥∥
(
ρ(k)ε ∗ us

)∥∥∥
L1(R)

≤
∥∥∥ρ(k)ε

∥∥∥
L1(R)

‖us‖L1(R)

=

∥∥ρ(k)
∥∥
L1(R)

εk
‖us‖L1(R)

for every positive integer k. Here ρ(k) denotes the k-th derivative of ρ.
3) We prove that for ε > 0 the function defined by

uε : R
2 → R, (s, t) 7→ (ρε ∗ us)(t)

is integrable and uε converges to u in L1(R2), as ε→ 0. Indeed by step 2)

‖uε‖L1(R2) =

∫

R

‖ρε ∗ us‖L1(R) ds ≤
∫

R

‖us‖L1(R) ds = ‖u‖L1(Ω) .

Now define the family of functions {fε : R → R}ε>0 for almost every s by

fε(s) := ‖ρε ∗ us − us‖L1(R) .

By the former estimate these functions are integrable

‖fε‖L1(R) = ‖uε − u‖L1(R2) ≤ 2 ‖u‖L1(Ω) .

Moreover, they are dominated almost everywhere by an integrable function g.
Namely, by step 2

|fε(s)| ≤ 2 ‖us‖L1(R) =: g(s), ‖g‖L1(R) = 2 ‖u‖L1(Ω) .

Again step 2) shows that fε → 0, as ε → 0, for almost every s. Hence by the
dominated convergence theorem it follows that

lim
ε→0

‖uε − u‖L1(R2) = lim
ε→0

∫

R

‖ρε ∗ us − us‖L1(R) ds

=

∫

R

(
lim
ε→0

fε

)
(s) ds

= 0.

4) The function uε : R
2 → R defined in 3) admits integrable weak t-

derivatives of all orders. Fix ε > 0 and a positive integer k, then
∫

R2

uε ∂
k
t ψ dt ds =

∫

R2

(ρε ∗ us) ∂kt ψ dt ds

= (−1)k
∫

R2

(ρ(k)ε ∗ us)ψ dt ds

for every ψ ∈ C∞
0 (R2). Here ρ

(k)
ε denotes the k-th derivative. Moreover, the first

step is by definition of uε and the second step by integration by parts followed
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by commuting differentiation and convolution. Next observe that the function

ρ
(k)
ε ∗ us is integrable. Indeed step 2) shows that

∫

R

∥∥ρ(k)ε ∗ us
∥∥
L1(R)

ds ≤ ck
εk

‖u‖L1(Ω)

with constant ck = ck(ρ) = ‖∂kt ρ‖L1(R). Hence the weak t derivatives of the
function uε : R

2 → R are integrable and given by

∂kt uε(s, t) = (ρ(k)ε ∗ us)(t).

5) Fix ε > 0. Define the subset Ωε = (−r2, 0]×(−r+ε, r−ε) ⊂ Ω. We prove
by induction that for every k ≥ 1 the weak derivative ∂ksuε exists in L1(Ωε) and
equals ∂2kt uε almost everywhere on Ωε. Here assumption (17) enters.
Step k = 1. Straightforward calculation shows that

∫

Ω

ψ ∂t∂tuε =

∫

R2

ψ(s, t)

(∫

R

∂t∂tρε(t− τ)us(τ) dτ

)
ds dt

=

∫

R3

ψ(s, t)u(s, τ) ∂τ∂τρε(t− τ) dτ ds dt

=

∫

R

(∫

R2

u(s, τ) ∂τ∂τ

(
ρε(t− τ)ψ(s, t)

)
dτ ds

)
dt

= −
∫

R

(∫

R2

u(s, τ) ∂s

(
ρε(t− τ)ψ(s, t)

)
dτ ds

)
dt

= −
∫

R2

(∫

R

ρε(t− τ)us(τ) dτ

)
∂sψ(s, t) ds dt

= −
∫

Ω

uε∂sψ

for every test function ψ ∈ C∞
0 (intΩε). This identity means that on intΩε,

hence on Ωε, the weak derivative ∂suε exists and equals ∂t∂tuε which is inte-
grable by 4). To prove the identity note that the first and the final step are
by definition of uε in 3). To obtain the second step we changed the order of
integration and applied the chain rule. Steps three and five are obvious. To
obtain step four we used assumption (17) and the fact that

φt(s, τ) := ρε(t− τ)ψ(s, t)

lies in C∞
0 (intΩ) for every t ∈ R. To prove this assume that φt(s, τ) 6= 0. This

means firstly that ρε(t − τ) 6= 0, hence τ ∈ [−ε + t, ε + t], and secondly that
ψ(s, t) 6= 0. Now fix a sufficiently small constant δ = δ(ε) > 0 such that

suppψ ⊂ [−r2 + δ,−δ]× [−r + ε+ δ, r − ε− δ] ⊂ intΩε.

It follows that

(s, τ) ∈ [−r2 + δ,−δ]× [−ε+ (−r + ε+ δ), ε+ (r − ε− δ)]

= [−r2 + δ,−δ]× [−r + δ, r − δ] ⊂ intΩ.
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Induction step k ⇒ k+ 1. The calculation follows the same steps as above. We
only indicate the minor differences. Assume that case k is true, then

∫

Ω

ψ ∂2k+2
t uε = (−1)k+1

∫

R

(∫

R2

u(s, τ) ∂k+1
s

(
ρε(t− τ)ψ(s, t)

)
dτ ds

)
dt

= (−1)k+1

∫

R2

uε(s, t) ∂
k+1
s ψ(s, t) ds dt

= −
∫

Ω

(
∂ksuε

)
∂sψ

for every test function ψ ∈ C∞
0 (intΩε). Note that to obtain the first step

we applied k + 1 times assumption (17) using that φt and therefore also its
derivatives are in C∞

0 (intΩ). In the final step we used the induction hypothesis
to integrate by parts k times the s variable.

6) The function uε is smooth on the closure of Ωε. Fix ε > 0 and positive
integers m and ℓ. Then ∂mt ∂

ℓ
suε equals ∂m+2ℓ

t uε almost everywhere on Ωε by 5)
and the latter function is integrable by 4). This proves that

uε ∈
∞⋂

k=1

W k,1(Ωε) = C∞(Ωε).

Moreover, by 5) with k = 1, each uε solves the linear heat equation (18) on Ωε.
7) From now on fix a compact subsetQ ⊂ Ω. We prove that for every positive

integer k the family uε is uniformly bounded in the Banach space Ck(Q) by a
constant µk = µk(Q). To see this consider the compact parabolic rectangle
of radius r, height r2, and top center point (s, t) ∈ Q given by

Pr(s, t) := [s− r2, s]× [t− r, t+ r].

By compactness of Q there is a constant ε0 = ε0(Q) > 0 such that Q ⊂ Ωε0

and, moreover, there is a constant ρ = ρ(ε0, Q) > 0 such that

P2ρ(s, t) ⊂ Ωε0

for every point (s, t) ∈ Q. By step 6) each function uε with ε ∈ (0, ε0) is a
smooth solution of the linear homogeneous heat equation (18) on the domain
Ωε and therefore on Ωε0 . Now given a point (σ, τ) ∈ Q and a pair of nonnegative
integers m, ℓ there is by [Ev98, sec. 2.3 thm. 9] a constant cm,ℓ(σ, τ) such that

max
P ρ

2
(σ,τ)

∣∣∂mt ∂ℓsv
∣∣ ≤ cm,ℓ(σ, τ)

ρm+2ℓ+3
‖v‖L1(Pρ(σ,τ))

for all smooth solutions v of the heat equation (18) in P2ρ(σ, τ). By compactness
of Q there are finitely many sets Pρ/2(σν , τν) covering Q. Then the correspond-
ing estimates for v = uε and m, ℓ = 0, 1, . . . , k imply that

‖uε‖Ck(Q) ≤ α ‖uε‖L1(R2) ≤ α ‖u‖L1(Ω)

18



for every ε ∈ (0, ε0) and where the constant α > 0 depends only on the compact
set Q (since ρ eventually depends on Q only). Inequality two uses step 3).

8) We prove that u ∈ C∞(Q). In the setting of step 7) the Arzela-Ascoli
theorem for each k together with choosing a diagonal subsequence yields exis-
tence of a sequence εk → 0, as k → ∞, and a smooth function û defined on Q
such that uεk → û in C∞(Q), as k → ∞. On the other hand, the sequence uεk
converges to u in L1(Q) by step 3). Hence u = û by uniqueness of limits.

9) We prove lemma 2.3. The function u is smooth on Ω, because every
point of Ω is contained in a compact subset Q on which u is smooth by step 8).
To prove the identity ∂su − ∂t∂tu = 0 on Ω assume by contradiction that this
identity is violated at a point (s∗, t∗) of Ω. There are two cases.
If (s∗, t∗) is in the interior of Ω, then by smoothness of u there is a sufficiently
small open neighborhood U of (s∗, t∗) in Ω and a function φ ∈ C∞

0 (U, [0, 1])
with φ(s∗, t∗) = 1 such that assumption (17) fails. For instance, if c > 0 is the
value of the function ∂su− ∂t∂tu at the point (s∗, t∗), let U be the subset of Ω
on which ∂su− ∂t∂tu > c/2.
If (s∗, t∗) is in the boundary 0× (−r, r) of Ω, the former argument works for an
interior point of Ω sufficiently close to (s∗, t∗). Existence of such an interior point
uses again smoothness of u on Ω. This proves the parabolic Weyl lemma.

The heat ball approach

This subsection is supplementary. We give an alternative proof of the parabolic
Weyl lemma 2.3 along the lines of the proof of the original Weyl lemma for the
Laplacian. However, we will face two restrictions. Firstly, the set Ω should be
open in R

2 and, secondly, the function u should be locally Lq integrable over Ω
for some q > 3.

Lemma 2.4. Let Ω ⊂ R
2 be an open subset and q > 3. If u ∈ Lq

loc(Ω) satisfies

∫

Ω

u (−∂sφ− ∂t∂tφ) = 0 (19)

for every φ ∈ C∞
0 (Ω), then u is a temperature on Ω.

Remark 2.5. To overcome the restriction q > 3 we tried in a first step to
show that u ∈ L1

loc implies u ∈ L∞
loc under the assumptions of lemma 2.3.

This resulted in steps 1)–6) of the proof of lemma 2.3 and step 7) with k = 1.
However, since step 7) actually works for every integer k ≥ 1, it follows directly
that u is smooth and lemma 2.4 became unecessary for this purpose.

The proof of the original Weyl lemma for the Laplacian is based on the
fact that harmonic functions are characterized by their mean value property
over balls or spheres; see e.g. [GT77, Jo98]. There is a similar statement for
solutions of the heat equation. However, in the corresponding parabolic mean
value equalities a weight other than one appears and this eventually leads to
the restriction q > 3. More precisely, the weight is t2/s2. This function is Lp

integrable over heat balls about the origin whenever p = q
q−1 ∈ (1, 32 ). A further
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difference is that balls and spheres over which the means are taken are replaced
by heat balls and their boundaries, respectively. The parabolic mean value
property with respect to boundaries is due to Fulks [Fu66] and with respect to
heat balls it is due to Watson [Wa73]. Here we use that Ω ⊂ R

2 is open.
Recall that the fundamental solution to the heat equation is given by

Φ(s, t) :=





1√
4πs

e
− t2
4s , s > 0, t ∈ R,

0 , s < 0, t ∈ R.

(20)

For r > 0 we denote by Er = Er(0, 0) the area enclosed by the level set which
is determined by the identity

Φ(−s,−t) = 1

2r
√
π
.

This level set is parametrized by

t(s) = ±
√

2s ln
−s
r2
, s ∈ (−r2, 0).

Think of it as resembling an ellipse in the plane such that the origin is located
at the ’north pole’. For general base points (s, t) ∈ R

2 the sets Er(s, t) are
defined by translation and they are called heat balls of “radius” r.

Definition 2.6. Following Watson [Wa73] we call a function u defined on an
open subset Ω ⊂ R

2 a temperature if ∂t∂tu and ∂su are continuous functions on
Ω and ∂su− ∂t∂tu = 0 pointwise on Ω.

Temperatures are automatically in C∞(Ω); see e.g. [Ev98, sec. 2.3 thm. 8].

Theorem 2.7 ([Wa73] § 10 cor. 1). Let u be a continuous function on an open
subset Ω ⊂ R

2. Then the following are equivalent.

(a) The function u is a temperature.

(b) At every point (s, t) ∈ Ω the weighted mean value equality for u holds

u(s, t) =
1

8
√
π · r

∫

Er(s,t)

(t− τ)2

(s− σ)2
u(σ, τ) dτ dσ

whenever Er(s, t) ⊂ Ω.

Proof of lemma 2.4. First we sketch the proof. The main idea is to mollify the
given weak solution u to obtain a family {ur} of smooth functions converging in
L1, hence almost everywhere, to u. Here we mollify over 2-dimensional domains
as opposed to the slicewise mollification used in the proof of lemma 2.3. Now
assumption (19) implies that each function ur is a temperature on a slightly
smaller set Ωr ⊂ Ω. Hence ur satisfies the weighted mean value equality in
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Watson’s theorem 2.7. On the other hand, the family {ur} is uniformly bounded
– here we use the assumption q > 3 – and equicontinuous. Hence by Arzela-
Ascoli it converges in C0 to a continuous function v as r → 0. But we already
know that {ur} converges almost everywhere to u. Hence v = u. Since the
functions ur satisfy the mean value equality, so does their C0 limit u, and
therefore u is a temperature again by theorem 2.7.

In seven steps we provide the details in case that Ω is bounded and u is Lq

integrable over Ω. In step eight we prove the general case.
(1) We introduce appropriate mollifiers. Fix a smooth function ρ which is

compactly supported in the unit heat ball E = E1(0, 0) and satisfies
∫
E
ρ = 1.

For r > 0 consider the rescaled function

ρr(s, t) :=
1

r3
ρ

(
s

r2
,
t

r

)
.

It is compactly supported in Er and satisfies
∫
Er
ρr = 1. Denote by Ωr the set

of all points (s, t) ∈ Ω such that the closure of the heat ball Er(s, t) is contained
in Ω.

(2) We define the family {ur}. First we extend u by zero to R
2\Ω and denote

the extended map again by u. Hence u ∈ Lq(R2). For r > 0 the mollification of
u is defined by

ur(s, t) := (ρr ∗ u) (s, t) =
∫

R2

ρr(s− σ, t− τ)u(σ, τ) dτdσ.

Mollification is useful, because ur ∈ C∞
0 (R2),

‖ur − u‖Lq → 0 as r → 0,

and ur converges to u pointwise almost everywhere; see e.g. [Jo98, app. A]. We
denote Lq(R2) by Lq. Moreover, note that by Young’s convolution inequality
the Lq norm of ur is uniformly bounded, namely

‖ur‖Lq = ‖ρr ∗ u‖Lq ≤ ‖ρr‖L1 ‖u‖Lq = ‖u‖Lq . (21)

(3) We prove that each ur is a temperature on the set Ωr defined in step (1).
Here assumption (19) enters. Let φ ∈ C∞

0 (Ωr), then it follows that

∫

Ω

φ (∂sur − ∂t∂tur) dt ds =

∫

Ω

(ρr ∗ u) (−∂sφ− ∂t∂tφ) dt ds

=

∫

Ω

u (ρr ∗ (−∂sφ− ∂t∂tφ)) dτ dσ

=

∫

Ω

u (−∂σφr − ∂τ∂τφr) dτ dσ

= 0.

Here the first step is by integration by parts and the definition of ur. The second
step follows by commuting the integrals. To obtain the third step we first use
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integration by parts to throw the parabolic differential operator on the mollifier
ρr. Then we observe that (∂s−∂t∂t)ρr(s−σ, t−τ) = (−∂σ−∂τ∂τ )ρr(s−σ, t−τ)
and pull out the latter differential operator of the integral (over the product of
two smooth functions). To see the final step observe that φr = ρr ∗φ ∈ C∞

0 (Ω),
because φ ∈ C∞

0 (Ωr), and therefore assumption (19) applies. Since the identity
is true for all test functions φ ∈ C∞

0 (Ωr) and ur is smooth, it follows that
∂sur − ∂t∂tur = 0 pointwise in Ωr.

(4) Fix a constant R > 0 and allow r to vary in the interval (0, R/2). Then

ΩR ⊂ ΩR/2 ⊂ Ωr ⊂ Ω, ER/2(s, t) ⊂ ΩR/2 ∀(s, t) ∈ ΩR.

Hence by theorem 2.7 each temperature ur satisfies the mean value equality on
all heat balls with base point in ΩR and radius less or equal to R/2.

(5) We prove that the family {ur}r∈(0,R/2) is uniformly bounded on ΩR. Fix
a point (s0, t0) ∈ ΩR. Then by the mean value equality for the temperature ur
over the heat ball ER/2(s0, t0)

|ur(s0, t0)| ≤
1

4
√
πR

∫

ER/2(s0,t0)

(t0 − τ)2

(s0 − σ)2
|ur(σ, τ)| dτdσ

=
1

4
√
πR

∫

ER/2(0,0)

t2

s2
|ur(s+ s0, t+ t0)| dtds

≤ 1

4
√
πR

∥∥t2s−2
∥∥
Lp(ER/2)

‖ur‖Lq

≤ cq,R ‖u‖Lq .

In the second step we introduced new variables t = τ − t0 and s = σ − s0. In
step three we use Hölder’s inequality with 1/p+1/q = 1 and p, q > 1. Since the
weight function t2s−2 is not bounded on ER/2 we can’t get away with pulling
out the sup norm. In the last step we applied (21). The constant cq,R is given
by ‖t2s−2‖Lp(ER/2)/4

√
πR with p = q

q−1 . To see that it is finite observe that

∥∥t2s−2
∥∥p
Lp(E1)

=
2p+

3
2

2p+ 1

∫ 0

−1

(s ln(−s))p+ 1
2

(−s)2p ds

=
2p+

3
2

2p+ 1

∫ ∞

0

xp+
1
2 e−x( 3

2−p)dx

=
2p+

3
2

2p+ 1

Γ(p+ 3
2 )(

3
2 − p

)p+ 3
2

.

Here we used the change of variables x = − log(−s) in the second step, the last
step is valid whenever − 3

2 < p < 3
2 , and Γ denotes the gamma function. The

earlier use of Hölder’s inequality further restricts p to the interval (1, 32 ) and
this is equivalent to q = p

p−1 > 3. We still need to transform the unit heat ball
E1 to ER/2. This leads to a finite constant which depends only on R and p.

(6) We prove that the family {ur}r∈(0,R/2) is equicontinuous on ΩR. Here
we use uniform boundedness of the family which we proved in step (5). Given
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two points (s0, t0) and (s1, t1) of ΩR, the mean value equality for ur over the
heat balls A = ER/2(s0, t0) and B = ER/2(s1, t1), respectively, shows that

4
√
πR |ur(s0, t0)− ur(s1, t1)|

=

∣∣∣∣
∫

A

(t0 − τ)2

(s0 − σ)2
ur(σ, τ) dτdσ −

∫

B

(t1 − τ)2

(s1 − σ)2
ur(σ, τ) dτdσ

∣∣∣∣

≤
∫

A\B

(t0 − τ)2

(s0 − σ)2
|ur(σ, τ)| dτdσ +

∫

B\A

(t1 − τ)2

(s1 − σ)2
|ur(σ, τ)| dτdσ

+

∫

A∩B

∣∣∣∣
(t0 − τ)2

(s0 − σ)2
− (t1 − τ)2

(s1 − σ)2

∣∣∣∣ |ur(σ, τ)| dτdσ

≤ sup
ΩR

|ur| (f + g + h) (s0 − s1, t0 − t1)

≤ cq,R ‖u‖Lq CR |(s0, t0)− (s1, t1)|

where

f(s0 − s1, t0 − t1) =

∫

ER/2(s0,t0)\ER/2(s1,t1)

(t0 − τ)2

(s0 − σ)2
dτdσ

g(s0 − s1, t0 − t1) =

∫

ER/2(s1,t1)\ER/2(s0,t0)

(t1 − τ)2

(s1 − σ)2
dτdσ

h(s0 − s1, t0 − t1) =

∫

ER/2(s0,t0)∩ER/2(s1,t1)

∣∣∣∣
(t0 − τ)2

(s0 − σ)2
− (t1 − τ)2

(s1 − σ)2

∣∣∣∣ dτdσ.

To see the final step in the estimate observe that

f(s0 − s1, t0 − t1) =

∫

ER/2\ER/2(s1−s0,t1−t0)

t2

s2
dtds

by change of variables. This shows that f ≥ 0 depends continuously on the
difference (s0, t0)− (s1, t1) and vanishes precisely for (s0, t0) = (s1, t1). If s0 −
s1 ≥ −R2/4 or t0−t1 ≥

√
2/eR, then f is constant and equal to 4

√
πR. Denote

this set by UR. Its complement is compact. Hence f admits a uniform constant
of continuity CR/3. The same is true for g and h. Concerning h note that

h(s0 − s1, t0 − t1) =

∫

ER/2∩ER/2(s1−s0,t1−t0)

∣∣∣∣
t2

s2
− (t0 − t1 − t)2

(s0 − s1 − s)2

∣∣∣∣ dtds.

Again h ≥ 0 is continuous and constant on UR, but this constant is zero because
the integral is taken over the empty set.

(7) We conclude the proof in the case u ∈ Lq(Ω) with Ω bounded. By
uniform boundedness and equicontinuity of the family {ur : ΩR → R}r∈(0,R/2)

the Arzela-Ascoli theorem asserts existence of a continuous function v on ΩR

and a sequence of positive reals rk → 0 such that urk → v in C0(ΩR). On the
other hand, the sequence urk converges to u in Lq by step (2). Hence u = v is
continuous on ΩR. Since the temperatures urk satisfy the mean value equality
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so does the uniform limit u. Hence u : ΩR → R is a temperature by theorem 2.7.
Since every point of Ω is contained in some ΩR for R > 0 sufficiently small, it
follows that u is a temperature on Ω.

(8) We prove the general case. Let Ω ⊂ R
2 be open and u ∈ Lq

loc(Ω). Given
any point of Ω choose a sufficiently small bounded open neighborhood Ω′ ⊂ Ω
on which u is Lq integrable. Then u is a temperature on Ω′ by step (7). As the
point was chosen arbitrarily, the function u is a temperature on Ω.

2.2 Local regularity

The parabolic analogue of the Calderon-Zygmund inequality is the following
fundamental Lp estimate. It is used to prove theorem 2.9 on local regularity
and it implies the interior estimates of theorem 2.11 by induction.

Theorem 2.8 (Fundamental Lp estimate). For every p > 1, there is a constant
c = c(p) such that

‖∂sv‖p + ‖∂t∂tv‖p ≤ c‖∂sv − ∂t∂tv‖p
for every v ∈ C∞

0 (R2). The same statement is true for the domain H
−.

Proof. A proof for R2 is given in [SW03, thm. C.2] by the Marcinkiewicz-Mihlin
multiplier method. In the case of the lower half plane H

− choose a compactly
supported smooth function v on H

− and constants T > 0 and a < b such that
suppu ⊂ (−T/2, 0] × (a, b). Then [Li96, prop. 7.11] with n = 1, A11 = 1,
λ = Λ = 1, the cube K0 = (−T/2, 0] × (a, b) in (−T, 0) × R, and the function
f = ∂su− ∂t∂tu proves the statement. Note that the case H

− implies the case
R

2 by translation.

Theorem 2.9 (Local regularity). Fix a constant 1 < q <∞, an integer k ≥ 0,
and an open subset Ω ⊂ H

−. Then the following is true.

a) If u ∈ L1
loc(Ω) and f ∈ Wk,q

loc (Ω) satisfy

∫

Ω

u (−∂sφ− ∂t∂tφ) =

∫

Ω

fφ (22)

for every φ ∈ C∞
0 (intΩ), then u ∈ Wk+1,q

loc (Ω).

b) If u ∈ L1
loc(Ω) and f, h ∈ Wk,q

loc (Ω) satisfy

∫

Ω

u (−∂sφ− ∂t∂tφ) =

∫

Ω

fφ−
∫

Ω

h ∂tφ (23)

for every φ ∈ C∞
0 (intΩ), then u and ∂tu are in Wk,q

loc (Ω).

Here intΩ denotes the interior of the set Ω. Part b) is used to prove theo-
rem 3.1 on regularity for zeroes of the linearized heat equation. For convenience
of the reader we recall Poincaré’s inequality and its proof, since it is used in the
proofs of theorem 2.9 and theorem 2.11.
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Lemma 2.10 (Poincaré’s inequality). Fix constants q ≥ 1 and r > 0. Then

‖ϕ‖q ≤ 2r ‖∂tϕ‖q
for every ϕ ∈ C∞

0 ((−r, r)).
Proof. For such ϕ it holds that ϕ(−r) = 0 and hence

ϕ(t) =

∫ t

−r

∂tϕ(τ) dτ

by the fundamental theorem of calculus. This implies that

|ϕ(t)| ≤
∫ t

−r

|∂tϕ(τ)| dτ ≤
∫ r

−r

1 · |∂tϕ(τ)| dτ ≤ (2r)1/p ‖∂tϕ‖q

where the last step uses Hölder’s inequality with 1/q + 1/p = 1. Therefore

|ϕ(t)|q ≤ (2r)q−1 ‖∂tϕ‖qq
and integration over t ∈ (−r, r) concludes the proof of the lemma.

Proof of theorem 2.9 . Since any given compact subset Q of Ω can be covered
by finitely many parabolic rectangles whose closure is contained in Ω, we may
assume without loss of generality that Ω = (−r2, 0]× (−r, r) for r > 0.
The proof of part a) consists of four steps I–IV and part b) requires another
four steps V-VIII.

Step I: Fix two open subsets Ω′ and U of Ω = (−r2, 0] × (−r, r) such that the
closure of Ω′ is contained in U and the closure of U is contained in Ω. Fix a
smooth compactly supported cutoff function β : Ω → [0, 1] such that β = 1
on U . Then βf is compactly supported and Wk,q integrable over Ω. Now
approximate βf in Wk,q(Ω) through a sequence (fi) ⊂ C∞

0 (Ω), that is

‖fi − βf‖Wk,q(Ω) −→ 0, as i→ ∞.

Step II: Each smooth problem

(∂s − ∂t∂t)ui = fi (24)

with fi ∈ C∞
0 (Ω) admits a unique solution ui ∈ C∞

0 (Ω); see e.g. [Li96, thm. 5.6].
We prove below that the sequence of solutions ui is a Cauchy sequence in
Wk+1,q(Ω). Therefore it admits a unique limit û ∈ Wk+1,q(Ω). Now the limit û
solves the identity (∂s − ∂t∂t)û = βf almost everywhere on Ω as can be seen as
follows: The sequence ∂sui−∂t∂tui converges to ∂sû−∂t∂tû in Lq, since ui is a
Cauchy sequence in Wk+1,q(Ω), and the sequence fi converges to βf by step I.
Uniqueness of the limit then proves equality in Lq(Ω).

It remains to prove that the sequence ui is Cauchy. All norms are with
respect to the domain Ω. Note that

‖ui − uj‖q ≤ 2r ‖∂t(ui − uj)‖q ≤ (2r)2 ‖∂t∂t(ui − uj)‖q .
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The first inequality follows by integrating Poincaré’s inequality (lemma 2.10)
for ϕ(t) = ui(s, t) − uj(s, t) over s ∈ (−r2, 0). The second inequality follows
similarly. Now use equation (24) to obtain that

‖ui − uj‖q ≤ (2r)2
(
‖∂s(ui − uj)‖q + ‖fi − fj‖q

)
.

More generally, there is a constant C = C(k, r) such that

‖ui − uj‖Wk+1,q ≤ C
(∥∥∂k+1

s (ui − uj)
∥∥
q
+ ‖fi − fj‖Wk,q

)

for all i and j. This follows by inspecting the left hand side term by term replac-
ing any two t-derivatives by one s-derivative and the error term fi according to
equation (24). If an odd number of t-derivatives appears then use lemma 2.10
to obtain an even number. Now the fundamental Lp estimate theorem 2.8 with
constant c = c(q) and function v = ∂ks (ui − uj) asserts that

‖∂k+1
s (ui − uj)‖q ≤ c‖(∂s − ∂t∂t)∂

k
s (ui − uj)‖q

= c‖∂ks (fi − fj)‖q
≤ c‖fi − fj‖Wk,q .

Here we used again equation (24). Next use the approximation of βf in step I
to obtain that the sequence ui in Wk,q(Ω) is Cauchy, namely

‖fi − fj‖Wk,q ≤ ‖fi − βf‖Wk,q + ‖βf − fj‖Wk,q −→ 0, as i, j → ∞.

Step III: The restriction of û − u to the open subset U ⊂ Ω is a weak solution
of the homogeneous problem. More precisely, it is true that

∫

U

(û− u)(−∂sφ− ∂t∂tφ) =

∫

U

(∂sû− ∂t∂tû)φ−
∫

U

u(−∂sφ− ∂t∂tφ)

=

∫

U

(∂sû− ∂t∂tû− βf)φ

= 0

for every test function φ ∈ C∞
0 (intU). Here the first step is by integration by

parts using step II and the second step is by assumption (22) and the fact that
f = βf on U . The last step uses the identity in step II.

Step IV: The difference û − u is in L1(U) by step II and assumption on u.
Hence by the parabolic Weyl lemma 2.3 the function F := û − u is smooth
on U . Together with the fact that û ∈ Wk+1,q(Ω) by step II this shows that
u = û − F is of class Wk+1,q on each bounded open subset of U , hence on Ω′.
This proves part a) of theorem 2.9. The proof of b) takes four further steps.

Step V: Let the sets Ω′ and U , the cutoff function β, and the sequence (fi) ⊂
C∞

0 (Ω) be as in step I. Approximate the compactly supported function βh in
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Wk,q(Ω) through a sequence (hi) ⊂ C∞
0 (Ω). Now as in steps II and III each

smooth problem
(∂s − ∂t∂t)vi = hi (25)

admits a unique solution vi ∈ C∞
0 (Ω) and the sequence (vi) is Cauchy in

Wk+1,q(Ω) with unique limit v̂ which solves the identity (∂s − ∂t∂t)v̂ = βh
almost everywhere on Ω.

Step VI: Observe that the sequences

wi := ui + ∂tvi, ∂twi = ∂tui + ∂t∂tvi,

converge in Wk,q(Ω) to the limits

ŵ = û+ ∂tv̂, ∂tŵ = ∂tû+ ∂t∂tv̂,

respectively. Moreover, each wi satisfies the identity (∂s − ∂t∂t)wi = fi + ∂thi
on Ω. Integration by parts then shows that

∫

Ω

wi (−∂s − ∂t∂t)φ =

∫

Ω

fiφ−
∫

Ω

hi∂tφ

for every φ ∈ C∞
0 (intΩ). Taking the limit i→ ∞ we obtain that

∫

Ω

ŵ (−∂s − ∂t∂t)φ =

∫

Ω

βfφ−
∫

Ω

βh ∂tφ (26)

for every φ ∈ C∞
0 (intΩ).

Step VII: The restriction of ŵ− u to the open subset U of Ω is a weak solution
of the homogeneous problem, meaning that

∫

U

(ŵ − u)(−∂sφ− ∂t∂tφ) =

∫

U

ŵ(−∂s − ∂t∂t)φ−
∫

U

u(−∂sφ− ∂t∂tφ)

=

∫

U

(βfφ− βh ∂tφ)−
∫

U

(fφ− h ∂tφ)

= 0

for every test function φ ∈ C∞
0 (intU). Here step two uses the identity (26) for

ŵ and assumption (23) on u. Step three is true since β = 1 on U .

Step VIII: Note that the difference ŵ−u is in L1(U) by step VI and assumption
on u. Hence by the parabolic Weyl lemma 2.3 the function G := ŵ−u is smooth
on U . Since ŵ ∈ Wk,q(Ω) by step VI, this shows that u = ŵ − G is of class
Wk,q on each bounded open subset of U . Since also ∂tŵ ∈ Wk,q(Ω) by step VI,
the function ∂tu = ∂tŵ − ∂tG is of class Wk,q on each bounded open subset of
U , in particular on Ω′. This concludes the proof of theorem 2.9.
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Interior estimates

Theorem 2.11 extends the fundamental Lp estimate theorem 2.8 to parabolic
Sobolev spaces of higher order. The proof is by induction. Parabolic boot-
strapping in section 2.4 relies on this extension. Also theorem 2.2 on interior
regularity now follows readily. Then in proposition 2.13 we establish the linear
version of the fundamental Lp estimate.

Theorem 2.11 (Interior estimates for parabolic rectangles). Fix an integer
k ≥ 0 and constants 1 < q <∞ and 0 < r < R. Define Ωr = (−r2, 0]× (−r, r).
Then there is a constant c = c(k, q, R− r) such that

‖u‖Wk+1,q(Ωr)
≤ c

(
‖∂su− ∂t∂tu‖Wk,q(ΩR) + ‖u‖Lq(ΩR) + ‖∂tu‖Lq(ΩR)

)
(27)

for every u ∈ C∞(ΩR).

Proof. The proof is by induction on k.
Step k = 0. Fix a smooth compactly supported cutoff function β : ΩR → [0, 1]
such that β = 1 on Ωr. Then

‖u‖W1,q(Ωr)

≤ ‖βu‖Lq(ΩR) + ‖∂t (βu)‖Lq(ΩR) + ‖∂t∂t (βu)‖Lq(ΩR) + ‖∂s (βu)‖Lq(ΩR)

≤ 2R(1 + 2R) ‖∂t∂t (βu)‖Lq(ΩR) + ‖∂s (βu)‖Lq(ΩR)

≤ c ‖(∂s − ∂t∂t)βu‖Lq(ΩR)

≤ c ‖(∂s − ∂t∂t)u‖Lq(ΩR) + C
(
‖u‖Lq(ΩR) + ‖∂tu‖Lq(ΩR)

)

where c = cq (1 + 2R(1 + 2R)) with cq being the constant in theorem 2.8 and

C = ‖∂sβ‖∞ + ‖∂t∂tβ‖∞ + 2 ‖∂tβ‖∞ .

The first step uses the fact that β = 1 on Ωr, the definition of the W1,q norm,
and monotonicity of the integral. To obtain step two we fixed s and applied
Poincaré’s inequality lemma 2.10 to the functions βu, ∂t(βu) ∈ C∞

0 (−R,R),
then we integrated over s ∈ (−R2, 0]. Step three is by theorem 2.8.

Induction step k − 1 ⇒ k. Fix k ≥ 1. It suffices to estimate the Wk+1,q

norms of u, ∂tu, ∂t∂tu, and ∂su individually by the right hand side of (27). We
provide details for the least trivial term and leave the others as an exercise. Fix
constants r < r1 < r2 < R. Then by the induction hypothesis, that is case k−1
with pair of sets Ωr ⊂ Ωr1 and function v = ∂su, we obtain that

‖∂su‖Wk,q(Ωr)

≤ c1

(
‖(∂s − ∂t∂t)∂su‖Wk−1,q(Ωr1

) + ‖∂su‖Lq(Ωr1
) + ‖∂t∂su‖Lq(Ωr1

)

)

≤ c1

(
‖(∂su− ∂t∂t)u‖Wk,q(ΩR) + ‖u‖W1,q(Ωr1

) + ‖∂tu‖W1,q(Ωr1
)

)
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for some constant c1 = c1(k − 1, q, r1 − r). To deal with the last term in the
sum we apply the case k = 0 with pair of sets Ωr1 ⊂ Ωr2 and function v = ∂tu
to obtain that

‖∂tu‖W1,q(Ωr1
) ≤ c2

(
‖(∂s − ∂t∂t)∂tu‖Lq(Ωr2

) + ‖∂tu‖Lq(Ωr2
) + ‖∂t∂tu‖Lq(Ωr2

)

)

≤ c2

(
‖(∂su− ∂t∂t)u‖Wk,q(ΩR) + ‖∂tu‖Lq(ΩR) + ‖u‖W1,q(Ωr2

)

)

for some constant c2 = c2(q, r2 − r1). It remains to estimate the last term in
the sum. We apply again the case k = 0, but now for the pair of sets Ωr2 ⊂ ΩR

and the function u to obtain that

‖u‖W1,q(Ωr2
) ≤ c3

(
‖(∂s − ∂t∂t)u‖Lq(ΩR) + ‖u‖Lq(ΩR) + ‖∂tu‖Lq(ΩR)

)

for some constant c3 = c3(q,R− r2).

Proof of theorem 2.2 on interior regularity. a) Assume the parabolic rectangle
Ω = (σ − r2, σ]× (τ − r, τ + r) is contained in the cylinder ZT = (−T, 0]× S1.
Then the assumptions of theorem 2.9 a) are satisfied for u and f restricted to

Ω. Hence u ∈ Wk+1,q
loc (Ω). Now u is locally Wk+1,q integrable on ZT , because

every compact subset of ZT can be covered by finitely many parabolic rectan-
gles. Part b) follows by induction over k based on theorem 2.11 and a covering
argument by parabolic sets.

Lemma 2.12 ([SW03, lemma D.4]). Let x ∈ C∞(S1,M) and p > 1. Then

‖∇tξ‖p ≤ κp

(
δ−1 ‖ξ‖p + δ ‖∇t∇tξ‖p

)

for δ > 0 and smooth vector fields ξ along x. Here κp equals p/(p− 1) for p ≤ 2
and it equals p for p ≥ 2.

Proposition 2.13. Assume u : R×S1 →M is a smooth map such that ‖∂su‖∞,
‖∂tu‖∞, and ‖∇t∂tu‖∞ are finite and lims→±∞ u(s, t) exists, uniformly in t.
Then, for every p > 1, there is a constant c = c(p, u,M) such that

‖∇sξ‖p + ‖∇tξ‖p + ‖∇t∇tξ‖p ≤ c
(
‖∇sξ −∇t∇tξ‖p + ‖ξ‖p

)
(28)

for every smooth compactly supported vector field ξ along u. Estimate (28)
remains valid for −∇s replacing ∇s. Estimate (28) also remains valid if u is
defined on the backward halfcylinder (−∞, 0]× S1.

Proof. The proof of (28) for R× S1 and (−∞, 0]× S1 is based on theorem 2.8
for R2 and H

−, respectively, using a covering argument. Full details in the case
R× S1 are provided by [SW03, prop. D.2]. Lemma 2.12 allows to add the term
∇tξ to the left hand side of (28). The underlying reason is periodicity in the t
variable. The statement for −∇s follows by reflection s 7→ −s.

Applications of the proposition include closedness of the range of the lin-
earized operator, proposition 3.18, estimate (77) in the proof of the exponential
decay theorem 1.8, and step 2 in the proof of theorem 8.5.
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2.3 A product estimate

The product estimate lemma 2.14 is the key tool to obtain the quadratic esti-
mates of proposition 5.2. These in turn are used to prove the refined implicit
function theorem 1.12. The Euclidean version corollary 2.16 of the product es-
timate is crucial in section 2.4 on parabolic bootstrapping. Namely, it allows to
estimate the quadratic first order term Γ(u) (∂tu, ∂tu) of the heat equation (30)
in the Lp norm as opposed to the Lp/2 norm which one expects at first sight.

Lemma 2.14. Let N be a Riemannian manifold with Levi-Civita connection
∇ and Riemannian curvature tensor R. Fix constants 2 ≤ p < ∞ and c0 > 0.
Then there is a constant C = C(p, c0, ‖R‖∞) such that the following holds. If
u : (a, b]× S1 → N is a smooth map such that

‖∂su‖∞ + ‖∂tu‖∞ ≤ c0,

then
(∫ b

a

∫ 1

0

(|∇tξ| |∇tX|)p dtds
)1/p

≤ C ‖ξ‖W1,p

(
‖∇tX‖p + ‖∇t∇tX‖p

)

for all smooth compactly supported vector fields ξ and X along u.

Remark 2.15. Lemma 2.14 continues to hold for smooth maps u that are
defined on the whole cylinder R× S1. In this case the (compact) supports of ξ
and X are contained in an interval of the form (a, b].

Corollary 2.16. Fix 2 ≤ p <∞. Then there is a constant C = C(p) such that

(∫ 0

−T

∫ 1

0

(|∂tv| |∂tw|)p dtds
)1/p

≤ C ‖v‖W1,p

(
‖∂tw‖p + ‖∂t∂tw‖p

)

for all compactly supported smooth maps v, w : (−T, 0]× S1 → R
k.

Proof. Lemma 2.14 with N = R
k, u ≡ const, ξ = v, and X = w.

Proof of lemma 2.14. The proof has three steps. Step 2 requires p ≥ 2. Abbre-
viate I = (a, b] and for q, r ∈ [1,∞] consider the norm

‖ξ‖q;r := ‖ξ‖Lq(I,Lr(S1)) .

Step 1. Fix reals α ≥ 1 and q, r, q′, r′ ∈ [α,∞] such that 1
q + 1

r = 1
α and

1
q′ +

1
r′ =

1
α . Then ‖fg‖α ≤ ‖f‖q′;q ‖g‖r′;r for all functions f, g ∈ C∞(I ×S1).

Let fs(t) := f(s, t). Apply Hölder’s inequality twice to obtain

‖fg‖αLα(I×S1) =

∫ b

a

‖fsgs‖αLα(S1) ds

≤
∫ b

a

(
‖fs‖Lq(S1) ‖gs‖Lr(S1)

)α
ds

= ‖uv‖αLα(I)

≤
(
‖u‖Lq′ (I) ‖v‖Lr′ (I)

)α
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where u(s) := ‖fs‖Lq(S1) and v(s) := ‖gs‖Lr(S1). This proves step 1.

Step 2. Given p, c0, and u as in the hypothesis of the lemma, then there is a
constant c = c(p, c0) such that

‖∇tξ‖∞;p ≤ c ‖ξ‖W1,p

for every smooth compactly supported vector field ξ along u : I × S1 → N .

The proof uses the generalized Young inequality: Given reals a, b, c ≥ 0 and
1 < α, β, γ <∞ such that 1

α + 1
β + 1

γ = 1, then

abc ≤ aα

α
+
bβ

β
+
cγ

γ
. (29)

To prove this inequality one applies twice the standard Young inequality. The
first application uses the exponents α and α/(α− 1) and the second application
ℓ := β(α−1)/α and m := γ(α−1)/α. The sum of the inverted exponents equals
one in both cases. It follows that

abc ≤ aα

α
+
α− 1

α
bα/(α−1) cα/(α−1)

≤ aα

α
+
α− 1

α

(
bαℓ/(α−1)

ℓ
+
cαm/(α−1)

m

)

=
aα

α
+
α− 1

αℓ
bαℓ/(α−1) +

α− 1

αm
cαm/(α−1)

and this proves (29). Next straightforward calculation using integration by parts
and abbreviating ξ(s, t) by ξ shows that

d

ds

∫ 1

0

|∇tξ(s, t)|p dt

= p

∫ 1

0

|∇tξ|p−2 〈∇tξ,∇t∇sξ + [∇s,∇t]ξ〉 dt

= −p
∫ 1

0

(
d

dt
|∇tξ|p−2

)
〈∇tξ,∇sξ〉 dt− p

∫ 1

0

|∇tξ|p−2 〈∇t∇tξ,∇sξ〉 dt

+ p

∫ 1

0

|∇tξ|p−2 〈∇tξ,R(∂su, ∂tu)ξ〉 dt

= −p(p− 2)

∫ 1

0

|∇tξ|p−4 〈∇tξ,∇t∇tξ〉〈∇tξ,∇sξ〉 dt

− p

∫ 1

0

|∇tξ|p−2
(〈∇t∇tξ,∇sξ〉 − 〈∇tξ,R(∂su, ∂tu)ξ〉) dt.

Take the absolute value of the right hand side, apply the generalized Young
inequality (29) in the case2 p > 2 with α = p/(p − 2), β = p, γ = p, and the

2The case p = 2 is taken care of by the standard Young inequality.
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standard Young inequality with α = p/(p− 1), β = p to obtain the inequality

d

ds

∫ 1

0

|∇tξ(s, t)|p dt

≤ p(p− 1)

∫ 1

0

|∇tξ|p−2 |∇t∇tξ| · |∇sξ| dt+ pc20 ‖R‖∞
∫ 1

0

|∇tξ|p−1 |ξ| dt

≤ p(p− 1)

∫ 1

0

(
p− 2

p
|∇tξ|p +

1

p
|∇t∇tξ|p +

1

p
|∇sξ|p

)
dt

+ pc20 ‖R‖∞
∫ 1

0

(
p− 1

p
|∇tξ|p +

1

p
|ξ|p
)
dt

≤ C1

(
‖ξs‖pLp(S1) + ‖∇sξs‖pLp(S1) + ‖∇t∇tξs‖pLp(S1)

)
.

Here C1 > 0 is a constant depending only on p, c0, and ‖R‖∞ and ξs(t) := ξ(s, t).
Note that we used lemma 2.12 to estimate the terms involving ∇tξs. Now fix
σ ∈ (a, b] and integrate this inequality over s ∈ (a, σ] to obtain the estimate

‖∇tξσ‖pLp(S1) ≤ c ‖ξ‖pW1,p((a,b]×S1) .

Here we used compactness of the support of ξ and monotonicity of the integral.
Since the right hand side is independent of σ the proof of step 2 is complete.

Step 3. We prove the lemma.

Define
f(s, t) := |∇tξ(s, t)|, g(s, t) := |∇tX(s, t)|.

By step 1 with α = q = r′ equal to p and with r = q′ = ∞ we have that

∫ b

a

∫ 1

0

(|∇tξ(s, t)| |∇tX(s, t)|)p dtds = ‖fg‖pp
≤ ‖∇tξ‖p∞;p ‖∇tX‖pp;∞ .

Now apply step 2 to the first factor. For the second one we exploit the fact
that, since the slices s × S1 of our domain are compact, there is the Sobolev
embedding

W 1,p(S1) →֒ L∞(S1)

with constant µ = µ(p) > 0. It follows that

∫ b

a

‖∇tXs‖pL∞(S1) ds ≤
∫ b

a

µp ‖∇tXs‖pW 1,p(S1) ds

= µp

∫ b

a

‖∇tXs‖pLp(S1) + ‖∇t∇tXs‖pLp(S1) ds.

This concludes the proof of lemma 2.14.
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2.4 Parabolic bootstrapping

In this section we establish by parabolic bootstrapping uniform Sobolev bounds
for strong solutions u of the perturbed heat equation (30). Proposition 2.18
is a refined version of theorem 2.1 providing Sobolev bounds for ∂tu, ∂su, and
∂t∂tu. In order to deal with the quadratic lower order nonlinearity Γ of the
heat equation we shall first prove apriori continuity of ∂tu in lemma 2.17. This
provides a C0 bound for ∂tu and we can think of the quadratic nonlinearity
becoming linear. This is crucial in the first step ℓ = 1 of the parabolic bootstrap
in the proof of proposition 2.18.

Throughout this section we fix a closed smooth submanifold M →֒ R
N and

a smooth family of vector-valued symmetric bilinear forms Γ :M → R
N×N×N .

Abbreviate Wk,p(Z) = Wk,p(Z,RN ). Moreover, for T > T ′ > 0 we abbreviate

Z = ZT = (−T, 0]× S1, Z ′ = ZT ′ = (−T ′, 0]× S1.

Lemma 2.17 (Apriori continuity of ∂tu). Fix constants p > 2, µ0 > 1, and
T > 0. Fix a map F : Z → R

N such that F and ∂tF are of class Lp. Assume
that u : Z → R

N is a W1,p map taking values in M with ‖u‖W1,p ≤ µ0 and
such that the perturbed heat equation

∂su− ∂t∂tu = Γ(u) (∂tu, ∂tu) + F (30)

is satisfied almost everywhere. Then ∂tu is continuous. More precisely, for
every T ′ ∈ (0, T ) there is a constant c = c(p, µ0, T, T

′, ‖Γ‖C1) such that

‖∂tu‖C0(Z′) ≤ c
(
1 + ‖∂tF‖Lp(Z)

)
.

Note that by the Sobolev embedding theorem the assumption p > 2 guaran-
tees that every W1,p map u is continuous. Hence it makes sense to specify that
u takes values in the submanifold M of RN .

Proposition 2.18. Under the assumptions of lemma 2.17 the following is true
for every integer k ≥ 1 such that F, ∂tF ∈ Wk−1,p(Z) and every T ′ ∈ (0, T ).

(i) There is a constant ak depending on p, µ0, T , T
′, ‖Γ‖C2k+2 , and the

Wk−1,p(Z) norms of F and ∂tF such that

‖∂tu‖Wk,p(Z′) ≤ ak.

(ii) If ∂sF ∈ Wk−1,p(Z) then there is a constant bk depending on p, µ0, T ,
T ′, ‖Γ‖C2k+2 , and the Wk−1,p(Z) norms of F , ∂tF , and ∂sF such that

‖∂su‖Wk,p(Z′) ≤ bk.

(iii) If ∂t∂tF ∈ Wk−1,p(Z) then there is a constant ck depending on p, µ0, T ,
T ′, ‖Γ‖C2k+2 , and the Wk−1,p(Z) norms of F , ∂tF , and ∂t∂tF such that

‖∂t∂tu‖Wk,p(Z′) ≤ ck.
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Remark 2.19. Since the proof of lemma 2.17 relies heavily on the product
estimate corollary 2.16 it seems unlikely that the assumption u ∈ W1,p can be
weakened to u ∈W 1,p – unless we also replace the assumption p > 2 by p > 3.

Remark 2.20. The assumption u ∈ W1,p in lemma 2.17 and proposition 2.18
can likewise be replaced by u, ∂t∂tu ∈ Lp ∩ C0. To see this observe that the
new assumption implies firstly that ∂tu ∈ Lp, see e.g. [SW03, lemma D.4], and
secondly that ∂su is in Lp, though on a smaller domain. This follows similarly
to the argument in the proof of lemma 2.17 leading to an Lp bound for ∂t∂tu.

Notation. In the proofs of lemma 2.17 and proposition 2.18 we use the following
notation. Given two constants T > T ′ > 0 consider the sequence given by

Tk := T ′ +
T − T ′

k
, k ∈ N. (31)

Note that T1 = T . The definition also makes sense if we replace k by a real
number r ≥ 1. Now consider cylinders Zr = (−Tr, 0]×S1. By intZr we denote
the interior (−Tr, 0) × S1 of Zr. It is useful to memorize that Zr+1 ⊂ Zr. For
each positive integer k fix a smooth compactly supported cutoff function

ρk : (−Tk, 0] → [0, 1] (32)

such that ρk = 1 on Zk+1 and ‖∂sρ‖∞ ≥ 1. Recall that Ck is defined by (14).

Proof of lemma 2.17. Denote the nonlinear part of the heat equation (30) by

h = h(u) = Γ(u) (∂tu, ∂tu) + F

and the first cutoff function fixed in (32) by ρ = ρ1. Then h ∈ Lp(Z2), namely

‖h‖Lp(Z2)
≤
∥∥ρ2h

∥∥
Lp(Z1)

≤ ‖Γ‖∞ ‖|∂t(ρu)| · |∂t(ρu)|‖Lp(Z1)
+
∥∥ρ2F

∥∥
Lp(Z1)

≤ Cp ‖Γ‖∞ ‖∂sρ‖2∞ ‖u‖2W1,p(ZT ) + ‖F‖Lp(ZT )

where in step one and two we used that ρ2 = 1 on Z2 and independence of
ρ on the t variable, respectively. The last step is by the product estimate
corollary 2.16 with constant Cp > 0 applied to the compactly supported W1,p

map ρu : ZT → R
N using a density argument. Compactness of M implies that

‖Γ‖∞ <∞. Next observe that

∂th = dΓ(u) (∂tu, ∂tu, ∂tu) + 2Γ(u) (∂t∂tu, ∂tu) + ∂tF. (33)

Now we indicate the main idea of the proof. Suppose we knew that ∂th ∈
Lχ(Zk+1) for some χ > 1 and some k ∈ N, then

∫

Zk+1

∂tu (−∂sφ− ∂t∂tφ) = −
∫

Zk+1

∂su ∂tφ+

∫

Zk+1

∂t∂tu ∂tφ

= −
∫

Zk+1

h ∂tφ

=

∫

Zk+1

∂thφ

(34)
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for every φ ∈ C∞
0 (intZk+1). Here all steps use integration by parts. Step

two is by definition of h and the assumption that u satisfies the heat equa-
tion (30) almost everywhere. Now theorem 2.2 on interior regularity asserts
that ∂tu ∈ W1,χ(Zk+2). Hence we have improved the regularity of ∂tu which in
turn improves the of regularity ∂th as given by (33). Now start over again. We
prove below that under this iteration χ eventually converges to p. But p > 2,
hence continuity of ∂tu follows by the Sobolev embedding W1,χ →֒ C0.

To get the iteration started at k = 1 we first need to prove that ∂th ∈ Lχ(Z2)
for some χ > 1. As a first try recall that by assumption u ∈ W1,p(Z1). Therefore
the first term in (33) is in Lp/3 only whereas the second term is in Lp/2. Hence
∂th ∈ Lp/3, but p/3 is not necessarily larger than 1. Fortunately, using the
product estimate corollary 2.16 we can do better. By assumption p > 2 is given
and fixed. Consider the function

χ = χp(q) =
pq

p+ q

and observe that 1/p+ 1/q = 1/χ. Apply Hölder’s inequality to obtain that

‖∂th‖Lχ(Zk+1)
≤
∥∥ρk2∂th

∥∥
Lχ(Zk)

≤ ‖dΓ‖∞ ‖|∂t(ρku)| · |∂t(ρku)|‖Lp(Zk)
‖∂tu‖Lq(Zk)

+ 2 ‖Γ‖∞ ‖∂t∂tu‖Lp(Zk)
‖∂tu‖Lq(Zk)

+ ‖∂tF‖Lχ(Zk)

≤ Cp ‖dΓ‖∞ ‖∂sρk‖2∞ ‖u‖2W1,p(ZT ) ‖∂tu‖Lq(Zk)

+ 2 ‖Γ‖∞ ‖∂t∂tu‖Lp(ZT ) ‖∂tu‖Lq(Zk)
+ ‖∂tF‖Lp(Zk)

≤ α ‖∂tu‖Lq(Zk)
+ ‖∂tF‖Lp(ZT ) .

(35)

Here the third step is by the product estimate corollary 2.16 with constant
Cp and the constant α in the last line depends on p, µ0, ‖Γ‖C1 , and ρk. We
used again one of the cutoff functions in (32) to produce a compactly supported
function as required by the product estimate. Consequently the domain shrinks.

Now we start the iteration with initial value q1 = p. Then χ(q1) = p/2 > 1.
Hence ∂th ∈ Lp/2(Z2) by estimate (35) for k = 1. Therefore by (34) theorem 2.2

applies to the functions ∂tu and f = ∂th and proves that ∂tu ∈ W1,p/2
loc (Z2) and

‖∂tu‖W1,p/2(Z3)
≤ c2

(
‖∂th‖Lp/2(Z2)

+ µ0

)

≤ c2

(
αµ0 + ‖∂tF‖Lp(ZT ) + µ0

) (36)

for some constant c2 = c2(p, T2−T3). Step two uses (35) for k = 1 and q = p/2,
the fact that ‖∂tu‖p/2 ≤ ‖∂tu‖p, and the assumption ‖∂tu‖p ≤ µ0.
Now there are three cases: If p > 4 then we are done by the Sobolev embedding
W 1,p/2 →֒ C0 on the domain Z3; see e.g. [MS04, app. B.1] for relevant embed-
ding theorems. If p < 4 then the value of χ = χp(q1) = p/2 is in the interval
(1, 2). In this case there is the Sobolev embedding

W1,χ(Z3) ⊂W 1,χ(Z3) →֒ L2χ/(2−χ)(Z3) = Lq2(Z3)
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with constant C2 = C2(p, T3) > 0. Here we abbreviated

q2 :=
2χ

2− χ
=

2pq1
2p+ 2q1 − pq1

=
2p

4− p
.

Hence ∂tu ∈ L2p/(4−p)(Z3). Since 2p/(4 − p) > p is equivalent to 2 < p < 4,
this means that the regularity of ∂tu has been improved – on the expense of a
smaller domain though. The case p = 4 means that u : ZT → R

N is a W1,4 map
to start with. But then it is also a W1,3 map and we are in the former case.

Repeating the same argument with new initial value q2 proves that ∂tu ∈
W1,χp(q2)(Z5). Again this space embedds either in C0(Z5) and we are done or
it embedds in Lq3(Z5) where q3 = 2pq2/(2p+ 2q2 − pq2) > q2. It is crucial that
in (35) the value of p is fixed. Firstly, because the product estimate corollary 2.16
requires p ≥ 2 and, secondly, because we only know that ∂t∂tu ∈ Lp. Proceeding
this way we obtain the sequence qk determined by

qk+1 =
2pqk

2p+ 2qk − pqk
, q1 = p. (37)

Observe again that the condition p > 2 implies that qk+1 > qk. Hence the
sequence is strictly monotone increasing. Next we prove that qk → ∞ as k → ∞.
Assume by contradiction that this is not true. Then by strict monotonicity the
sequence is bounded and admits a unique limit, say q. By (37) this limit satisfies
q = 2pq/(2p+ 2q − pq). But this is equivalent to p = 2 contradicting p > 2. It
follows that χp(qk) converges to p as k → ∞. But p > 2, hence whenever k is
sufficiently large there is the Sobolev embedding

W1,χp(qk)(Z2k+1) →֒ C0(Z2k+1) ⊂ C0(ZT ′)

and this implies the estimate in lemma 2.17. Clearly ∂tu is continuous on the
whole cylinder ZT since every point is contained in some subcylinder ZT ′ .

Proof of proposition 2.18. We prove the following claim by induction on ℓ. Re-
call from (31) the definition of the real Tℓ and the cylinder Zℓ. The claim with
ℓ = k proves proposition 2.18.

Claim. Given 0 < T ′ < T and an integer k ≥ 1 such that F and ∂tF are in
Wk−1,p, then the following is true for every ℓ ∈ {1, . . . , k}.

(a) ∂tu ∈ Wℓ,p
loc(Z3ℓ−1) and there exists a constant Aℓ depending on p, µ0,

‖Γ‖C2ℓ+2 , ‖F‖Wℓ−1,p , and ‖∂tF‖Wℓ−1,p such that

‖∂tu‖Wℓ,p(Z3ℓ)
≤ Aℓ.

(b) If ∂sF ∈ Wk−1,p(ZT ) then ∂su ∈ Wℓ,p
loc(Z3ℓ) and there exists a constant Bℓ

depending on p, µ0, ‖Γ‖C2ℓ+2 , ‖F‖Wℓ−1,p , ‖∂tF‖Wℓ−1,p , and ‖∂sF‖Wℓ−1,p

such that
‖∂su‖Wℓ,p(Z3ℓ+1)

≤ Bℓ.
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(c) If ∂t∂tF ∈ Wk−1,p(ZT ) then ∂t∂tu ∈ Wℓ,p
loc(Z3ℓ+1) and there exists a

constant Cℓ depending on p, µ0, ‖Γ‖C2ℓ+2 , ‖F‖Wℓ−1,p , ‖∂tF‖Wℓ−1,p , and
‖∂t∂tF‖Wℓ−1,p such that

‖∂t∂tu‖Wℓ,p(Z3ℓ+2)
≤ Cℓ.

Here and throughout the domain of all norms is ZT , unless specified oth-
erwise. An exception are the various norms of Γ for which the domain is the
compact manifold M . We abbreviate h = Γ(u) (∂tu, ∂tu) + F .

Step ℓ = 1. By lemma 2.17 with T ′ = T2 there is a constant C0 depending on
p, µ0, T , T2, and ‖Γ‖C1 , such that

‖∂tu‖C0(Z2)
≤ C0

(
1 + ‖∂tF‖p

)
. (38)

(a) Recall that ∂th is given by (33). Straightforward calculation shows that

‖∂th‖Lp(Z2)
≤ ‖dΓ‖∞ ‖∂tu‖2C0(Z2)

‖∂tu‖Lp(Z2)
+ ‖∂tF‖Lp(Z2)

+ 2 ‖Γ‖∞ ‖∂tu‖C0(Z2)
‖∂t∂tu‖Lp(Z2)

≤ α
(
1 + ‖∂tF‖2p

)

for some constant α = α(p, µ0, T, T2, ‖Γ‖C1). We used (38) and the assumption
‖u‖W1,p ≤ µ0. Recall from (34) that ∂tu satisfies

∫

Z2

∂tu (−∂sφ− ∂t∂tφ) =

∫

Z2

∂thφ

for every φ ∈ C∞
0 (intZ2). Hence theorem 2.2 on interior regularity for q = p,

T = T2, T
′ = T3, k = 0, and the functions f = ∂th and ∂tu in Lp(Z2) proves

that ∂tu ∈ W1,p
loc (Z2) and

‖∂tu‖W1,p(Z3)
≤ µ

(
‖∂th‖Lp(Z2)

+ ‖∂tu‖Lp(Z2)

)

for some constant µ = µ(p, T2, T3). Now use the estimate for ∂th to see that

‖∂tu‖W1,p(Z3)
≤ A

(
1 + ‖∂tF‖2p

)

for some constant A = A(p, µ0, T, T2, T3, ‖Γ‖C1).

(b) Straightforward calculation shows that

‖∂sh‖Lp(Z3)
≤ ‖dΓ‖∞ ‖∂tu‖2C0(Z3)

‖∂su‖Lp(Z3)
+ ‖∂sF‖Lp(Z3)

+ 2 ‖Γ‖∞ ‖∂tu‖C0(Z3)
‖∂s∂tu‖Lp(Z3)

≤ β
(
1 + ‖∂tF‖3p

)
+ ‖∂sF‖p
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for some constant β = β(p, µ0, T, T2, T3, ‖Γ‖C1) > 1. Here we estimated the Lp

norm of ∂s∂tu by the W1,p estimate for ∂tu just proved in (a). We also used
the C0 estimate (38). Next observe that

∫

Z3

∂su (−∂sφ− ∂t∂tφ) = −
∫

Z3

(∂su− ∂t∂tu) ∂sφ

= −
∫

Z3

(Γ(u) (∂tu, ∂tu) + F (u)) ∂sφ

=

∫

Z3

∂shφ

(39)

for every φ ∈ C∞
0 (intZ3). Here steps one and three are by integration by parts.

Step two uses the assumption that u satisfies the heat equation (30) almost
everywhere. Now theorem 2.2 proves that ∂su ∈ W1,p

loc (Z3) and

‖∂su‖W1,p(Z4)
≤ µ

(
‖∂sh‖Lp(Z3)

+ ‖∂su‖Lp(Z3)

)

for some constant µ = µ(p, T3, T4). Now use the estimate for ∂sh to see that

‖∂su‖W1,p(Z4)
≤ B

(
1 + ‖∂tF‖3p + ‖∂sF‖p

)

for some constant B = B(p, µ0, T, T2, T3, T4, ‖Γ‖C1).

(c) Straighforward calculation shows that

‖∂t∂th‖Lp(Z4)
≤
∥∥d2Γ

∥∥
∞

‖∂tu‖3C0(Z4)
‖∂tu‖Lp(Z4)

+ ‖∂t∂tF‖Lp(Z4)

+ 4 ‖dΓ‖∞ ‖∂tu‖2C0(Z4)
‖∂t∂tu‖Lp(Z4)

+ 2 ‖Γ‖∞ ‖∂tu‖C0(Z4)
‖∂t∂t∂tu‖Lp(Z4)

+ 2 ‖Γ‖∞ ‖∂t∂tu‖C0(Z4)
‖∂t∂tu‖Lp(Z4)

≤ γ
(
1 + ‖∂tF‖4p

)
+ ‖∂t∂tF‖p

for some constant γ = γ(p, µ0, T, T2, T3, T4, ‖Γ‖C2). In the final inequality we
used the C0 estimate (38) for ∂tu and the W1,p estimate for ∂tu proved above
in (a). This takes care of all terms but one, namely the C0 norm of ∂t∂tu. Here
we use that ∂t∂t∂tu and ∂s∂t∂tu = ∂t∂t∂su are in Lp(Z4) by (a) and (b), re-
spectively. Hence ∂t∂tu ∈ C0 by the Sobolev embedding W 1,p →֒ C0. Similarly
to the calculation in (34) it follows that

∫

Z4

∂t∂tu (−∂sφ− ∂t∂tφ) =

∫

Z4

∂t∂thφ

for every φ ∈ C∞
0 (intZ4). Theorem 2.2 then proves that ∂t∂tu ∈ W1,p

loc (Z4) and

‖∂t∂tu‖W1,p(Z5)
≤ µ

(
‖∂t∂th‖Lp(Z4)

+ ‖∂t∂tu‖Lp(Z4)

)
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for some constant µ = µ(p, T4, T5). Now use the estimate for ∂t∂th to see that

‖∂t∂tu‖W1,p(Z5)
≤ C

(
1 + ‖∂tF‖4p + ‖∂t∂tF‖p

)

for some constant C = C(p, µ0, T, T2, T3, T4, T5, ‖Γ‖C2).

Induction step ℓ⇒ ℓ+1. Fix an integer ℓ ∈ {1, . . . , k−1} and assume that (a–c)
are true for this choice of ℓ. We indicate this by the notation (a–c)ℓ. The task
at hand is to prove (a–c)ℓ+1. Recall the parabolic Cℓ norm (14). An immediate
consequence of the induction hypothesis (a–c)ℓ is that

‖u‖Wℓ+1,p(Z3ℓ+2)
≤ D′

ℓ+1

for some constant D′
ℓ+1 = D′

ℓ+1(p, µ0, ‖Γ‖C2ℓ+2 , ‖F‖Wℓ,p). Hence

‖u‖Cℓ(Z3ℓ+2)
≤ Dℓ+1 (40)

for some constant Dℓ+1 = Dℓ+1(p, µ0, ‖Γ‖C2ℓ+2 , ‖F‖Wℓ,p). To see this observe
that up to a constant the Cℓ norm can be estimated by the Wℓ+1,p norm. (This
boils down to the Sobolev embedding W 1,p →֒ C0 for each individual derivative
of u showing up in Cℓ.)

(a)ℓ+1 Straightforward calculation shows that

‖∂th‖Wℓ,p(Z3ℓ+2)

≤ ‖dΓ‖C2ℓ dℓ ‖u‖2Cℓ(Z3ℓ+2)
‖∂tu‖Wℓ,p(Z3ℓ+2)

+ ‖∂tF‖Wℓ,p(Z3ℓ+2)

+ 2 ‖Γ‖C2ℓ dℓ ‖u‖Cℓ(Z3ℓ+2)

(
‖∂tu‖Wℓ,p(Z3ℓ+2)

+ ‖∂t∂tu‖Wℓ,p(Z3ℓ+2)

)

≤ αℓ+1 + ‖∂tF‖Wℓ,p

for some constant αℓ+1 = αℓ+1(p, µ0, ‖Γ‖C2ℓ+2 , ‖F‖Wℓ,p). The first inequality
follows from the identity (33) and the last two estimates of corollary 2.22 with
constant dℓ. Notice the difference between the standard Cℓ and the parabolic
Cℓ norms. To obtain the second inequality we applied (40) and the induc-
tion hypotheses (a)ℓ and (c)ℓ to estimate the Wℓ,p norms of ∂tu and ∂t∂tu,
respectively. Next observe that theorem 2.2 applies by (34) and shows that

∂tu ∈ Wℓ+1,p
loc (Z3ℓ+2) and

‖∂tu‖Wℓ+1,p(Z3ℓ+3)
≤ µ

(
‖∂th‖Wℓ,p(Z3ℓ+2)

+ ‖∂tu‖Lp(Z3ℓ+2)

)

for some constant µ = µ(p, Z3ℓ+2, Z3ℓ+3). Now the assumption ‖u‖W1,p ≤ µ0

and the estimate for ∂th conclude the proof of (a)ℓ+1. For latter reference we
remark that (a)ℓ+1 implies – similarly to (40) – the estimate

‖∂tu‖Cℓ(Z3ℓ+3)
≤ Eℓ (41)

for some constant Eℓ = Eℓ(p, µ0, ‖Γ‖C2ℓ+2 , ‖F‖Wℓ,p , ‖∂tF‖Wℓ,p).
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(b)ℓ+1 Straightforward calculation using the Wℓ+1,p estimate for ∂tu just proved
and the induction hypotheses (a–c)ℓ implies that

‖∂sh‖Wℓ,p(Z3ℓ+3)
≤ ‖dΓ‖C2ℓ ‖∂tu‖2Cℓ(Z3ℓ+3)

‖∂su‖Wℓ,p(Z3ℓ+3)
+ ‖∂sF‖Wℓ,p(Z3ℓ+3)

+ 2 ‖Γ‖C2ℓ ‖∂tu‖Cℓ(Z3ℓ+3)
‖∂s∂tu‖Wℓ,p(Z3ℓ+3)

≤ βℓ+1 + ‖∂sF‖Wℓ,p

for some constant βℓ+1 = βℓ+1(p, µ0, ‖Γ‖C2ℓ+2 , ‖F‖Wℓ,p , ‖∂tF‖Wℓ,p). To obtain
the first inequality we simply pulled out the Cℓ norms. In the second inequality
we used (41), the induction hypothesis (b)ℓ to estimate the Wℓ,p norm of ∂su,
and the induction hypothesis (a)ℓ+1 just proved to estimate the Wℓ,p norm
of ∂s∂tu. Next observe that theorem 2.2 applies by the identity (39) with Z3

replaced by Z3ℓ+3 and shows that ∂su ∈ Wℓ+1,p
loc (Z3ℓ+3) and

‖∂su‖Wℓ+1,p(Z3ℓ+4)
≤ µ

(
‖∂sh‖Wℓ,p(Z3ℓ+4)

+ ‖∂tu‖Lp(Z3ℓ+4)

)

for some constant µ = µ(p, Z3ℓ+3, Z3ℓ+4). Now use the estimate for ∂sh.

(c)ℓ+1 Straighforward calculation shows that

‖∂t∂th‖Wℓ,p(Z3ℓ+3)
≤
∥∥d2Γ

∥∥
C2ℓ ‖∂tu‖3Cℓ ‖∂tu‖Wℓ,p

+ 5 ‖dΓ‖C2ℓ ‖∂tu‖2Cℓ ‖∂t∂tu‖Wℓ,p

+ 2 ‖Γ‖C2ℓ ‖∂tu‖Cℓ ‖∂t∂t∂tu‖Wℓ,p + ‖∂t∂tF‖Wℓ,p

+ 2 ‖Γ‖C2ℓ C
′
k ‖∂tu‖Cℓ ‖∂t∂tu‖Wℓ,p .

Here all norms are taken on the domain Z3ℓ+3 except those involving Γ which
are taken over M . Notice that in the first three terms of the sum we simply
pulled out the Cℓ norms. However, in the last term there appears originally
the product ∂t∂tu times ∂t∂tu. To deal with this product we applied the first
estimate of corollary 2.22 (where in both factors u is replaced by ∂tu).
Now the Cℓ estimate (41) for ∂tu and the Wℓ+1,p estimate for ∂tu established
in (a)ℓ+1 above prove that

‖∂t∂th‖Wℓ,p(Z3ℓ+3)
≤ γℓ+1 + ‖∂t∂tF‖Wℓ,p

for some constant γℓ+1 = γℓ+1(ℓ, p, µ0, ‖Γ‖C2ℓ+2 , ‖F‖Wℓ,p , ‖∂tF‖Wℓ,p). Apply

again theorem 2.2 to see that ∂t∂tu ∈ Wℓ+1,p
loc (Z3ℓ+3) and

‖∂t∂tu‖Wℓ+1,p(Z3ℓ+4))
≤ µ

(
‖∂t∂th‖Wℓ,p(Z3ℓ+3)

+ ‖∂t∂tu‖Lp(Z3ℓ+3)

)

for some constant µ = µ(p, Z3ℓ+3, Z3ℓ+4). The estimate for ∂t∂th implies (c)ℓ+1.
This proves the induction step, hence the claim.

Lemma 2.21. Fix a constant p > 2 and a bounded open subset Ω ⊂ R
2 with

area |Ω|. Then for every integer k ≥ 1 there is a constant c = c(k, |Ω|) such that

‖∂tu · v‖Wk,p ≤ c (‖∂tu‖Wk,p ‖v‖∞ + ‖u‖Ck ‖v‖Wk,p)

for all functions u, v ∈ C∞(Ω).
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Proof. The proof is by induction on k. By definition of the Wℓ,p norm

‖∂tu · v‖Wℓ+1,p ≤ ‖∂tu · v‖Wℓ,p + ‖∂t∂tu · v + ∂tu · ∂tv‖Wℓ,p

+ ‖∂t∂t∂tu · v + 2∂t∂tu · ∂tv + ∂tu · ∂t∂tv‖Wℓ,p

+ ‖∂s∂tu · v + ∂tu · ∂sv‖Wℓ,p .

(42)

Step k = 1. Estimate (42) for ℓ = 0 shows that

‖∂tu · v‖W1,p ≤
(
‖∂tu‖p + ‖∂t∂tu‖p + ‖∂t∂t∂tu‖p + ‖∂s∂tu‖p

)
‖v‖∞

+ (‖∂tu‖∞ + 2 ‖∂t∂tu‖∞) ‖∂tv‖p
+ ‖∂tu‖∞

(
‖∂t∂tv‖p + ‖∂sv‖p

)

and this proves the lemma for k = 1.

Induction step k ⇒ k + 1. Consider estimate (42) for ℓ = k, then inspect the
right hand side term by term using the induction hypothesis to conclude the
proof. To illustrate this we give full details for the last term in (42), namely

‖∂tu · ∂sv‖Wk,p ≤ c (‖∂tu‖Wk,p ‖∂sv‖∞ + ‖u‖Ck ‖∂sv‖Wk,p)

≤ c (c′ |Ω| ‖∂tu‖Ck ‖∂sv‖W1,p + ‖u‖Ck ‖v‖Wk+1,p)

≤ c (c′ |Ω| ‖u‖Ck+1 ‖v‖W2,p + ‖u‖Ck ‖v‖Wk+1,p) .

Step one is by the induction hypothesis. In step two we pulled out the L∞ norms
of all derivatives of ∂tu and for the term ∂sv we used the Sobolev embedding
W1,p ⊂ W 1,p →֒ C0 with constant c′. Here we use the assumptions p > 2 and
Ω bounded. Step three is obvious. Now Wk+1,p →֒ W2,p since k ≥ 1.

Corollary 2.22. Fix a constant p > 2 and a bounded open subset Ω ⊂ R
2.

Then for every integer k ≥ 1 there is a constant d = d(k, |Ω|) such that

‖∂tu · ∂tu‖Wk,p ≤ dk ‖u‖Ck ‖∂tu‖Wk,p

‖∂tu · ∂t∂tu‖Wk,p ≤ dk ‖u‖Ck (‖∂tu‖Wk,p + ‖∂t∂tu‖Wk,p)

‖∂tu · ∂tu · ∂tu‖Wk,p ≤ dk ‖u‖2Ck ‖∂tu‖Wk,p

for every function u ∈ C∞(Ω).

Proof. All three estimates follow from lemma 2.21. To obtain the first and the
second estimate set v = ∂tu and v = ∂t∂tu, respectively, and use that

‖∂tu‖∞ ≤ ‖u‖Ck , ‖∂t∂tu‖∞ ≤ ‖u‖Ck .

To obtain estimate three set v = ∂tu · ∂tu and use estimate one.

Proof of theorem 2.1. The Wk+1,p norm of u is equivalent to the sum of the
Wk,p norms of u, ∂tu, ∂su, and ∂t∂tu. Apply proposition 2.18 (i–iii).
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3 The linearized heat equation

Fix a smooth function V : LM → R that satisfies (V0)–(V3) and a smooth map
u : R× S1 →M . In this chapter we study the linear parabolic PDE

∇sξ −∇t∇tξ −R(ξ, ∂tu)∂tu−HV(u)ξ = 0 (43)

for vector fields ξ along u. Throughout R denotes the Riemannian curvature
tensor associated to the closed Riemannian manifold M and the covariant Hes-
sian HV of V at a loop u(s, ·) is defined by (4).

In section 3.1 we show that strong solutions, that is solutions of class W1,p
u ,

are automatically smooth. More generally, for ξ ∈ Lp
u we define the notion of

weak solution and show that even weak solutions are smooth. In section 3.2
we derive pointwise estimates of ξ and certain partial derivatives in terms of
the L2 norm of ξ over small backward cylinders. In section 3.3 we establish
asymptotic exponential decay of the slicewise L2 norm ‖ξs‖L2(S1) of a solution
ξ whenever the covariant Hessian Aus

given by (10) is asymptotically injective.
Still assuming asymptotic injectivity we prove in section 3.4 that the linear
operator

Du : W1,p
u → Lp

u

given by the left hand side of (43) is Fredholm.
Observe that if u solves the (nonlinear) heat equation (6) then ξ := ∂su

solves the linear equation (43). Hence the results of this chapter will be useful
in chapter 4 on solutions of the nonlinear heat equation.

3.1 Regularity

Define the operator D∗
u by the left hand side of (43) with ∇s replaced by −∇s.

Theorem 3.1 (Local regularity of weak solutions). Fix a perturbation V :
LM → R that satisfies (V0)–(V3) and constants q > 1 and a < b. Let u :
(a, b]× S1 → M be a smooth map with bounded derivatives of all orders. Then
the following is true. If η is a vector field along u of class Lq

loc such that

〈η,D∗
uξ〉 = 0

for every smooth vector field ξ along u of compact support in (a, b)×S1, then η
is smooth. Here 〈·, ·〉 denotes integration over the pointwise inner products.

Remark 3.2. Theorem 3.1 remains true if we replace D∗
u by Du and define u

on [a, b)× S1. This follows by the variable substitution s 7→ −s.

Proof. It suffices to prove the conclusion in a neighborhood of any point z ∈
(a, b] × S1. Shifting the s and t variables, if necessary, we may assume that
z ∈ Ωr = (−r2, 0] × (−r, r) for some sufficiently small r > 0. Now choose local
coordinates on the manifold M around the point u(z) and fix r > 0 sufficiently
small such that u(Ωr) is contained in the local coordinate patch. In these local
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coordinates the vector field η is represented by the map (η1, . . . , ηn) : Ωr → R
n

of class Lq
loc and the Riemannian metric g by the matrix with components gij .

Throughout we use Einstein’s sum convention. By induction we will prove that

vµ := gµjη
j ∈

∞⋂

m=1

Wm,q
loc (Ωr), µ = 1, . . . , n.

Note that the intersection of spaces equals C∞(Ωr); see e.g. [MS04, app. B.1].
Now apply the inverse metric matrix to obtain that ηj = gjµvµ ∈ C∞(Ωr) and
this proves the theorem.

Step m = 1. Fix µ ∈ {1, . . . , n} and consider vector fields of the form

ξ(µ,φ) = (0, . . . , 0, φ, 0, . . . , 0) : Ωr → R
n

where a function φ ∈ C∞
0 (intΩr) occupies slot µ. Via extension by zero we view

ξ(µ,φ) as a compactly supported smooth vector field along u. Now our assump-
tion implies that 〈η,D∗

uξ
(µ,φ)〉 = 0 for every φ ∈ C∞

0 (intΩr). By straightforward
calculation this is equivalent to

∫

Ωr

vµ (−∂sφ− ∂t∂tφ) =

∫

Ωr

fµφ−
∫

Ωr

hµ ∂tφ

for every φ ∈ C∞
0 (intΩr), where hµ = −2vkΓ

k
iµ ∂tu

i and

fµ = vk

(
Γk
iµ ∂su

i +
∂Γk

iµ

∂ur
∂tu

r ∂tu
i + Γk

iµ ∂t∂tu
i

+ Γk
ij ∂tu

iΓj
rµ ∂tu

r +Rk
µij ∂tu

i ∂tu
j +Hk

µ

)
.

Here Rk
ℓij represents the Riemann curvature operator andHk

ℓ the HessianHV(u)
in local coordinates. The Christoffel symbols associated to the Levi Civita
connection ∇ are denoted by Γk

ij .
From now on the domain of all spaces will be Ωr, unless specified differently.

Observe that vµ ∈ Lq
loc ⊂ L1

loc by smoothness of the metric, compactness of M ,
and the fact that ηℓ ∈ Lq

loc by assumption. It follows that hµ and fµ are in Lq
loc.

Here we used in addition boundedness of the derivatives of u and axiom (V1).
Hence ∂tvµ ∈ Lq

loc by theorem 2.9 b) and this implies that ∂thµ ∈ Lq
loc. Now

integration by parts shows that
∫

Ωr

vµ (−∂sφ− ∂t∂tφ) =

∫

Ωr

(fµ + ∂thµ)φ

for every φ ∈ C∞
0 (intΩr) and therefore vµ ∈ W1,q

loc by theorem 2.9 a).

Induction step m ⇒ m + 1. Assume that vµ ∈ Wm,q
loc . Then fµ, hµ ∈ Wm,q

loc by
compactness of M , boundedness of the derivatives of u, and axiom (V3). Hence
∂tvµ ∈ Wm,q

loc by theorem 2.9 b). But this implies that ∂thµ is in Wm,q
loc and so

is fµ + ∂thµ. Therefore vµ ∈ Wm+1,q
loc by theorem 2.9 a).
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3.2 Apriori estimates

Theorem 3.3. Fix a perturbation V : LM → R that satisfies (V0)–(V2) and
a constant C0 > 0. Then there is a constant C = C(C0,V) > 0 such that the
following is true. Assume u : R× S1 →M is a smooth map with ‖∂tu‖∞ ≤ C0

and ξ is a smooth vector field along u satisfying the linear heat equation (43).
Then

|ξ(s, t)| ≤ C ‖ξ‖L2([s− 1
2 ,s]×S1)

for every (s, t) ∈ R× S1. If in addition ‖∂su‖∞ + ‖∇t∂tu‖∞ ≤ C0, then

|∇tξ(s, t)| ≤ C ‖ξ‖L2([s−1,s]×S1)

for every (s, t) ∈ R× S1.

Theorem 3.4. Fix a perturbation V : LM → R that satisfies (V0)–(V2) and
a constant C0 > 0. Then there is a constant C = C(C0,V) > 0 such that the
following is true. Assume u : R× S1 →M is a smooth map with

‖∂tu‖∞ + ‖∂su‖∞ + ‖∇t∂tu‖∞ + ‖∇t∂su‖∞ + ‖∇t∇t∂tu‖∞ ≤ C0

and ξ is a smooth vector field along u satisfying the linear heat equation (43).
Then

|∇t∇tξ(s, t)|+ |∇sξ(s, t)| ≤ C ‖ξ‖L2([s−2,s]×S1)

for every (s, t) ∈ R× S1.

Remark 3.5. If in theorem 3.3 or theorem 3.4 the vector field ξ solves D∗
uξ = 0,

then η(s, t) := ξ(−s, t) solves (43). The apriori estimates for η then translate
into apriori estimates for ξ. For example, it follows that

|ξ(s, t)| ≤ C ‖ξ‖L2([s,s+ 1
2 ]×S1)

for every (s, t) ∈ R× S1 and similarly for the higher order derivatives.

The proof of theorem 3.3 and theorem 3.4 is based on the following mean
value inequalities. Consider the parabolic domain defined for r > 0 by

Pr := (−r2, 0)× (−r, r).

Lemma 3.6 ([SW03, lemma B.1]). There is a constant c1 > 0 such that the
following holds for all r ∈ (0, 1] and a ≥ 0. If w : Pr → R, (s, t) 7→ w(s, t), is
C1 in the s-variable and C2 in the t-variable such that

(∂t∂t − ∂s)w ≥ −aw, w ≥ 0,

then

w(0) ≤ c1e
ar2

r3

∫

Pr

w.
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Corollary 3.7. Let c1 be the constant of lemma 3.6 and fix two constants
r ∈ (0, 1] and µ ≥ 0. Then the following is true. If F : [−r2, 0] → R is a C1

function such that
−F ′ + µF ≥ 0, F ≥ 0,

then

F (0) ≤ 2c1e
µr2

r2

∫ 0

−r2
F (s) ds.

Proof. Lemma 3.6 with w(s, t) := F (s).

Lemma 3.8 ([SW03, lemma B.4]). Let R, r > 0 and u : PR+r → R, (s, t) 7→
u(s, t), be C1 in the s-variable and C2 in the t-variable and f, g : PR+r → R be
continuous functions such that

(∂t∂t − ∂s)u ≥ g − f, u ≥ 0, f ≥ 0, g ≥ 0.

Then ∫

PR

g ≤
∫

PR+r

f +

(
4

r2
+

1

Rr

)∫

PR+r\PR

u.

Corollary 3.9. Fix two positive constants r,R and three functions U,F,G :
[−(R+ r)2, 0] → R such that U is C1 and F,G are continuous. If

−U ′ ≥ G− F, U ≥ 0, F ≥ 0, G ≥ 0,

then

∫ 0

−R2

G(s) ds ≤ R+ r

R

(∫ 0

−(R+r)2
F (s) ds+

(
4

r2
+

1

Rr

)∫ 0

−(R+r)2
U(s) ds

)
.

Proof. Lemma 3.8 with u(s, t) = U(s), f(s, t) = F (s), and g(s, t) = G(s).

Proof of theorem 3.3. We prove the theorem in three steps. The idea is to prove
in step 1 the desired pointwise estimate in its integrated form (slicewise esti-
mate). In steps 2 and 3 this is then used to prove the pointwise estimates. Note
that in step 3 we provide an estimate which is not used in the current proof,
but later on in the proof of theorem 3.4. Occasionaly we denote ξ(s, t) by ξs(t)
and in this case ‖ξs‖ abbreviates ‖ξs‖L2(S1).

Step 1. There is a constant C1 = C1(C0,V) > 0 such that

∫ 1

0

|ξ(s, t)|2 dt+
∫ s

s− 1
16

∫ 1

0

|∇tξ(s, t)|2 dtds ≤ C1 ‖ξ‖2L2([s− 1
4 ,s]×S1)

for every s ∈ R.

Define the functions f, g : R× S1 → R and F,G : R → R by

2f := |ξ|2, 2g := |∇tξ|2, F (s) :=

∫ 1

0

f(s, t) dt, G(s) :=

∫ 1

0

g(s, t) dt,
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and abbreviate
L := ∂t∂t − ∂s, L := ∇t∇t −∇s.

Then
Lf = 2g + U, U := 〈ξ,Lξ〉. (44)

Assume that U satisfies the pointwise inequality

|U | ≤ µf +
1

2
‖ξs‖2 (45)

for a suitable constant µ = µ(C0,V) > 0. Hence Lf + µf +F ≥ 2g by (44) and
integration over the interval 0 ≤ t ≤ 1 shows that

−F ′ + (µ+ 1)F ≥ 2G.

Step 1 follows by Corollary 3.7 with r = 1
2 and corollary 3.9 with R = r = 1

4 .
It remains to prove (45). Since ξ solves the linear heat equation (43), it

follows that

|U | = |〈ξ,∇t∇tξ −∇sξ〉|
= |〈ξ,R(ξ, ∂tu)∂tu+HV(u)ξ〉|
≤ ‖R‖∞ ‖∂tu‖2∞ |ξ|2 + c1 |ξ|

(
|ξ|+ ‖ξs‖L1(S1)

)

≤
(
2C2

0 ‖R‖∞ + 2c1 + c1
2
) 1
2
|ξ|2 + 1

2
‖ξs‖2 .

Here we used the assumption on ∂tu, axiom (V1) with constant c1, and the fact
that ‖·‖L1(S1) ≤ ‖·‖L2(S1) by Hölder’s inequality. This proves (45).

Step 2. We prove the estimate for |ξ| in theorem 3.3.

Note that Lf ≥ −|U | by (45). Hence the estimate (45) for |U | and the slicewise
estimate for ξs provided by step 1 prove the pointwise inequality

Lf ≥ −µf − 2C1 ‖ξ‖2L2([s− 1
4 ,s]×S1)

for all s and t. Fix (s0, t0) and set a = a(s0) :=
2C1

µ ‖ξ‖2L2([s0−
1
2 ,s0]×S1). Then

L (f + a) ≥ −µ (f + a)

for all t and s ∈ [s0− 1
4 , s0]. Hence lemma 3.6 with r = 1

2 applies to the function
w(s, t) := f(s0 + s, t0 + t) + a and we obtain that

f(s0, t0) ≤ 8c1e
µ/4

∫ 0

− 1
4

∫ 1

0

(f(s0 + s, t0 + t) + a) dtds

≤ 8c1e
µ/4

(
1

2
+
C1

2µ

)
‖ξ‖2L2([s0−

1
2 ,s0]×S1) .

Since s0 ∈ R and t0 ∈ S1 were chosen arbitrarily, this proves step 2.
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Step 3. There is a constant C3 = C3(C0,V) > 0 such that

∫ s

s− 1
4

∫ 1

0

|∇t∇tξ(s, t)|2 dtds ≤ C3 ‖ξ‖2L2([s− 5
4 ,s]×S1)

for every s ∈ R. Moreover, the estimate for |∇tξ| in theorem 3.3 holds true.

Define the functions f1, g1 : R× S1 → R by

2f1 := |∇tξ|2, 2g1 := |∇t∇tξ|2

and the functions F1, G1 : R → R by

F1(s) :=

∫ 1

0

f1(s, t) dt, G1(s) :=

∫ 1

0

g1(s, t) dt.

Then
Lf1 = 2g1 + Ut, Ut := 〈∇tξ,L∇tξ〉. (46)

Since ξ solves the linear heat equation (43), it follows that

L∇tξ = ∇t (∇t∇tξ −∇sξ)− [∇s,∇t]ξ

= ∇t (−R(ξ, ∂tu)∂tu−HV(u)ξ)−R(∂su, ∂tu)ξ

= − (∇tR) (ξ, ∂tu)∂tu−R(∇tξ, ∂tu)∂tu−R(ξ,∇t∂tu)∂tu

−R(ξ, ∂tu)∇t∂tu−∇tHV(u)ξ −R(∂su, ∂tu)ξ.

Now take the pointwise inner product of this identity and ∇tξ and estimate
the resulting six terms separately using the L∞ boundedness assumption of the
various derivatives of u. For instance, term five satisfies the estimate

|〈∇tξ,∇tHV(u)ξ〉| ≤ c2 |∇tξ|
(
|∇tξ|+ (1 + |∂tu|)

(
|ξ|+ ‖ξs‖L1(S1)

))

by the second inequality of axiom (V2) with constant c2. It follows that Ut

satisfies the pointwise inequality

|Ut| ≤ µf1 + µ |ξ|2 + µ ‖ξs‖2L2(S1)

for a suitable constant µ = µ(C0,V) > 0. Hence

Lf1 ≥ 2g1 − µf1 − µ |ξ|2 − µ ‖ξs‖2L2(S1) (47)

pointwise for all s and t. Integrate this inequality over t ∈ [0, 1] to obtain that

−F ′
1 ≥ 2G1 − µF1 − 2µF

pointwise for every s ∈ R. Then corollary 3.9 with R = r = 1
2 shows that

∫ s0

s0−
1
4

‖∇t∇tξs‖2 ds ≤ (µ+ 20)

∫ s0

s0−1

‖∇tξs‖2 ds+ 2µ

∫ s0

s0−1

‖ξs‖2 ds

47



for every s0 ∈ R. Now
∫ s0

s0−1

‖∇tξs‖2 ds ≤ 16C1

∫ s0

s0−
5
4

‖ξs‖2 ds

by step 1 and this proves the first assertion of step 3. (We need this result only
in the proof of theorem 3.4 below.)

To prove the second assertion of step 3, that is the estimate for |∇tξ|, note
that estimate (47), step 1, and step 2 imply the pointwise estimate

Lf1 ≥ −µf1 − µ ‖ξ‖2L2([s− 1
2 ,s]×S1)

for all s and t. Here we have chosen a larger value for the constant µ. Fix
(s0, t0) ∈ R× S1 and set a = a(s0) := ‖ξ‖2L2([s0−1,s0]×S1). Then

L (f1 + a) ≥ −µ (f1 + a)

for all t and s ∈ [s0− 1
2 , s0]. Hence lemma 3.6 with r = 1

2 applies to the function
w(s, t) := f1(s0 + s, t0 + t) + a and proves the desired estimate, namely

f1(s0, t0) ≤ 8c1e
µ/4

∫ 0

− 1
4

∫ 1

0

(f1(s0 + s, t0 + t) + a) dtds

= 8c1e
µ/4

(
1

2

∫ s0

s0−
1
4

∫ 1

0

|∇tξ(s, t)|2 dtds+
a

4

)

≤ 8c1e
µ/4

(
2 ‖ξ‖2L2([s0−

1
2 ,s0]×S1) +

1

4
‖ξ‖2L2([s0−1,s0]×S1)

)

for all s0 ∈ R and t0 ∈ S1. The final inequality uses the estimate of step 1. This
concludes the proof of step 3 and theorem 3.3.

Proof of theorem 3.4. Occasionaly we denote ξ(s, t) by ξs(t). Define the func-
tions f2, g2 : R× S1 → R by

f2 :=
1

2
|∇t∇tξ|2, g2 :=

1

2
|∇t∇t∇tξ|2

and abbreviate L := ∂t∂t − ∂s and L := ∇t∇t −∇s. Then

Lf2 = 2g2 + Utt, Utt := 〈∇t∇tξ,L∇t∇tξ〉. (48)

We estimate |Utt|. Since ξ solves the linear heat equation (43), it follows that

L∇t∇tξ = ∇t∇t (∇t∇tξ −∇sξ) + [∇t∇t,∇s]ξ

= ∇t∇t (−R(ξ, ∂tu)∂tu−HV(u)ξ) +∇t[∇t,∇s]ξ + [∇t,∇s]∇tξ

= ∇t

(
− (∇tR) (ξ, ∂tu)∂tu−R(∇tξ, ∂tu)∂tu−R(ξ,∇t∂tu)∂tu

−R(ξ, ∂tu)∇t∂tu
)
−∇t∇tHV(u)ξ + (∇tR) (∂tu, ∂su)ξ

+R(∇t∂tu, ∂su)ξ +R(∂tu,∇t∂su)ξ + 2R(∂tu, ∂su)∇tξ.
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Now take the pointwise inner product of this identity and ∇t∇tξ. Estimate the
resulting sum term by term and use the assumption that various derivatives of
u are bounded in L∞. It follows that

|Utt| ≤ µ1 |∇t∇tξ| (|ξ|+ |∇tξ|+ |∇t∇tξ|) + |∇t∇tξ| · |∇t∇tHV(u)ξ|

for some positive constant µ1 which depends only on the L∞ bound C0. Note
that by axiom (V3) there is a positive constant c3 = c3(V) such that

|∇t∇tHV(u)ξ| ≤ c3 |∇t∇tξ|+ c3 (1 + |∂tu|) |∇tξ|
+ c3

(
1 + |∂tu|2 + |∇t∂tu|

)(
|ξ|+ ‖ξs‖L1(S1)

)
.

Hence there is a positive constant µ2 = µ2(C0,V) such that

|Utt| ≤ µ2

(
f2 + |∇tξ|2 + |ξ|2 + ‖ξs‖2L2(S1)

)
.

Theorem 3.3 applied to the last three terms of this sum implies that

|Utt| ≤ µf2 + µ ‖ξ‖2L2([s−1,s]×S1)

pointwise for all s and t and with a suitable constant µ = µ(C0,V) > 0. Now
Lf2 ≥ −|Utt| by (48) and therefore

Lf2 ≥ −µf2 − µ ‖ξ‖2L2([s−1,s]×S1)

pointwise for all s and t. Fix s0 ∈ R and set a := ‖ξ‖2L2([s0−2,s0]×S1), then

L (f2 + a) ≥ −µ (f2 + a)

for all t ∈ S1 and s ∈ [s0 − 1, s0]. Fix t0 ∈ S1 and apply lemma 3.6 with r = 1
to the function w(s, t) := f2(s0 + s, t0 + t) + a to obtain that

f2(s0, t0) ≤ c1e
µ

∫ 0

−1

∫ +1

−1

(f2(s0 + s, t0 + t) + a) dtds

= c1e
µ

(∫ s0

s0−1

∫ 1

0

|∇t∇tξ(s, t)|2 dtds+ 2a

)

≤ c1e
µ (4C3 + 2) ‖ξ‖2L2([s0−2,s0]×S1) .

Here the last inequality follows by the estimate of step 3 in the proof of the-
orem 3.3 with constant C3 = C3(C0,V) > 0. Since s0 ∈ R and t0 ∈ S1 were
chosen arbitrarily, the proof of the first estimate of theorem 3.4 is complete.

The second estimate, that is the one for |∇sξ|, follows easily from the fact
that ξ solves the linear heat equation (43), the estimate for |∇t∇tξ| which we
just proved, the estimate for |ξ| of theorem 3.3, and the estimate for |HV(u)ξ|
provided by axiom (V1). This concludes the proof of theorem 3.4.

49



3.3 Exponential decay

Given a smooth loop x : S1 →M consider the linear operator defined by

Axξ = −∇t∇tξ −R(ξ, ∂tx)∂tx−HV(x)ξ (49)

on L2(S1, x∗TM) with dense domain W 2,2(S1, x∗TM). With respect to the L2

inner product 〈·, ·〉 this operator is self-adjoint; see e.g. [W02] for the case of
geometric perturbations Vt and use lemma 3.14 in the general case.

Theorem 3.10 (Backward exponential decay). Fix a perturbation V : LM →
R that satisfies (V0)–(V2) and a constant c0 > 0. Then there exist positive
constants δ, ρ, C such that the following holds. Let x : S1 →M be a smooth loop
such that Ax given by (49) is injective and ‖∂tx‖2 + ‖∇t∂tx‖2 ≤ c0. Assume
u : (−∞, 0]× S1 →M is a smooth map and T0 > 0 is a constant such that

us = expx ηs, ‖ηs‖W 2,2 ≤ δ, ‖∂sus‖2 + ‖∇s∂tus‖2 ≤ δ,

whenever s ≤ −T0. Assume further that ξ is a smooth vector field along u such
that the function s 7→ ‖ξs‖2 is bounded by a constant c = c(ξ) and ξ solves one
of two equations

±∇sξ −∇t∇tξ −R(ξ, ∂tu)∂tu−HV(u)ξ = 0. (50)

Then
‖ξs‖22 ≤ eρ(s+T0) ‖ξ−T0

‖22 ≤ c2eρ(s+T0)

and
‖ξ‖2L2((−∞,s]×S1) ≤ C2

ρ e
ρ(s+T0) ‖ξ‖2L2([−T0−1,−T0]×S1)

for every s ≤ −T0.
Note the weak assumption (L2 versus L∞) on the s-derivatives of ∂tus and

its base component us. To prove theorem 3.10 we need two lemmas.

Remark 3.11 (Forward exponential decay). If the domain of u is the for-
ward half cylinder [0,∞) × S1 and the vector field ξ along u solves ±(50),
then theorem 3.10 applies to v(σ, t) := u(−σ, t) and η(σ, t) := ξ(−σ, t), since η
solves ∓(50). The estimates obtained for η provide estimates for ξ, for instance

‖ξ‖2L2([σ,∞)×S1) ≤ C2

ρ e
ρ(−σ+T0) ‖ξ‖2L2([T0,T0+1]×S1)

for every σ ≥ T0.

Lemma 3.12 (Stability of injectivity). Fix a perturbation V : LM → R that
satisfies (V0)–(V2) and a constant c0 > 1. Then there are constants µ, δ0 > 0
such that the following holds. If x and γ are smooth loops in M such that the
operator Ax is injective and

γ = expx(η), ‖η‖W 2,2 ≤ δ0, ‖∂tx‖2 + ‖∇t∂tx‖2 ≤ c0,

then
‖ξ‖2 + ‖∇tξ‖2 + ‖∇t∇tξ‖2 ≤ µ ‖Aγξ‖2

for every ξ ∈ Ω0(S1, γ∗TM).
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Proof. By self-adjointness and injectivity the operator Ax is bijective. Hence
it admits a bounded inverse by the open mapping theorem. This proves the
estimate in the case γ = x for some positive constant, say µ0 = µ0(V, c0) > 1.
Since bijectivity is preserved under small perturbations (with respect to the
operator norm), the result for general x follows from continuous dependence of
the operator family on η with respect to the W 2,2 topology. More precisely,
given a smooth vector field ξ along γ, define X = Φ−1ξ where Φ = Φ(x, η)
denotes parallel transport along the geodesic [0, 1] ∋ τ 7→ expx(τη). Recall that
Φ is pointwise an isometry, then straightforward calculation shows that

‖ξ‖2 + ‖∇tξ‖2 + ‖∇t∇tξ‖2 ≤ cc20µ0

∥∥ΦAxΦ
−1ξ
∥∥
2

where the constant c > 1 depends only on the closed Riemannian manifold M
and the constant c1 associated to the Sobolev embedding W 1,2 →֒ C0. Now

∥∥ΦAxΦ
−1ξ −Aγξ

∥∥
2
≤ C ‖η‖W 2,2 ‖ξ‖W 1,2 ≤ δ0C ‖ξ‖W 1,2

by straightforward calculation, where the constant C > 1 depends on ‖R‖∞,
c0, c1, δ0, and the constant in axiom (V2) and where we estimated the term
quadratic in ∇tη by ‖∇tη‖2∞ ≤ c21‖η‖2W 2,2 . The second inequality uses the as-
sumption on η. Now combine both estimates and choose δ0 > 0 sufficiently
small to obtain the assertion of the lemma with µ = 2cc20µ0.

Lemma 3.13. Let f ≥ 0 be a C2 function on the interval (−∞,−T0]. If f
is bounded by a constant c and satisfies the differential inequality f ′′ ≥ ρ2f for
some constant ρ ≥ 0, then

f(s) ≤ eρ(s+T0)f(−T0)
for every s ≤ −T0.
Proof. Although the argument is standard, see e.g. [DS94], we provide the de-
tails for the sake of completeness. The main point is to observe that f ′(s) −
ρf(s) ≥ 0 for every s ≤ −T0. To see this assume by contradiction that
f ′(s0) − ρf(s0) < 0 for some time s0 ≤ −T0. Note that the function g(s) =
eρs (f ′(s)− ρf(s)) satisfies g′ ≥ 0 on (−∞,−T0]. Hence g(s) ≤ g(s0), or equiv-
alently

f ′(s) ≤ eρ(s0−s) (f ′(s0)− ρf(s0)) + ρc

for every s ≤ s0. It follows that f
′(s) → −∞ as s→ −∞ and therefore

∫ s0

s

f ′(σ) dσ → −∞, as s→ −∞.

But this contradicts the fact that by boundedness of f
∫ s0

s

f ′(σ) dσ = f(s0)− f(s) ≥ −c

for every s ≤ s0. To conclude the proof consider the function h(s) = e−ρsf(s)
on the interval (−∞,−T0]. It follows from the observation above that h′ ≥ 0.
Hence h(s) ≤ h(−T0) for every s ≤ −T0 and this proves the lemma.
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To prove theorem 3.10 it is useful to denote expu(ξ) by E(u, ξ) and define
linear maps

Ei(u, ξ) : TuM → TexpuξM, Eij(u, ξ) : TuM × TuM → TexpuξM

for ξ ∈ TxM and i, j ∈ {1, 2}. If u : R → M is a smooth curve and ξ, η are
smooth vector fields along u, then the maps Ei and Eij are characterized by
the identities

d

ds
expu(ξ) = E1(u, ξ)∂su+ E2(u, ξ)∇sξ

∇s (E1(u, ξ)η) = E11(u, ξ) (η, ∂su) + E12(u, ξ) (η,∇sξ) + E1(u, ξ)∇sη

∇s (E2(u, ξ)η) = E21(u, ξ) (η, ∂su) + E22(u, ξ) (η,∇sξ) + E2(u, ξ)∇sη.

(51)

These maps satisfy the symmetry properties

E12(u, ξ) (η, η
′) = E21(u, ξ) (η

′, η) , E22(u, ξ) (η, η
′) = E22(u, ξ) (η

′, η) , (52)

and the identities

E11(u, 0) = E12(u, 0) = E22(u, 0) = 0, E1(u, 0) = E2(u, 0) = 1l. (53)

Alternatively E2 can be defined by

E2(u, ξ)η :=
d

dτ

∣∣∣∣
τ=0

expu(ξ + τη)

for ξ, η ∈ TuM and τ ∈ R. An explicit definition of E1 and the maps Eij can
be given in local coordinates.

Proof of theorem 3.10. Fix c0 and V and let µ and δ0 be the constants of
lemma 3.12 and C be the constant of theorem 3.3 with this choice. Set δ := δ0
and suppose u, x, T0, ξ satisfy the assumptions of the theorem. Then lemma 3.12
for γ = us and vector fields η = ηs and ξ = ξs asserts that

‖ξs‖22 + ‖∇tξs‖22 + ‖∇t∇tξs‖22 ≤ µ2 ‖Aus
ξs‖22 = µ2 ‖∇sξs‖22 (54)

whenever s ≤ −T0. The last step uses the consequence ∇sξs = ∓Aus
ξs of (49)

and (50). From now on we assume that s ≤ −T0. Observe that

∂tus = E1(x, ηs)∂tx+ E2(x, ηs)∇tηs

∇t∂tus = E11(x, ηs) (∂tx, ∂tx) + 2E12(x, ηs) (∂tx,∇tηs) + E1(x, ηs)∇t∂tx

+ E22(x, ηs) (∇tηs,∇tηs) + E2(x, ηs)∇t∇tηs.

By the identities (53) we can choose δ > 0 smaller, if necessary, such that

‖∂tus‖2 ≤ ‖E1(x, ηs)‖∞ ‖∂tx‖2 + ‖E2(x, ηs)‖∞ ‖∇tηs‖2 ≤ 2c0.

and, similarly, that ‖∇t∂tus‖2 ≤ 2c0.
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Claim. Consider the function

F (s) :=
1

2
‖ξs‖22 =

1

2

∫ 1

0

|ξ(s, t)|2 dt.

Then there is a sufficiently small constant δ > 0 such that

F ′′(s) ≥ 1

µ2
F (s)

whenever s ≤ −T0.
Before proving the claim we show how it implies the conclusions of theorem 3.10.
Set ρ = ρ(c0,V) := 1/µ, then F ′′ ≥ ρ2F on (−∞, T0]. Hence lemma 3.13
proves the first conclusion of theorem 3.10. Use this conclusion, the fact that
‖·‖2 ≤ ‖·‖∞ on the domain S1, and theorem 3.3 with constant C = C(c0,V) to
obtain that

‖ξs‖22 ≤ eρ(s+T0) ‖ξ−T0
‖2∞ ≤ C2eρ(s+T0) ‖ξ‖2L2([−T0−1,−T0]×S1)

whenever s ≤ −T0. Fix σ ≤ −T0 and integrate this estimate over s ∈ (−∞, σ].
This proves the final conclusion of theorem 3.10.

It remains to prove the claim. In the following calculation we drop the
subindex s for simplicity and denote the L2(S1) inner product by 〈·, ·〉. By
straightforward computation it follows that

F ′′(s) = ‖∇sξs‖22 +
〈
ξ,∇s∇sξ

〉

and
〈
ξ,∇s∇sξ

〉
= ±

〈
ξ,∇s (∇t∇tξ +R(ξ, ∂tu)∂tu+HV(u)ξ)

〉

= ±
〈
ξ, [∇s,∇t∇t]ξ +∇t∇t∇sξ +∇s (R(ξ, ∂tu)∂tu+HV(u)ξ)

〉

= ±
〈
ξ,∇t[∇s,∇t]ξ + [∇s,∇t]∇tξ +∇s (R(ξ, ∂tu)∂tu+HV(u)ξ)

〉

±
〈
∇t∇tξ,∇sξ

〉

= ±
〈
±∇sξ −R(ξ, ∂tu)∂tu−HV(u)ξ,∇sξ

〉

±
〈
ξ,
(
∇tR

)
(∂su, ∂tu)ξ +R(∇t∂su, ∂tu)ξ +R(∂su,∇t∂tu)ξ

+ 2R(∂su, ∂tu)∇tξ +
(
∇sR

)
(ξ, ∂tu)∂tu+R(∇sξ, ∂tu)∂tu

+R(ξ,∇s∂tu)∂tu+R(ξ, ∂tu)∇s∂tu+∇sHV(u)ξ
〉

= ‖∇sξ‖22 ±
〈
ξ,∇sHV(u)ξ −HV(u)∇sξ

〉

±
〈
ξ,
(
∇tR

)
(∂su, ∂tu)ξ + 2R(ξ, ∂tu)∇t∂su+R(∂su,∇t∂tu)ξ

+ 2R(∂su, ∂tu)∇tξ +
(
∇sR

)
(ξ, ∂tu)∂tu

〉
.

To obtain the first and the fourth step we replaced ξ according to (50). The
third step is by integration by parts. In the final step we used twice the first
Bianchi identity and lemma 3.14 on symmetry of the Hessian. Note that the
term ∇t∂su forces us to assume W 1,2 and not only L∞ smallness of ∂sus.
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Abbreviate ‖·‖1,2 := ‖·‖W 1,2(S1) and assume from now on that s ≤ −T0. Recall
that ‖∂tus‖∞ ≤ c1‖∂tus‖1,2 ≤ 4c0c1 where c1 is the Sobolev constant of the
embedding W 1,2(S1) →֒ C0(S1). Then the former two identities imply that

F ′′(s) ≥ 2 ‖∇sξs‖22 − C1 (‖∂sus‖∞ + ‖∇t∂sus‖2)
(
‖ξs‖2∞ + ‖ξs‖∞ ‖∇tξ‖2

)

≥ 2 ‖∇sξs‖22 − C2 ‖∂sus‖1,2 ‖ξs‖
2
1,2

for positive constants C1 = C1(c0, c1,V, ‖R‖C2) and C2 = C2(c1, C1). Choose
δ > 0 again smaller, if necessary, namely such that δ < 1/(2µ2C2). Hence

‖∂sus‖1,2 ≤ δ <
1

2µ2C2

where the first inequality is by assumption. Therefore

F ′′(s) ≥ 2 ‖∇sξs‖22 −
1

2µ2
‖ξs‖21,2 ≥ ‖∇sξs‖22

where the second inequality is by (54). But

‖∇sξs‖22 ≥ 1

µ2
‖ξs‖22 =

2

µ2
F (s)

again by (54) and definition of F . This proves the claim and theorem 3.10.

Lemma 3.14 (Symmetry of the Hessian). Fix a smooth map V : LM → R and
let x : S1 →M be a smooth loop. Then

〈HV(x)ξ, η〉 = 〈ξ,HV(x)η〉
for all smooth vector fields ξ and η along x.

Proof. Let h : R2 → LM , (σ, τ) 7→ h(σ, τ) be a smooth map such that

h(0, 0) = x,
∂

∂σ

∣∣∣∣
0

h(σ, 0) = ξ,
∂

∂τ

∣∣∣∣
0

h(0, τ) = η.

Observe that

∂2

∂τ∂σ

∣∣∣∣
(0,0)

V(h(σ, τ))

=
d

dτ

∣∣∣∣
0

dV |h(0,τ)
(
∂

∂σ

∣∣∣∣
0

h(σ, τ)

)

=
d

dτ

∣∣∣∣
0

〈
gradV |h(0,τ),

∂

∂σ

∣∣∣∣
0

h(σ, τ)

〉

=

〈
D

dτ

∣∣∣∣
0

gradV |h(0,τ),
∂

∂σ

∣∣∣∣
0

h(σ, 0)

〉
+

〈
gradV(x), D

dτ

∣∣∣∣
0

∂

∂σ

∣∣∣∣
0

h(σ, τ)

〉

= 〈HV(x)η, ξ〉+
〈
gradV(x), D

dτ

∣∣∣∣
0

∂

∂σ

∣∣∣∣
0

h(σ, τ)

〉
.

Now interchange the order of partial differentiation and use the fact that this is
still valid for two-parameter maps.
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3.4 The Fredholm operator

Hypothesis 3.15. Throughout this section we fix a perturbation V that sat-
isfies (V0)–(V3) and two nondegenerate critical points x± of SV . Fix a smooth
map u : R× S1 → M such that us converges to x± in W 2,2(S1) and ∂sus con-
verges to zero in W 1,2(S1), as s→ ±∞. Moreover, assume that ‖∇t∇t∂sus‖2 is
bounded, uniformly in s ∈ R; see footnote below. Set x = x− and y = x+.

Note that by theorem 1.8, proved in section 4.4 below, these assumptions
are satisfied if SV is Morse and u is a finite energy solution of the heat equa-
tion (6). On the other hand, the hypothesis guarantees that the assumptions of
the exponential decay theorem 3.10 and the local regularity theorem 3.1 – only
here (V3) is needed – are satisfied. More precisely, set a = max{SV(x),SV(y)}.
Then (5) and (7) imply that

‖∂tx‖22 = 2a+ 2V(x) ≤ 2(a+ C0), ‖∇t∂tx‖2 = ‖gradV(x)‖2 ≤ C0.

Here C0 > 0 is the constant in axiom (V0). Similar estimates hold true for y.
Precisely as in the proof of theorem 3.10 it follows that T = T (u) > 0 can be
chosen sufficiently large such that

‖∂tus‖22 ≤ 2c0, ‖∇t∂tus‖2 = ‖gradV(x)‖2 ≤ 2c0

whenever |s| ≥ T0 and where c0 = 2(|a| + C0). Hence by smoothness of u and
compactness of the remaining domain [−T, T ]× S1 we conclude that

‖∂tus‖∞ ≤ c1 ‖∂tus‖W 1,2 ≤ c2 (55)

for every s ∈ R and where c2 = c2(x, y, u,V). Similarly it follows that

‖∂sus‖∞ ≤ c1 ‖∂sus‖W 1,2 ≤ c3 (56)

for every s ∈ R and some constant c3 = c3(x, y, u,V).
Now consider the linear operator Du given by

Duξ = ∇sξ −∇t∇tξ −R(ξ, ∂tu)∂tu−HV(u)ξ (57)

for smooth vector fields ξ along u. Recall that R denotes the Riemannian
curvature tensor on M . The operator Du arises, for instance, by linearizing the
heat equation (6) at a solution u; see [W99, app. A.2]. Recall the definition of
the Banach spaces Lp

u and W1,p
u and their norms in (12). The goal of this section

is to prove that Du : W1,p
u → Lp

u is a Fredholm operator whenever p > 1 and
u satisfies nondegenerate asymptotic boundary conditions as in hypothesis 3.15.
By definition this means that Du is a bounded linear operator with closed range
and finite dimensional kernel and cokernel. The difference of these dimensions
is called the Fredholm index of Du and denoted by indexDu. The formal
adjoint operator D∗

u : W1,p
u → Lp

u with respect to the L2-inner product has
the form

D∗
uξ = −∇sξ −∇t∇tξ −R(ξ, ∂tu)∂tu−HV(u)ξ. (58)
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We proceed as follows. In the case p = 2 we show that our situation suits the
assumptions of [RS95] where the Fredholm property is proved. Then we reduce
the case p > 1 to the case p = 2 by proving that the kernel and the cokernel
do actually not depend on p. The argument is based on exponential decay and
local regularity, theorem 3.10 and theorem 3.1, respectively.

Fredholm property and index for p = 2

To prove that Du is Fredholm it is useful to choose a representation with respect
to an orthonormal frame along u. However, sinceM is not necessarily orientable,
a frame which is periodic in the t-variable might not exist. Hence, given a
smooth map u : R× S1 →M , we define

σ = σ(u) :=

{
+1, if u∗TM → R× S1 is trivial

−1, else

and Eσ := diag (σ, 1, . . . , 1) ∈ R
n×n. The orthogonal group O(n) has two

connected components, one contains E1 = 1l and the other one E−1. Hence
there exists an orthonormal frame φ = φσ : R × [0, 1] → u∗TM such that
φ(s, 1) = φ(s, 0)Eσ for all s ∈ R. The vector space of smooth sections of u∗TM
is isomorphic to the space C∞

σ of all maps X ∈ C∞(R × [0, 1],Rn) such that
X(s, 1) = EσX(s, 0), for every s ∈ R, and such that this condition also holds
for all derivatives of X with respect to the t-variable.

Denote by W the closure of C∞
σ with respect to the Sobolev W 2,2 norm and

by H its closure with respect to the L2 norm. Then Du : W1,2
u → L2

u given
by (57) is represented by the Atiyah-Patodi-Singer type operator

DA+C := φ−1Duφ =
d

ds
+A(s) + C(s) (59)

from W1,2 := L2(R,W ) ∩W 1,2(R, H) to L2(R, H). Here A(s) is the family of
symmetric second order operators on H with dense domain W given by

A(s) = − d2

dt2
−B(s, t)−Q(s, t)

where
Q = φ−1R(φ, ∂tu)∂tu+ φ−1HV(u)φ

and B = (∂tP ) + 2P∂t + P 2. The families of skew-symmetric matrices P (s, t)
and C(s, t) are determined by the identities

φ−1∇tφ = ∂t + P, φ−1∇sφ = ∂s + C.

Hypothesis 3.15 implies that ∂sus converges to zero in C0(S1), as s→ ±∞, and
therefore lims→±∞ C(s, t) = 0, uniformly in t. It follows that the family C(s)
of bounded operators on H – defined pointwise by matrix multiplication with
C(s, t) – converges to zero in the norm topology as s → ±∞. Hence the linear
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operator C : W1,2 → L2 is a compact perturbation of DA by [RS95, lem. 3.18].
Since the Fredholm property and the Fredholm index are invariant under com-
pact perturbations, it suffices to prove that DA is Fredholm and compute its
index. By [RS95, thm. A] it remains to verify the following properties.

(i) The inclusion of Hilbert spaces W →֒ H is compact with dense image.

(ii) The operator A(s) : H → H with dense domain W is unbounded and
self-adjoint for every s.

(iii) The norm of W is equivalent to the graph norm of A(s) for every s.

(iv) The map R → L(W,H) : s 7→ A(s) is continuously differentiable with
respect to the weak operator topology.

(v) There exist invertible operators A± ∈ L(W,H) which are the limits of
A(s) in the norm topology, as s tends to ±∞.

Statements (i) and (ii) follow by the Sobolev embedding theorem, the well known
fact that the 1-dimensional Laplacian −d2/dt2 on [0, 1] with periodic boundary
conditions is self-adjoint, and by the Kato-Rellich Theorem since the perturba-
tion B+Q is of relative bound zero; see [ReS75]. To prove (iii) one has to estab-
lish that theW norm is bounded above by a constant times the graph norm and
vice versa. The first inequality uses the elliptic estimate for the operator A(s)
and the second one follows since ‖∂tus‖∞ and ‖∇t∂tus‖2 are bounded by (55)
and the Hessian HV(us) is a bounded linear operator on L2(S1, us

∗TM) by ax-
iom (V1). To prove (iv) we need to show that, given any ξ ∈W and η ∈ H, the
map s 7→ 〈η,A(s)ξ〉 is in C1(R,R). This follows by the bounds in (55) and (56),
by the final estimate in axiom (V2), and the apparently unnatural3 assumption
in hypothesis 3.15 that ∇t∇t∂sus be uniformly L2 bounded. Statement (v) is
true, since the critical points x± are nondegenerate and us and ∂tus converge
in C0 to x± and ∂tx

±, respectively, and ∇t∂tus converges in L2 to ∇t∂tx
±, all

as s→ ±∞.
The properties (i–v) are precisely the assumptions of theorem A in [RS95]

which asserts that the operator DA : W1,2 → L2 is Fredholm and its index
is given by the spectral flow of the operator family A(s). The spectral flow
represents the net change in the number of negative eigenvalues of A(s) as s
runs from −∞ to ∞. It is equal to ind(A−)− ind(A+) where ind(A±) denotes
the Morse index, i.e. the number of negative eigenvalues of the self-adjoint
operator A±. To see this observe that ind(A+) equals ind(A−) plus the number
of eigenvalues changing from positive to negative minus the number of those
changing sign in the opposite direction. Finally, the Fredholm indices of DA and
DA+C are equal, since {DA+τC}τ∈[0,1] is an interpolating family of Fredholm
operators. This proves theorem 1.9 in the case p = 2.

3If in [RS95, thm.A], hence in (iv), continuously differentiable could be replaced by contin-

uous, then the assumption on ‖∇t∇t∂sus‖2 can be dropped in hypothesis 3.15 and theorem 1.9.
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Remark 3.16 (The formal adjoint). If Du : W1,2
u → L2

u is represented with
respect to an orthonormal frame by the operator DA+C in (59), then D∗

u is
represented by −D−A−C . Above we proved that A satisfies (i-v), hence so does
−A. Thus D−A is a Fredholm operator again by [RS95, thm. A] and its index is
given by minus the spectral flow of the operator family A = A(s). But if D−A

is Fredholm, so is its negative −D−A and both Fredholm indices are equal,
since both kernels and both cokernels coincide. Now −D−A and −D−A−C are
homotopic through the family {−D−A−τC}τ∈[0,1] of Fredholm operators. This
proves that the formal adjoint operator D∗

u : W1,2
u → L2

u is Fredholm and
indexD∗

u = −indexDu.

Fredholm property and index for p > 1

Still assuming hypothesis 3.15 consider the vector space given by

X0 :=
{
ξ ∈ C∞(R× S1, u∗TM) | Duξ = 0, ∃c, δ > 0 ∀s ∈ R :

‖ξs‖∞ + ‖∇tξs‖∞ + ‖∇t∇tξs‖∞ + ‖∇sξs‖∞ ≤ ceδ|s|
}
.

Define X∗
0 by using D∗

u in the definition. Note that p does not enter.

Proposition 3.17. Let p > 1, then

ker
[
Du : W1,p

u → Lp
u

]
= X0, ker

[
D∗

u : W1,p
u → Lp

u

]
= X∗

0 .

Proof. The inclusion ⊃ is trivial. To prove the inclusion ⊂ assume that ξ ∈ W1,p

solves Duξ = 0 almost everywhere. Being a local property smoothness of ξ
follows from theorem 3.1 using integration by parts. Exponential L∞ decay
follows by combining the apriori estimates theorem 3.3 and theorem 3.4 with
the L2 exponential decay results theorem 3.10 and remark 3.11. The last two
results require nondegeneracy of the critical points x± and boundedness of the
map

s 7→ ‖ξs‖2.
To see the latter use the Sobolev embedding theorem together with the fact that
the vector field ξ along the cylinder u is of class W1,p

u and satisfies Duξ = 0.
This proves that X0 is the kernel of Du. The result for D∗

u follows by reflection
s 7→ −s.

Proposition 3.18. The range of Du,D∗
u : W1,p

u → Lp
u is closed whenever p > 1.

Proof. The structure of proof is standard; see e.g. [S99, sec. 2]. We sketch the
two key steps for Du. Step one is the linear estimate

‖ξ‖W1,p ≤ cp

(
‖Duξ‖p + ‖ξ‖p

)

for compactly supported vector fields ξ along u. This follows immediately from
proposition 2.13, lemma 2.12, the L∞ bound for ∂tu in (55) and axiom (V1).
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Step two is to prove bijectivity of Du in the case of the constant cylinder u(s, t) =
x(t), whenever x is a nondegenerate critical point of SV . We give a proof for
p ≥ 2 in the related situation of half cylinders in theorem 8.5 below. The case
1 < p ≤ 2 follows by duality; see [S99, exc. 2.5]. Both steps are then combined
by a cutoff function argument; see [S99, thm 2.2].

Proposition 3.18 enables us to define the cokernels of Du : W1,p
u → Lp

u and
D∗

u : W1,p
u → Lp

u as Banach space quotients, namely for p > 1 set

cokerDu :=
Lp
u

imDu
, cokerD∗

u :=
Lp
u

imD∗
u

.

The next result shows that these spaces are again independent of p.

Proposition 3.19. Let p > 1, then

coker
[
Du : W1,p

u → Lp
u

]
= X∗

0 , coker
[
D∗

u : W1,p
u → Lp

u

]
= X0.

Proof. We prove the second identity. The other one follows by reflection s 7→ −s.
We identify the image of D∗

u in Lp
u with its annihilator (imD∗

u)
⊥
in Lq

u = (Lp
u)

∗

where 1
q + 1

p = 1, that is we identify

cokerD∗
u ≃ (imD∗

u)
⊥
.

The inclusion ⊃ is trivial. To prove the inclusion ⊂ assume that ξ ∈ (imD∗
u)

⊥
.

This means that ξ ∈ Lp
u and that 〈ξ,D∗

uη〉 = 0 for all η ∈ C∞
0 (R × S1). Hence

ξ is smooth by theorem 3.1. Integration by parts then shows that Duξ =
0. Exponential decay follows by combining theorem 3.3 and theorem 3.4 with
theorem 3.10 and remark 3.11 as explained in the proof of proposition 3.17.

Remark 3.20. It is an easy but important consequence of proposition 3.19
that if Du : W1,p

u → Lp
u is surjective for some p > 1, then it is surjective for all

p > 1. This justifies the phrase “Du is surjective” encountered occasionally.

Proof of theorem 1.9. The range of Du : W1,p
u → Lp

u is closed by proposi-
tion 3.18. Moreover, by proposition 3.17 and proposition 3.19 the kernel and
the cokernel of Du : W1,p

u → Lp
u are given by X0 and X∗

0 , respectively. Now
these vector spaces do not depend on p > 1. But for p = 2 we proved in the
previous subsection that they are finite dimensional and the difference of their
dimensions equals indV(x

−)− indV(x
+). The claim for D∗

u follows similarly.
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4 Solutions of the nonlinear heat equation

4.1 Regularity and compactness

Throughout this subsection we embed the compact Riemannian manifold M
isometrically into some Euclidean space R

N and view any continuous map u :
Z = (−T, 0] × S1 → M as a map into R

N taking values in the embedded
manifold. We indicate this by the notation u : Z → M →֒ R

N . Then the heat
equation (6) is of the form

∂su− ∂t∂tu = Γ(u) (∂tu, ∂tu) + F. (60)

Here and throughout this section Γ denotes the second fundamental form asso-
ciated to the embedding M →֒ R

N and the map F : Z → R
N is given by

F (s, t) := (gradV(us))(t). (61)

Recall the definition of the Wk,p and the Ck norm in (13) and (14), respectively.

Proposition 4.1. Fix a perturbation V : LM → R that satisfies (V0)–(V3),
constants p > 2 and µ0 > 0, and cylinders

Z = (−T, 0]× S1, Z ′ = (−T ′, 0]× S1, T > T ′ > 0.

Then for every integer k ≥ 1 there is a constant ck = ck(p, µ0, T, T
′,V) such

that the following is true. If u : Z →M →֒ R
N is a W1,p map such that

‖u‖p + ‖∂su‖p + ‖∂tu‖p + ‖∂t∂tu‖p ≤ µ0 (62)

and which satisfies the heat equation (60) almost everywhere, then

‖u‖Wk,p(Z′,RN ) ≤ ck.

Proposition 4.1 follows by induction from the bootstrap proposition 2.18
using all axioms (V0)–(V3) and a product estimate, lemma 4.4 below. By stan-
dard arguments proposition 4.1 immediately implies theorem 4.2 on regularity
and theorem 4.3 on compactness.

Theorem 4.2 (Regularity). Fix a perturbation V : LM → R that satisfies (V0)–
(V3) and constants p > 2 and a < b. Let u be a map (a, b] × S1 → M →֒
R

N which is of Sobolev class W1,p and solves the heat equation (60) almost
everywhere. Then u is smooth.

Theorem 4.3 (Compactness). Fix a perturbation V : LM → R that satis-
fies (V0)–(V3) and constants p > 2 and a < b. Let uν : (a, b]× S1 →M →֒ R

N

be a sequence of smooth solutions of the heat equation (60) such that

sup
ν

‖∂tuν‖∞ + sup
ν

‖∂suν‖p <∞.

Then there is a smooth solution u : (a, b]× S1 →M of (60) and a subsequence,
still denoted by uν , such that uν converges to u, uniformly with all derivatives
on every compact subset of (a, b]× S1.
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Lemma 4.4. Fix a constant p > 2 and a bounded open subset Ω ⊂ R
2 with area

|Ω|. Then for every integer k ≥ 1 there is a constant c = c(k, |Ω|) such that

‖∂su · v‖Wk,p ≤ c ‖∂su‖Wk,p ‖v‖∞ + c (‖u‖Ck + ‖∂tu‖Ck) ‖v‖Wk,p

for all functions u, v ∈ C∞(Ω).

Proof. The proof is by induction on k. By definition of the Wℓ,p norm

‖∂su · v‖Wℓ+1,p ≤ ‖∂su · v‖Wℓ,p + ‖∂t∂su · v + ∂su · ∂tv‖Wℓ,p

+ ‖∂t∂t∂su · v + 2∂t∂su · ∂tv + ∂su · ∂t∂tv‖Wℓ,p

+ ‖∂s∂su · v + ∂su · ∂sv‖Wℓ,p .

(63)

Step k = 1. Estimate (63) for ℓ = 0 shows that

‖∂su · v‖W1,p ≤
(
‖∂su‖p + ‖∂t∂su‖p + ‖∂t∂t∂su‖p + ‖∂s∂su‖p

)
‖v‖∞

+ 2 ‖∂t∂su‖∞ ‖∂tv‖p
+ ‖∂su‖∞

(
‖∂tv‖p + ‖∂t∂tv‖p + ‖∂sv‖p

)
.

Since ∂t∂su = ∂s∂tu this proves the lemma for k = 1.

Induction step k ⇒ k + 1. Consider estimate (63) for ℓ = k, then inspect the
right hand side term by term using the induction hypothesis for the appropriate
functions to conclude the proof. To illustrate this we give full details for the
last term in (63), namely

‖∂su · ∂sv‖Wk,p ≤ c ‖∂su‖Wk,p ‖∂sv‖∞ + c (‖u‖Ck + ‖∂tu‖Ck) ‖∂sv‖Wk,p

≤ cc1 |Ω| ‖∂su‖Ck ‖∂sv‖W1,p + c (‖u‖Ck + ‖∂tu‖Ck) ‖v‖Wk+1,p

≤ cc1 |Ω| ‖u‖Ck+1 ‖v‖W2,p + c (‖u‖Ck + ‖∂tu‖Ck) ‖v‖Wk+1,p .

The first step is by the induction hypothesis for the function ∂sv. In the second
step we pulled out the L∞ norms of all derivatives of ∂su and for the term ∂sv
we applied the Sobolev embedding W1,p ⊂ W 1,p →֒ C0 with constant c1. Here
our assumptions p > 2 and Ω bounded enter. Step three is obvious. Note that
k ≥ 1 implies that Wk+1,p →֒ W2,p.

Proof of proposition 4.1. Consider the family

Tr := T ′ +
T − T ′

r
, r ∈ [1,∞),

and the corresponding nested sequence of cylinders Zr := (−Tr, 0]× S1 with

Z = Z1 ⊃ Z2 ⊃ Z3 ⊃ . . . ⊃ Z ′.

Denote by C0 the constant in (V0). More generally, for ℓ ≥ 1 choose Cℓ larger
than Cℓ−1 and larger than all constants C(k′, ℓ′,V) in (V3) for which 2k′+ℓ′ ≤ ℓ.
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Claim. The map F given by (61) is in Wℓ,p(Zℓ+1) for every integer ℓ ≥ 1.

Proposition 4.1 immediately follows: Given any integer k ≥ 1, then F ∈
Wk,p(Zk+1) by the claim. Furthermore, by inclusion Zk+1 ⊂ Z and (62)

‖u‖W1,p(Zk+1)
≤ ‖u‖W1,p(Z) ≤ µ0.

Hence by theorem 2.1 for the pair Zk+2 ⊂ Zk+1 there is a constant ck+1 de-
pending on p, µ0, Zk+2, Zk+1, ‖Γ‖C2k+2 , and ‖F‖Wk,p(Zk+1) such that

‖u‖Wk+1,p(Z′) ≤ ‖u‖Wk+1,p(Zk+2)
≤ ck+1.

It remains to prove the claim. The proof is by induction.

Step ℓ = 1. We need to prove that F , ∂tF , ∂sF , and ∂t∂tF are in Lp(Z2).
The domain of all norms of Γ and its derivatives is the compact manifold M .
The domain of all other norms is the cylinder Z unless indicated differently. By
axiom (V0) with constant C0 it follows (even on the larger domain Z) that

‖F‖∞ = sup
s∈(−T,0]

‖gradV(us)‖L∞(S1) ≤ C0 (64)

and therefore
‖F‖p ≤ ‖F‖∞ (VolZ)

1/p ≤ C0T
1/p.

Next we use axiom (V1) with constant C1 ≥ C0 to obtain that

‖∂tF‖p ≤ ‖∇tgradV(u)‖p + ‖Γ(u) (∂tu, gradV(u))‖p
≤ C1

(
1 + ‖∂tu‖p

)
+ ‖Γ‖∞ ‖∂tu‖p ‖F‖∞

≤ C1(1 + µ0) + ‖Γ‖∞ µ0C0.

Here we used the assumption (62) in the last step. Now by the bootstrap
proposition 2.18 (i) for k = 1 and the pair Z4/3 ⊂ Z there is a constant a1
depending on p, µ0, Z4/3, Z, ‖Γ‖C4 , and the Lp(Z) norms of F and ∂tF such
that ‖∂tu‖W1,p(Z4/3) ≤ a1. Then by the Sobolev embedding W 1,p →֒ C0 with
constant c′ = c′(p, Z5/3) it follows that ∂tu is continuous on Z4/3 and

‖∂tu‖C0(Z5/3)
≤ c′ ‖∂tu‖W1,p(Z5/3)

≤ a1c
′. (65)

Again using axiom (V1) we obtain similarly that

‖∂sF‖p ≤ ‖∇sgradV(u)‖p + ‖Γ(u) (∂su, gradV(u))‖p
≤ 2C1 ‖∂su‖p + ‖Γ‖∞ ‖∂su‖p ‖F‖∞
≤ µ0 (2C1 + ‖Γ‖∞ C0) .

In order to estimate ∂t∂tF observe first that

‖∇t∂tu‖Lp(Z5/3)
≤ ‖∂t∂tu‖Lp(Z5/3)

+ ‖Γ‖∞ ‖|∂tu| · |∂tu|‖Lp(Z5/3)

≤ µ0 + ‖Γ‖∞ ‖∂tu‖C0(Z5/3)
‖∂tu‖Lp(Z5/3)

≤ µ0 + ‖Γ‖∞ a1c
′µ0.
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Here the last step uses assumption (62) and the C0 estimate (65) for ∂tu which
requires shrinking of the domain. Now by axiom (V3) for k = 0 and ℓ = 2 there
is a constant still denoted by C1 = C1(V) such that

|∇t∇tF | ≤ C1

(
1 + |∂tu|+ |∇t∂tu|

)
(66)

pointwise for every (s, t). Integrating this inequality to the power p implies that

‖∇t∇tF‖Lp(Z5/3)
≤ C1

(
1 + ‖∂tu‖Lp(Z5/3)

+ ‖∇t∂tu‖Lp(Z5/3)

)

≤ C1 (1 + 2µ0 + ‖Γ‖∞ a1c
′µ0) .

Straightforward calculation shows that

‖∂t∂tF‖Lp(Z5/3)
≤ ‖∇t∇tF‖Lp + ‖dΓ‖∞ ‖∂tu‖C0 ‖∂tu‖Lp ‖F‖C0

+ ‖Γ‖∞ ‖∂t∂tu‖Lp ‖F‖C0 + 2 ‖Γ‖∞ ‖∂tu‖C0 ‖∂tF‖Lp

+ ‖Γ‖2∞ ‖∂tu‖C0 ‖∂tu‖Lp ‖F‖C0

is bounded by a constant c = c(p, µ0, c
′, C1, ‖Γ‖C1). Here all C0 and Lp norms

are on the domain Z5/3. We used again assumption (62), the estimates for F
and its derivatives obtained earlier, and (65).

Induction step ℓ ⇒ ℓ + 1. Let ℓ ≥ 1 and assume that the claim is true for ℓ.
This means that F is in Wℓ,p(Zℓ+1, hence

αℓ := ‖F‖Wℓ,p(Zℓ+1)
<∞.

Therefore by theorem 2.1 for the integer ℓ and the pair of sets Zℓ+1 ⊃ Zℓ+3/2

there is a constant cℓ = cℓ(p, µ0, Tℓ+1, Tℓ+3/2, ‖Γ‖C2ℓ+2 , αℓ) such that

‖u‖Wℓ+1,p(Zℓ+3/2)
≤ cℓ, ‖u‖Cℓ(Zℓ+3/2)

≤ cℓ. (67)

The second inequality follows from the first by the Sobolev embedding W 1,p →֒
C0 applied to each term in the Cℓ norm. Then choose cℓ larger, if necessary. It
remains to prove that the Wℓ,p(Zℓ+2) norms of ∂tF , ∂sF , and ∂t∂tF are finite.
Similarly as in step ℓ = 1 we obtain that

‖∂tF‖Wℓ,p(Zℓ+3/2)
≤ ‖∇tF‖Wℓ,p + ‖Γ(u) (∂tu, F )‖Wℓ,p

≤ C1 (‖1‖Wℓ,p + ‖∂tu‖Wℓ,p)

+ c̃ ‖Γ‖Cℓ (‖∂tu‖Wℓ,p ‖F‖∞ + ‖u‖Cℓ ‖F‖Wℓ,p)

≤ C1 (T
1/p + cℓ) + c̃ ‖Γ‖Cℓ (cℓC0 + cℓαℓ) .

Here the domain of all norms, except the one of Γ, is Zℓ+3/2. The first step
is by definition of the covariant derivative and the triangle inequality. Step
two uses axiom (V1) and lemma 2.21 with constant c̃. The last step uses the
estimates (64), (67), and the definition of αℓ in the induction hypothesis. Now
by the refined bootstrap proposition 2.18 there is a constant aℓ+1 such that

‖∂tu‖Wℓ+1,p(Zℓ+2)
≤ aℓ+1, ‖∂tu‖Cℓ(Zℓ+2)

≤ aℓ+1. (68)
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Next observe that

‖∂sF‖Wℓ,p(Zℓ+2)

≤ ‖∇sF‖Wℓ,p + ‖Γ(u) (∂su, F )‖Wℓ,p

≤ 2C1 ‖∂su‖Wℓ,p + C ′ ‖Γ‖Cℓ (‖∂su‖Wℓ,p ‖F‖∞ + (‖u‖Cℓ + ‖∂tu‖Cℓ) ‖F‖Wℓ,p)

≤ 2C1cℓ + C ′ ‖Γ‖Cℓ (cℓC0 + (cℓ + aℓ+1)αℓ) .

Here the domain of all norms, except the one of Γ, is Zℓ+2. Again the first
step is by definition of the covariant derivative and the triangle inequality. Step
two uses axiom (V1) and lemma 4.4 with constant C ′. The last step uses the
estimates (64), (67), (68), and the definition of αℓ in the induction hypothesis.
Similarly as in step ℓ = 1 we obtain that

‖∂t∂tF‖Wℓ,p(Zℓ+2)

≤ ‖∇t∇tF‖Wℓ,p + ‖dΓ(u) (∂tu, ∂tu, F )‖Wℓ,p

+ ‖Γ(u) (∂t∂tu, F )‖Wℓ,p + 2 ‖Γ(u) (∂tu, ∂tF )‖Wℓ,p

+ ‖Γ(u) (∂tu,Γ(u) (∂tu, F ))‖Wℓ,p

≤ C1

(
T 1/p + ‖∂tu‖Wℓ,p + ‖∂t∂tu‖Wℓ,p + ‖Γ‖Cℓ ‖∂tu‖Cℓ ‖∂tu‖Wℓ,p

)

+ ‖dΓ‖Cℓ ‖∂tu‖2Cℓ ‖F‖Wℓ,p

+ c̃ ‖Γ‖Cℓ (‖∂t∂tu‖Wℓ,p ‖F‖∞ + ‖∂tu‖Cℓ ‖F‖Wℓ,p)

+ 2 ‖Γ‖Cℓ ‖∂tu‖Cℓ ‖∂tF‖Wℓ,p

+ ‖Γ‖2Cℓ ‖∂tu‖2Cℓ ‖F‖Wℓ,p .

Here the domain of all norms, except the one of Γ, is Zℓ+2. In the second step we
used axiom (V2) with constant C1 to estimate the term ∇t∇tF and we spelled
out the covariant derivative arising in ∇t∂tu. Moreover, crudely pulling out Cℓ

norms worked for all terms but the third one, the one involving ∂t∂tu, here we
used lemma 4.4 with constant c̃ for the functions ∂t∂tu and F . Now all terms
appearing on the right hand side have been estimated earlier. This proves the
induction step and therefore the claim and proposition 4.1.

Proof of theorem 4.2. Fix any point z ∈ Z = (a, b] × S1 and a subcylinder
Z ′ = (a′, b]× S1 that contains z and where a′ ∈ (a, b). Set µ0 = ‖u‖W1,p(Z,RN ),
then proposition 4.1 for the function ũ(s, t) := u(s + b, t) and the constants
T = b− a and T ′ = b− a′ implies that

u ∈
⋂

k≥0

Wk,p(Z ′,RN ) =
⋂

k≥0

W k,p(Z ′,RN ) = C∞(Z ′,RN ).

See [MS04, app. B.1] for the last step. Hence u is locally smooth.

Proof of theorem 1.5. Theorem 4.2.
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Proof of theorem 4.3. Shifting the s variable by b and setting T = b − a, if
necessary, we may assume without loss of generality that the maps uν are de-
fined on (−T, 0] and, furthermore, by composition with the isometric embedding
M →֒ R

N that they take values in R
N . All norms are taken on the domain

(−T, 0] × S1, unless indicated otherwise. To apply proposition 4.1 we need to
verify that the maps uν : (−T, 0] × S1 → R

N satisfy the four apriori estimates
in (62) for some constant µ0 independent of ν. To see this observe that

‖uν‖p ≤ ‖uν‖∞ Vol ((−T, 0]× S1) ≤ c1T
1/p

for some constant c1 depending only on the isometric embedding M →֒ R
N and

the diameter of the compact manifold M . By assumption there is a constant c2
independent of ν such that

‖∂tuν‖p ≤ ‖∂tuν‖∞ T 1/p ≤ c2T
1/p

and
‖∂suν‖p ≤ c2.

Then it follows by the heat equation (60) that

‖∇t∂tu
ν‖p ≤ ‖∂suν‖p + ‖gradV(uν)‖p ≤ c2 + C0T

1/p.

In the second step we used (V0) to estimate gradV(uν) in L∞ from above by a
constant C0 = C0(V). By definition of the covariant derivative

‖∂t∂tuν‖p ≤ ‖∇t∂tu
ν‖p + ‖Γ‖C0(M) ‖∂tuν‖∞ ‖∂tuν‖p

≤ c2 + C0T
1/p + c22T

1/p ‖Γ‖C0(M) .

Now set µ0 := c2 + C0T
1/p + c22T

1/p ‖Γ‖C0(M) + (c1 + c2)T
1/p. Then proposi-

tion 4.1 asserts that for every constant T ′ ∈ (0, T ) and every integer k ≥ 2 there
is a constant ck = ck(p, µ0, T, T

′,V) such that

‖uν‖Wk,p(Q,RN ) ≤ ck

where Q = [−T ′, 0] × S1. Recall that the inclusion W k,p(Q) →֒ Ck−1(Q) is
compact; see e.g. [MS04, B.1.11]. Hence there is a subsequence which converges
on Q in the Ck topology. We denote the limit by u ∈ Ck(Q). Since this is true
for every k ≥ 2 there is a subsequence, still denoted by uν , converging on Q to u,
uniformly with all derivatives. Since this is true for every compact subcylinder
Q of (−T, 0] × S1, the theorem follows by choosing a diagonal subsequence
associated to an exhausting sequence by such Q’s. Because, in particular, the
convergence is in C0 and the uν take values in M , so does the limit u. By Ck

convergence with k ≥ 2 the limit u satisfies the heat equation (60).
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4.2 An apriori estimate

Theorem 4.5. Fix a perturbation V : LM → R that satisfies (V0)–(V1) and
a constant c0 > 0. Then there is a constant C = C(c0,V) > 0 such that the
following holds. If u : R× S1 →M is a smooth solution of (6) such that

sup
s∈R

SV(u(s, ·)) ≤ c0 (69)

then ‖∂tu‖∞ ≤ C.

The proof of theorem 4.5 is based on the following mean value inequality.
For r > 0 define the open parabolic rectangle Pr ⊂ R

2 by

Pr := (−r2, 0)× (−r, r).
Lemma 4.6 ([SW03, lemma B.1]). There is a constant c1 > 0 such that the
following holds for all r ∈ (0, 1] and a ≥ 0. If w : Pr → R, (s, t) 7→ w(s, t), is
C1 in the s-variable and C2 in the t-variable such that

(∂t∂t − ∂s)w ≥ −aw, w ≥ 0,

then

w(0) ≤ c1e
ar2

r3

∫

Pr

w.

Corollary 4.7. Fix two constants r ∈ (0, 1] and µ ≥ 0. Let c1 be the constant
of lemma 4.6. If F : [−r2, 0] → R is a C2 function satisfying

−F ′ + µF ≥ 0, F ≥ 0,

then

F (0) ≤ 2c1e
µr2

r2

∫ 0

−r2
F (s) ds.

Proof. This follows immediately from lemma 4.6 with w(s, t) := f(s).

Proof of theorem 4.5. The idea is to first derive slicewise L2 bounds, then verify
the differential inequality in lemma 4.6 and apply the lemma using the slicewise
bounds on the right hand side. The slicewise bound for ∂tu follows easily from
the assumption

c0 ≥ SV(us) =
1

2
‖∂tus‖2L2(S1) − V(us)

where us(t) := u(s, t). Let C0 denote the constant in (V0), then this implies

‖∂tus‖2L2(S1) ≤ 2c0 + 2V(us) ≤ 2c0 + 2C0 (70)

for every s ∈ R. Consider the pointwise differential inequality given by

(∂t∂t − ∂s) |∂tu|2 = 2 |∇t∂tu|2 + 2〈(∇t∇t −∇s)∂tu, ∂tu〉
= 2 |∇t∂tu|2 − 2〈∇tgradV(u), ∂tu〉
≥ −2C1 (1 + |∂tu|) |∂tu|
≥ −C1 − 3C1 |∂tu|2 .
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To obtain the second step we replaced ∇t∂tu according to the heat equation (6)
and used the fact that ∇t∂su = ∇s∂tu. The third step is by condition (V1) with
constant C1. Choose (s0, t0) ∈ R × S1 and apply lemma 4.6 in the case r = 1
and with

w(s, t) :=
1

3
+ |∂tu(s0 + s, t0 + t)|2

and a = 3C1 to obtain

w(0) ≤ c1e
a

∫ 0

−1

∫ +1

−1

(
1

3
+ |∂tu(s0 + s, t0 + t)|2

)
dtds

= c1e
3C1

(
2

3
+ 2

∫ 0

−1

‖∂tus0+s‖2L2(S1) ds

)
.

Theorem 4.5 then follows from the slicewise estimate (70).

Lemma 4.8. Fix a constant c > 0 and a perturbation V : LM → R that
satisfies (V0) with constant C > 0. If u : R× S1 →M is a solution of (6) then

sup
s∈R

SV(u(s, ·)) ≤ c ⇒ E(u) ≤ c+ C.

Proof. Let us(t) := u(s, t) and choose T > 0, then

E[−T,T ](u) =

∫ T

−T

∫ 1

0

|∂su(s, t|2 dtds

= −
∫ T

−T

〈∇SV(us), ∂sus〉L2ds

= −
∫ T

−T

d

ds
SV(us) ds

= SV(u−T )− SV(uT ).

Here we used the fact that the heat equation (6) is the negative L2 gradient
flow equation for the action functional. Now the crucial property of the action
functional is its boundedness from below, namely SV(x) ≥ −C for every x ∈ LM
by (V0). Hence SV(u−T )− SV(uT ) ≤ c+ C and this proves the lemma.

4.3 Gradient bounds

Theorem 4.9. Fix a perturbation V : LM → R that satisfies (V0)–(V2) and
a constant c0 > 0. Then there is a constant C = C(c0,V) > 0 such that the
following holds. If u : R×S1 →M is a smooth solution of (6) that satisfies (69),
i.e. sups∈R SV(u(s, ·)) ≤ c0, then

|∂su(s, t)|2 + |∇t∂su(s, t)|2 ≤ CE[s−1,s](u)

|∇s∂su(s, t)|2 + |∇t∇t∂su(s, t)|2 ≤ CE[s−2,s](u)

for every (s, t) ∈ R×S1. Here EI(u) denotes the energy of u over the set I×S1.
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Proof. By theorem 4.5 there is a constant C0 = C0(c0,V) > 0 such that

‖∂tu‖∞ ≤ C0.

Let C = C(C0,V) be the constant of theorem 3.3 with this choice of C0. Observe
that ξ := ∂su solves the linearized heat equation. Hence theorem 3.3 shows that

|∂su(s, t)|2 ≤ C2E[s−1,s](u) ≤ C2(c0 + c′)

for every (s, t) ∈ R × S1. Here the last step is by lemma 4.8 and axiom (V0)
with constant c′. Use that u solves (6) and satisfies axiom (V0) to obtain that

‖∇t∂tu‖∞ ≤ ‖∂su‖∞ + ‖gradV(u)‖∞ ≤ C
√
c0 + c′ + c′.

Now choose C0 larger than 2C
√
c0 + c′ + c′ and let C = C(C0,V) be the con-

stant of theorem 3.3 with this new choice of C0. Theorem 3.3 then proves the
desired estimate for |∇t∂su|. It follows that ‖∇t∂su‖∞ is bounded. Therefore
‖∇t∇t∂tu‖∞ is bounded by (6) and axiom (V1). Hence theorem 3.4 applies with
a new choice of C0 and proves the remaining two estimates of theorem 4.9.

Proof of theorem 1.7. Theorem 4.5, theorem 4.9 and lemma 4.8. Only (V0)–
(V1) are used. Use (6) and (V0) to obtain the estimate for ∇t∂tu.

4.4 Exponential decay

Theorem 4.10. Fix a perturbation V : LM → R that satisfies (V0)–(V2).
Suppose SV is Morse and let a ∈ R be a regular value of SV . Then there exist
constants δ, c, ρ > 0 such that the following holds. If u : R × S1 → M is a
smooth solution of (6) that satisfies (69), i.e. sups∈R SV(u(s, ·)) ≤ a, and

ER\[−T0,T0](u) < δ (71)

for some T0 > 0, then

ER\[−T,T ](u) ≤ ce−ρ(T−T0)ER\[−T0,T0](u)

for every T ≥ T0 + 1.

Corollary 4.11. Fix a perturbation V : LM → R that satisfies (V0)–(V2).
Suppose SV is Morse and let x± ∈ P(V). Then there exist constants δ, c, ρ > 0
such that the following holds. Suppose that u ∈ M(x−, x+;V) satisfies (71) for
some T0 > 0. Then

|∂su(s, t)|2 + |∇t∂su(s, t)|2 ≤ ce−ρ(s−T0)ER\[−T0,T0](u)

for every s ≥ T0 + 2.

Proof. Theorem 4.9 and theorem 4.10.

The proof of theorem 4.10 is based on the following lemma which asserts
existence of a true critical point nearby an approximate one.
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Lemma 4.12 (Critical point nearby approximate one). Fix a perturbation V :
LM → R that satisfies (V0) and let a ∈ R be a regular value of SV . Then, for
every δ0 > 0, there is a constant δ1 > 0 such that the following is true. Suppose
x : S1 →M is a smooth loop such that

SV(x) ≤ a, ‖∇t∂tx+ gradV(x)‖∞ < δ1.

Then there is a critical point x0 ∈ Pa(V) and a vector field ξ0 along x0 such
that x = expx0

(ξ0) and

‖ξ0‖∞ + ‖∇tξ0‖∞ + ‖∇t∇tξ0‖∞ ≤ δ0.

Proof. First note that

‖∂tx‖22 =

∫ 1

0

|∂tx(t)|2 dt = 2SV(x) + 2V(x) ≤ 2(a+ C)

where C is the constant in (V0). Now, assuming δ1 ≤ 1, we have

∣∣∣∣
d

dt
|∂tx|2

∣∣∣∣ = 2
∣∣〈∂tx,∇t∂tx+ gradV(x)〉 − 〈∂tx, gradV(x)〉

∣∣

≤ 2 (δ1 + C) |∂tx| ≤ (1 + C)
2
+ |∂tx|2 .

Integrate this inequality to obtain that

|∂tx(t1)|2 − |∂tx(t0)|2 ≤ (1 + C)
2
+ ‖∂tx‖22

for t0, t1 ∈ [0, 1]. Integrating again over the interval 0 ≤ t0 ≤ 1 gives

‖∂tx‖∞ ≤
√
(1 + C)

2
+ 2 ‖∂tx‖22 ≤ c (72)

where c2 := (1 + C)
2
+ 4 (a+ C).

Now suppose that the assertion is wrong. Then there is a constant δ0 > 0
and a sequence of smooth loops xν : S1 →M satisfying

SV(xν) ≤ a, lim
ν→∞

(
‖∇t∂txν + gradV(xν)‖∞

)
= 0,

but not the conclusion of the lemma for the given constant δ0. By (V0) we
have supν ‖∇t∂txν‖∞ < ∞ and (72) implies supν ‖∂txν‖∞ < ∞. Hence, by
the Arzela–Ascoli theorem, there exists a subsequence, still denoted by xν , that
converges in the C1-topology. Let x0 ∈ C1(S1,M) be the limit. We claim
that this subsequence actually converges in the C2-topology. Then ∇t∂tx0 +
gradV(x0) = 0. Hence x0 ∈ Pa(V) and xν converges to x0 in the C2-topology.
This contradicts our assumption on the sequence xν and proves the lemma.

It remains to prove the claim. For simplicity let us assume that M is iso-
metrically embedded in Euclidean space R

N for some sufficiently large integer
N . Since supν ‖∇t∂txν‖2 < ∞, the Banach-Alaoglu Theorem asserts existence
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of a subsequence, still denoted by xν , and an element v ∈ L2 such that ∇t∂txν
converges to v weakly in L2. In fact v equals the weak t-derivative of ∂tx. Now
gradV(xν) converges to gradV(x0) in L2 and to −v weakly in L2. But the weak
limit equals the strong limit, hence v = −gradV(x0) ∈ C1. Therefore ∂tx0 ∈ C1

and ∇t∂tx0 equals the weak t-derivative v of ∂tx0. Now x0 ∈ C2 satisfies

∇t∂tx0 + gradV(x0) = 0, (73)

because ∇t∂txν converges to v = ∇t∂tx0 weakly in L2 and to −gradV(x0)
strongly in L2. By induction (73) implies that x0 ∈ C∞. Moreover, it follows
using (73) that ∇t∂txν converges to ∇t∂tx0 in C0 and this proves the claim.

Proof of theorem 4.10. Given a and V, let C = C(a,V) be the constant of the-
orem 1.7 and theorem 4.9 with this choice. Let C0 > 1 be the constant in (V0).
Then E(u) ≤ a + C0 by lemma 4.8 and ‖∂su‖∞ ≤ CE(u) ≤ C(a + C0) by
theorem 4.9. Hence

‖∂tu‖∞ + ‖∇t∂tu‖∞ ≤ c0

by theorem 1.7 and by replacing ∇t∂tu according to the heat equation (6). Here
c0 = C(a+ 2C0) +C0. Let δ0 and ρ0 be the positive constants of theorem 3.10
with this choice of c0. Choose δ0 smaller than one quarter the minimal C0

distance κ = κ(a) of any two elements of Pa(V). Let δ1 > 0 be the constant of
lemma 4.12 associated to a and δ0 and set

δ := min

{
δ20
4C

,
δ21
4C

}
.

Note that δ0, ρ0, δ1, and δ depend only on a, V, and the constant C0 of ax-
iom (V0). Note furthermore that the vector field along u given by ξ := ∂su solves
the linear heat equation (43) and that the continuous function s 7→ ‖∂sus‖L2(S1)

is bounded.
If |s| ≥ T0 + 1, then E[s−1,s](u) ≤ ER\[−T0,T0](u) and it follows that

‖∂sus‖∞ + ‖∇t∂sus‖∞ ≤
√
CE[s−1,s](u) ≤

√
Cδ < min {δ0, δ1} . (74)

Here we used theorem 4.9 in step one, assumption (71) in step two, and the
definition of δ in the last step. Hence, by lemma 4.12, there are critical points
x± ∈ Pa(V) such that

us = expx±(η±s ), ‖ηs‖C2(S1) ≤ δ0

whenever ±s ≥ T0+1. Although the critical points x± apriori depend on s they
are in fact independent, because δ0 < κ/4 and Pa(V) is a finite set by the Morse
condition. Moreover, injectivity of the operators Ax± is equivalent to nonde-
generacy of the critical points x± and this is true again by the Morse condition.
Now theorem 3.10 and remark 3.11 conclude the proof of theorem 4.10.
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Proof of theorem 1.8. We prove exponential decay in three steps.
I) Firstly, the energy of u is finite. In the case (B) this is part of the

assumptions. In the case (F) it follows as in the proof of lemma 4.8 for u :
[0,∞)× S1 → R. Namely, let C0 > 0 be the constant in (V0) and set u0(t) :=
u(0, t), then E(u) ≤ SV(u0) + C0.

II) Secondly, we establish the existence of asymptotic limits. Consider the
forward case (F). We claim that ∂su(s, t) → 0 as s → ∞, uniformly in t. Let
C > 0 be the constant in theorem 4.9 and let s ≥ 1, then

|∂su(s, t)| ≤ CE[s−1,s](u) = C

∫ s

s−1

‖∂suσ‖2L2(S1)dσ
s→∞−→ 0.

Here the last step follows by finite energy of u and this proves the claim. Because
∂sus converges to zero in L∞(S1) so does ∇t∂tus + gradV(us) by (6). Hence it
follows from lemma 4.12 that there is a critical point x+ ∈ P(V) and, for every
sufficiently large s, there is a smooth vector field ξs along x+ such that

us = expx+(ξs), ‖ξs‖∞ + ‖∇tξs‖∞ + ‖∇t∇tξs‖∞ s→∞−→ 0.

(Here we used the fact that – since SV is Morse – there are only finitely many
elements in P(V) below any fixed action level.) This and the identities for the
maps Eij in (51) imply that

‖∂su‖∞ + ‖∂tu‖∞ + ‖∇t∂tu‖∞ <∞. (75)

The same arguments apply in case (B) with corresponding asymptotic limit x−.
III) The third step is to prove exponential decay of the Ck norm of ∂su.

Consider the forward case (F). We prove by induction that for every k ∈ N

there is a constant c′k > 0 such that

‖∂su‖Wk,2([s,∞)×S1) ≤ c′k ‖∂su‖L2([s−k,∞)×S1)

for every s ≥ k. This estimate, the definition of the energy in (9), and theo-
rem 4.10 with constants δ, c, ρ, T0 > 0, where T0 is chosen sufficiently large such
that (71) holds true, then show that

‖∂su‖Wk,2([s,∞)×S1) ≤ c′k

√
E[s−k,∞](u) ≤ c′k

√
cδe−ρ(s−k−T0)/2

whenever s ≥ k + T0 + 1. The Sobolev embedding W k,2 →֒ Ck−2, e.g. on the
compact set [s, s+1]×S1, concludes the proof of forward exponential decay (F).

It remains to carry out the induction argument. It is based on the identity

(∇s −∇t∇t) ∂su = R(∂su, ∂tu)∂tu+HV(u)∂su (76)

– which follows by linearizing the heat equation (6) in the s-direction to obtain
that ∂su ∈ ker Du in the notation of section 3.4 – and the subsequent estimate.
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Proposition 2.13 with p = 2 applies4 by (75) and shows that there is a constant
c′ > 0 with the following significance. If s0 ≥ 1 then

‖∇sξ‖L2([s0,∞)×S1) + ‖∇tξ‖L2([s0,∞)×S1) + ‖∇t∇tξ‖L2([s0,∞)×S1)

≤ c′
(
‖∇sξ −∇t∇tξ‖L2([s0−1,∞)×S1) + ‖ξ‖L2([s0−1,∞)×S1)

) (77)

for every ξ ∈ Ω0([0,∞) × S1) of compact support. To see this fix a smooth
nondecreasing cutoff function β : R → [0, 1] which equals zero for s ≤ s0 − 1
and one for s ≥ s0 and whose slope is at most two. Via extension by zero we
interpret βξ as a smooth compactly supported vector field along the extended
cylinder u : R× S1 → M . Now proposition 2.13 applies to βξ and proves (77).
Note that c′ depends on the L∞ norms of ∂sβ, ∂tβ, and ∂t∂tβ. We also used
lemma 2.12 to deal with the term ∇tξ which appears on the right hand side.

We prove the induction hypothesis in the case k = 1. Let s ≥ 1 and denote
by C1 > 0 the constant in (V1). By (77) with ξ = ∂su and (76) it follows that

‖∇s∂su‖L2([s,∞)×S1) + ‖∇t∂su‖L2([s,∞)×S1) + ‖∇t∇t∂su‖L2([s,∞)×S1)

≤ c′
(
‖(∇s −∇t∇t)∂su‖L2([s−1,∞)×S1) + ‖∂su‖L2([s−1,∞)×S1)

)

= c′
(
‖R(∂su, ∂tu)∂tu+HV(u)∂su‖L2([s−1,∞)×S1) + ‖∂su‖L2([s−1,∞)×S1)

)

≤ c′
(
‖R‖∞‖∂tu‖2∞ + 2C1 + 1

)
‖∂su‖L2([s−1,∞)×S1) .

We prove the induction hypothesis for k = 2. Assume s ≥ 2. Then by (77)
with ξ = ∇s∂su and (76) it follows that

‖∇s∇s∂su‖L2([s,∞)×S1) + ‖∇t∇s∂su‖L2([s,∞)×S1) + ‖∇t∇t∇s∂su‖L2([s,∞)×S1)

≤ c′
(
‖∇s (R(∂su, ∂tu)∂tu+HV(u)∂su) + [∇s,∇t∇t]∂su‖L2([s−1,∞)×S1)

+ ‖∇s∂su‖L2([s−1,∞)×S1)

)
.

Now use s ≥ 2, the apriori estimates (75), axiom (V2), and the case k = 1
to bound the right hand side by a constant times ‖∂su‖L2([s−2,∞)×S1). An L2

bound for ∇t∇t∂su was obtained earlier in the case k = 1 and the identity
∇s∇t∂su = ∇t∇s∂su−R(∂tu, ∂su)∂su implies one for ∇s∇t∂su.

Proving the induction hypothesis in the case k = 3 requires additional in-
formation: Theorem 4.5 and theorem 4.9 only assume an upper action bound
for the heat flow solution. In the case at hand this is provided by SV(u(0, ·)).
This reproves (75) and in addition shows that ‖∇t∂su‖∞ <∞. This estimate is
crucial, since (77) with ξ = ∇s∇s∂su and (76) lead to terms of the form

‖R(∇s∂su,∇t∂su)∂tu‖L2([s,∞)×S1),

but our induction hypothesis in the case k = 2 only provides a C0 bound for
∂su. The remaining part of proof follows the same pattern as in the case k = 2.
Here we use axiom (V3).

4Formally add to u any smooth half cylinder imposing a uniform limit as s → −∞.
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Fix an integer k ≥ 3 and assume the induction hypothesis is true for every
ℓ ∈ {1, . . . , k}. In particular, we have W k,2 and Ck−2 bounds for ∂su on the
appropriate domains. Apply (77) with ξ = ∇s

k∂su and (76) to obtain L2 bounds
for ∇s

k+1∂su and ∇t∇s
k∂su. Here we use axiom (V3) and the induction hypoth-

esis for ℓ ∈ {1, . . . , k}. A problem of the type encountered in the case k = 3 does
not arise, since we have Ck−2 bounds for ∂su with k ≥ 3. To obtain L2 estimates
for the remaining terms of the form ∇t

j∇s
k−j∂su with j ≥ 2 use (76) to treat

any ∇t∇t for one ∇s. This reduces the order of the term, hence the induction
hypothesis can be applied. This completes the induction step and proves (F).
The backward case (B) follows similarly. This proves theorem 1.8.

Lemma 4.13. Fix a perturbation V : LM → R that satisfies (V0)–(V3), a con-
stant p > 1, and nondegenerate critical points x± of SV . If u ∈ M(x−;x+;V),
then the operators Du,D∗

u : W1,p
u → Lp

u are Fredholm and

indexDu = indV(x
−)− indV(x

+) = −indexD∗
u.

Proof. By theorem 1.8 on exponential decay u satisfies the assumptions of the
Fredholm theorem 1.9.

4.5 Compactness up to broken trajectories

Proposition 4.14 (Convergence on compact sets). Assume that the perturba-
tion V : LM → R satisfies (V0)–(V3) and that SV is Morse. Fix critical points
x± ∈ P(V) and a sequence of connecting trajectories uν ∈ M(x−, x+;V). Then
there is a pair x0, x1 ∈ P(V), a connecting trajectory u ∈ M(x0, x1;V), and a
subsequence, still denoted by uν , such that the following hold:

(i) The subsequence uν converges to u, uniformly with all derivatives on every
compact subset of R× S1.

(ii) For all s ∈ R and T > 0

SV

(
u(s, ·)

)
= lim

ν→∞
SV

(
uν(s, ·)

)

E[−T,T ](u) = lim
ν→∞

E[−T,T ](u
ν).

Proof. Since the flow lines uν connect x− to x+ and the action SV decreases
along flow lines, it follows that

sup
s∈R

SV(u
ν(s, ·)) = SV(x

−) =: c0.

Hence by the apriori estimates theorem 4.5 and theorem 4.9 there is a constant
C = C(c0,V) such that

|∂tuν(s, t)| ≤ C, |∂suν(s, t)| ≤ C
√

SV(x−)− SV(x+),

for every (s, t) ∈ R × S1. To obtain the second estimate we used the energy
identity (9) for connecting orbits. Now fix a constant p > 2 and pick an integer
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ℓ ≥ 2. Then the assumptions of theorem 4.3 are satisfied for the sequence uν

restricted to the cylinder Zℓ = (−ℓ, ℓ] × S1. Hence there is a smooth solution
u : Zℓ →M of the heat equation (6) and a subsequence, still denoted by uν , such
that uν converges to u, uniformly with all derivatives on the compact subset
[−ℓ + 1, ℓ] × S1 of Zℓ. Now (i) follows by choosing a diagonal subsequence
associated to the exhausting sequence Z2 ⊂ Z3 ⊂ . . . of R× S1.

To prove (ii) note that

E[−T,T ](u) = lim
ν→∞

∫ T

−T

∫ 1

0

|∂suν |2 dt ds

= lim
ν→∞

E[−T,T ](u
ν)

≤ SV(x
−)− SV(x

+)

for every T > 0. Here the first step uses that, by (i), the sequence ∂su
ν converges

to ∂su, uniformly on compact sets. The second step is by definition of the
energy and the last step is again by the energy identity (9). Hence the limit
u : R×S1 →M has finite energy and so, by theorem 1.8, belongs to the moduli
space M(x0, x1;V) for some x0, x1 ∈ P(V). To prove convergence of the action
at time s note that

V
(
u(s, ·)

)
= lim

ν→∞
V
(
uν(s, ·)

)
,

because V is continuous with respect to the C0 topology on LM by axiom (V0).
Convergence of the action at time s then follows from the fact that ∂tu

ν(s, ·)
converges to ∂tu(s, ·) in L∞(S1).

Lemma 4.15 (Compactness up to broken trajectories). Assume that the per-
turbation V : LM → R satisfies (V0)–(V3) and that SV is Morse. Fix distinct
critical points x± ∈ P(V) and let uν ∈ M(x−, x+;V) be a sequence of connecting
trajectories. Then there exist a subsequence, still denoted by uν , finitely many
critical points x0,. . . ,xm with x0 = x+ and xm = x−, finitely many solutions

uk ∈ M(xk, xk−1;V), ∂suk 6≡ 0, k = 1, . . . ,m,

and finitely many sequences sνk, such that the shifted sequence uν(sνk + s, t) con-
verges to uk(s, t), uniformly with all derivatives on every compact subset of
R×S1. Moreover, these limit solutions satisfy

∑m
k=1E(uk) = SV(x

−)−SV(x
+).

Proof. In [SW03, Proof of lemma 10.3] replace lemma 10.2 by prop. 4.14.
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5 The implicit function theorem

Throughout this section we fix a smooth perturbation V : LM → R that satis-
fies (V0)–(V3) and two nondegenerate critical points x± of SV . The idea to prove
the manifold property and the dimension formula in theorem 1.10 is to construct
a smooth Banach manifold which contains the moduli space M(x−, x+;V) and
then prove these statements locally near each element of the moduli space.

Fix a real number p > 2 and denote by

B1,p = B1,p(x−, x+) (78)

the space of continuous maps u : R × S1 → M , which satisfy the limit con-
ditions (8), are locally of class W1,p, and satisfy the asymptotic conditions
ξ− ∈ W1,p((−∞,−T ] × S1, u∗TM) and ξ+ ∈ W1,p([T,∞) × S1, u∗TM) for
some sufficiently large T > 0. Here ξ± are defined pointwise by the identity
expx±(t) ξ

±(s, t) = u(s, t). For p > 2 the space B1,p carries the structure of a

smooth infinite dimensional Banach manifold. The tangent space TuB1,p is given
by the Banach space W1,p

u whose norm is defined in (12). Around any smooth
map u local coordinates are provided by the inverse of the map ϕu

−1 : Vu → B1,p

given by ξ 7→ [(s, t) 7→ expu(s,t) ξ(s, t)] where Vu ⊂ W1,p
u is a sufficiently small

neighborhood of zero. By abuse of notation we shall denote this map again by
ξ 7→ expu ξ. Moreover, note that if some u ∈ B1,p satisfies the heat equation (6)
almost everywhere, then u is smooth by theorem 1.5, hence u ∈ M(x−, x+;V).

For x ∈ M and ξ ∈ TxM denote parallel transport with respect to the
Levi-Civita connection along the geodesic τ 7→ expx(τξ) by

Φ(x, ξ) : TxM → Texpx(ξ)
M.

For u ∈ B1,p the map Fu : W1,p
u → Lp

u defined by

Fu(ξ) := Φ(u, ξ)−1 (∂s(expu ξ)−∇t∂t(expu ξ)− gradV(expu ξ)) (79)

is induced by pointwise evaluation at (s, t). Its significance lies in the following
three facts. Firstly, it is a smooth map between Banach spaces, hence the
implicit function theorem for Banach spaces applies. Secondly, the differential
dFu(0) : W1,p

u → Lp
u is given by the linear operator Du; see [W99, app. A.3].

Thirdly, the map ξ 7→ expu ξ identifies a neigborhood V of zero in Fu
−1(0) with

a neigborhood of u in M(x−, x+;V). Now theorem 1.10 follows immediately.

Proof of theorem 1.10. Fix p > 2. Then the operator dFu(0) = Du : W1,p
u → Lp

u

is Fredholm by theorem 1.9 and surjective by assumption. Since every surjective
Fredholm operator admits a right inverse, the implicit function theorem for
Banach spaces, see e.g. [MS04, thm A.3.3], applies to Fu restricted to a small
neighborhood V of zero. It asserts that Fu

−1(0)∩V is a smooth manifold whose
tangent space at zero is given by the kernel of Du. Since Du is onto, it follows
that dimkerDu = indexDu by definition of the Fredholm index. On the other
hand, the Fredholm index equals indV(x

−)− indV(x
+) by theorem 1.9.

75



Proof of proposition 1.11. Set c∗ = 1
2 (SV(x

−)− SV(x
+)) and identify

M̂(x−, x+;V) ≃ M∗ := {u ∈ M(x−, x+;V) | SV(u(0, ·)) = c∗}.
Here we use that the action SV is strictly decreasing along nonconstant (in the
s-variable) heat flow trajectories. This is standard and follows from the first
variation formula for the functional SV ; see e.g. [M69, sec. 12]. Now choose a
sequence uν in M∗. By lemma 4.15 there is a subsequence, still denoted by uν ,
finitely many critical points x0 = x+, x1, . . . , xm = x−, finitely many connecting
trajectories uk ∈ M(xk, xk−1;V) and sequences sνk where k = 1, . . . ,m, such
that each shifted sequence uν(sνk + s, t) converges to uk(s, t) in C

∞
loc. Note that

m ≥ 1. By the Morse–Smale assumption theorem 1.10 applies to all moduli
spaces. Since ∂suk 6≡ 0 and the heat equation (6) is s-shift invariant this implies

indV(xk)− indV(xk−1) = dimM(xk, xk−1;V) ≥ 1, ∀k ∈ {1, . . . ,m}.
Use these inequalities to obtain that indV(x

−)− indV(x
+) ≥ m ≥ 1. But by as-

sumption the index difference is one and therefore m = 1. Now this means that
the subsequence uν converges in C∞

loc to u := u1 ∈ M(x−, x+;V). In fact, con-
vergence of the action functional for fixed time s = 0, see proposition 4.14 (ii),
shows that u ∈ M∗. Hence M∗ is compact in the C∞

loc topology. On the other
hand, the moduli space M(x−, x+;V) is a manifold of dimension one by theo-
rem 1.10. Now the R action is free and therefore the quotient, hence M∗, is a
manifold of dimension zero. But a zero dimensional compact manifold consists
of finitely many points.

The refined implicit function theorem

Proposition 5.1 (The estimate for the right inverse). Fix a perturbation V :
LM → R that satisfies (V0)–(V3) and nondegenerate critical points x± of SV .
Assume u ∈ M(x−;x+;V) and Du is onto. Then, for every p > 1, there is a
positive constant c = c(p, u) invariant under s-shifts of u such that

‖ξ∗‖W1,p
u

≤ c ‖Duξ
∗‖p (80)

for every ξ∗ ∈ im (D∗
u : W2,p

u → W1,p
u ). Here W2,p

u := {ξ ∈ W1,p
u | Duξ ∈ W1,p

u }.
Proof of proposition 5.1. The proof of [DS94, lemma 4.5] carries over. We in-
clude it for the sake of completeness. Fix p > 1 and let 1/q + 1/p = 1. By
lemma 4.13 the operators Du and D∗

u are Fredholm. Since Du is onto, the op-
erator D∗

u is injective by proposition 3.17 and proposition 3.19 (hypothesis 3.15
is satisfied by theorem 1.8 on exponential decay). Hence by the open mapping
theorem D∗

u satisfies the injectivity estimate

‖η‖q + ‖∇sη‖q + ‖∇t∇tη‖q ≤ c1 ‖D∗
uη‖q (81)

for every η ∈ W1,q
u and with shift invariant constant c1 = c1(q, u) > 0. Next

observe that

〈D∗
uξ,D∗

uη〉
‖D∗

uη‖q
=

〈DuD∗
uξ, η〉

‖D∗
uη‖q

≤ ‖DuD∗
uξ‖p

‖η‖q
‖D∗

uη‖q
≤ c1 ‖DuD∗

uξ‖p (82)
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for all ξ ∈ W2,p
u and η ∈ W1,q

u . Here the first step is by definition of the formal
adjoint and the second one by Hölder’s inequality. The third step is by (81).
Now there is a shift invariant constant c2 = c2(p, u) > 0 such that

‖D∗
uξ‖p ≤ c2 sup

η∈W1,q
u

〈D∗
uξ,D∗

uη〉
‖D∗

uη‖q
(83)

for every ξ ∈ W2,p
u . The argument uses that Du is onto and dimkerDu < ∞.

The constant c2 depends also on the choice of an L2 orthonormal basis of kerDu.
Full details are given in step 2 of the proof of lemma 4.5 in [DS94]. Now the
linear estimate proposition 2.13 for ξ∗ := D∗

uξ shows that

‖ξ∗‖W1,p
u

≤ c3

(
‖Duξ

∗‖p + ‖ξ∗‖p
)

where the constant c3(p, u) is again shift invariant. To estimate the second term
in the sum apply (83) and (82) to obtain that ‖ξ∗‖p ≤ c1c2‖Duξ

∗‖p.

Proposition 5.2 (Quadratic estimate). Fix a perturbation V : LM → R that
satisfies (V0)–(V1). Let ι > 0 be the injectivity radius of M and fix constants
1 < p < ∞ and c0 > 0. Then there is a constant C = C(p, c0) > 0 such that
the following is true. If u : R× S1 →M is a smooth map and ξ is a compactly
supported smooth vector field along u such that

‖∂su‖∞ + ‖∂tu‖∞ + ‖∇t∂tu‖∞ ≤ c0, ‖ξ‖∞ ≤ ι,

then

‖Fu(ξ)−Fu(0)− dFu(0)ξ‖p ≤ C ‖ξ‖∞ ‖ξ‖W1,p
u

(
1 + ‖ξ‖W1,p

u

)
.

Proof. Recall the definition (51) of the maps Ei and Eij and write

Fu(ξ)−Fu(0)−
d

dτ

∣∣∣∣
τ=0

Fu(τξ) = f(ξ)− g(ξ)− h(ξ)

where

f(ξ) := Φ(u, ξ)−1∂sE(u, ξ)− ∂su− d

dτ

∣∣∣∣
τ=0

Φ(u, τξ)−1∂su

− d

dτ

∣∣∣∣
τ=0

∂sE(u, τξ)

g(ξ) := Φ(u, ξ)−1∇t∂tE(u, ξ)−∇t∂tu+ (∇2Φ(u, 0)ξ)∇t∂tu

− d

dτ

∣∣∣∣
τ=0

∇t∂tE(u, τξ)

h(ξ) := Φ(u, ξ)−1gradV(E(u, ξ))− gradV(u) + (∇2Φ(u, 0)ξ) gradV(u)

− d

dτ

∣∣∣∣
τ=0

gradV(E(u, τξ)).
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Here we used that Φ(u, 0) = 1l. Straightforward calculation using the identi-
ties (53) shows that f(ξ) = f1(ξ)∇sξ + f2(ξ) where

f1(ξ)∇sξ =
(
Φ(u, ξ)−1E2(u, ξ)− 1l

)
∇sξ

f2(ξ)∂su =
(
Φ(u, ξ)−1E1(u, ξ)− 1l +∇2Φ(u, 0)ξ

)
∂su,

that

g = g1 ◦ ∇t∂tu+ g2 ◦ (∂tu, ∂tu) + g3 ◦ ∇t∇tξ + g4 ◦ (∂tu,∇tξ) + g5 ◦ (∇tξ,∇tξ)

where

g1(ξ) = Φ(u, ξ)−1E1(u, ξ)− 1l +∇2Φ(u, 0)ξ

g2(ξ) = Φ(u, ξ)−1E11(u, ξ)−
d

dτ

∣∣∣∣
τ=0

E11(u, τξ)

g3(ξ) = Φ(u, ξ)−1E2(u, ξ)− 1l

g4(ξ) = 2Φ(u, ξ)−1E12(u, ξ)

g5(ξ) = Φ(u, ξ)−1E22(u, ξ),

and that

h(ξ) = Φ(u, ξ)−1gradV(E(u, ξ))− (1l− (∇2Φ(u, 0)ξ)) gradV(u)−HV(u)ξ.

HereHV denotes the covariant Hessian of V given by (4). It follows by inspection
using the identities (53) that the maps f2, g1, g2, and h together with their first
derivative are zero at ξ = 0. Therefore there exists a constant c > 0 which
depends continuously on |ξ| and the constant in (V1) such that

|(f2 + g1 + g2 + h)(ξ)| ≤ c |ξ|2
(
|∂su|+ |∇t∂tu|+ |∂tu|2 + 1

)

pointwise at every (s, t). Similarly, it follows that the remaining functions are
zero at ξ = 0 and therefore

|(f1 + g3 + g4 + g5)(ξ)| ≤ c |ξ|
(
|∇sξ|+ |∇t∇tξ|+ |∇tξ| |∂tu|+ |∇tξ|2

)
.

Take these pointwise estimates to the power p, integrate them over R× S1 and
pull out L∞ norms of ∂su, ∂tu, and ∇t∂tu to obtain the conclusion of proposi-
tion 5.2. The term |ξ| · |∇tξ|2 involving a product of first order terms is taken
care of by the product estimate lemma 2.14 and remark 2.15. Here we use the
fact that the (compact) support of ξ is contained in some set (a, b]× S1.

Proof of the refined implicit function theorem 1.12

Assume the result is false. Then there exist constants p > 2 and c0 > 0 and a
sequence of smooth maps uν : R× S1 →M such that lims→±∞ uν(s, ·) = x±(·)
exists, uniformly in t, and

|∂suν(s, t)| ≤
c0

1 + s2
, ‖∂tuν‖∞ ≤ c0, ‖∇t∂tuν‖∞ ≤ c0, (84)
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for all (s, t) ∈ R× S1 and

‖∂suν −∇t∂tuν − gradV(uν)‖p ≤ 1

ν
, (85)

but which does not satisfy the conclusion of theorem 1.12 for c = ν. This means
that for every u∗ ∈ M(x−, x+;V) and every ξν ∈ im D∗

u∗
∩Wu∗

the following
holds. If uν = expu∗

(ξν) then

‖∂suν −∇t∂tuν − gradV(uν)‖p <
1

ν
‖ξν‖W . (86)

The time shift of a smooth map u : R× S1 by σ ∈ R is defined pointwise by

uσ(s, t) := u(s+ σ, t).

Set a0 := 2c20 and observe that

SV(x
−) = lim

s→−∞
SV(uν(s, ·)) =

1

2
‖∂tuν(s, ·)‖22 − V(uν(s, ·)) ≤

1

2
c20 + C0 ≤ a0.

Here we used the assumption on asymptotic W 1,2 convergence, estimate (84),
and our choice of the constant c0 > 1 larger than the constant C0 in (V0). Now
fix a regular value c∗ of SV between SV(x

+) and SV(x
−). Here we use that the

set Pa0(V) is finite, because SV is Morse–Smale below level a0. Applying time
shifts, if necessary, we may assume without loss of generality that

SV (uν(0, ·)) = c∗. (87)

Furthermore we set c̃0 = a and let C0 = C0(a,V) > 0 be the constant in
theorem 1.7 with that choice. Then we have the apriori estimates

‖∂su‖∞ + ‖∂tu‖∞ + ‖∇t∂tu‖∞ ≤ C0 (88)

for all u ∈ M(x, y;V) and x, y ∈ Pa(V).
Claim. There is a subsequence, still denoted by uν , a constant C > 0, a
trajectory u ∈ M(x−, x+;V), and a sequence of times σν such that the sequence
ην determined by the identity

uν = expuσν (ην)

satisfies ην ∈ im D∗
uσν ∩Wuσν and

lim
ν→∞

(
‖ην‖∞ + ‖ην‖p

)
= 0, ‖ην‖W ≤ C. (89)

Before we prove the claim we show how it leads to a contradiction. Consider
the trajectories uσν ∈ M(x−, x+;V) and vector fields ην provided by the claim.
They satisfy the assumptions of the quadratic estimate, proposition 5.2, by (88)

79



and by choosing a further subsequence, if necessary, to achieve that ‖ην‖∞ < ι.
Set c′0 = C0(a,V) and let C2 = C2(p, c

′
0) be the constant in proposition 5.2

with that choice. Furthermore, since M(x−, x+;V)/R is a finite set by propo-
sition 1.11 (and Pa(V) is a finite set as well) the estimate for the right inverse,
proposition 5.1, applies with constant C1 depending only on p, a, and V. Now
by the definition (79) of the map Fû and the fact that parallel transport is an
isometry we obtain the first step in the following estimate, namely

‖∂suν −∇t∂tuν − gradV(uν)‖p = ‖Fû(ην)‖p
≥ ‖Dûην‖p − ‖Fû(ην)−Fû(0)− dFû(0)ην‖p

≥ ‖ην‖W
(

1

C1
− C2 ‖ην‖∞ (1 + ‖ην‖W)

)

≥ 1

2C1
‖ην‖W .

Step two uses that Fû(0) = ∂sû−∇t∂tû−gradV(û) = 0 and dFû(0) = Dû. Step
three is by proposition 5.1 and proposition 5.2. By (89) the last step holds for
sufficiently large ν. For ν > 2C1 the estimate contradicts (86) and this proves
theorem 1.12. It only remains to prove the claim. This takes four steps.

Step 1. There is a subsequence of uν , still denoted by uν , and a trajectory
u ∈ M(x−, x+;V) such that

uν = expu(ξν), lim
ν→∞

(
‖ξν‖∞ + ‖ξν‖p

)
= 0. (90)

Proof. We embed the compact Riemannian manifold M isometrically into some
Euclidean space R

N and view any continuous map to M as a map into R
N

taking values in the embedded manifold. By translation we may assume that
the embeddedM contains the origin. Now Lp and L∞ norms of uν are provided
by the ambient Euclidean space. By compactness of M and, in particular,
the L∞ bounds in (84) we obtain on every compact cylindrical domain ZT :=
[−T, T ]× S1 the estimates

‖uν‖Lp(ZT ) ≤ (2T )
1
p diamM, ‖∂tuν‖Lp(ZT ) + ‖∇t∂tuν‖Lp(ZT ) ≤ 2c0(2T )

1
p ,

and
‖∂suν‖r ≤ 4c0 ∀r ∈ (1,∞]. (91)

The latter follows by the estimate

∫ ∞

−∞

(
1

1 + s2

)r

ds ≤ 2 + 2

∫ ∞

1

1

s2r
ds =

4

2− 1/r
< 4

whenever r > 1. Hence the sequence uν is uniformly bounded in W1,p(ZT ).
Thus by the Arzela-Ascoli and the Banach-Alaoglu theorem a suitable subse-
quence, still denoted by uν , converges strongly in C0 and weakly in W1,p on
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every compact cylindrical domain ZT to some continuous map u : R×S1 →M
which is locally of classW1,p. Hence ∂suν−∇t∂tuν−gradV(uν) converges weakly
in Lp to ∂su − ∇t∂tu − gradV(u). On the other hand, by (85) it converges to
zero in Lp. By uniqueness of limits u satisfies the heat equation (6) almost
everywhere. Thus u is smooth by theorem 1.5.

Fix s ∈ R and observe that by (84) there are uniform C1(S1) bounds for the
sequence ∂tuν(s, ·). Hence by Arzela-Ascoli a suitable subsequence, still denoted
by ∂tuν(s, ·), converges in C0(S1) to ∂tu(s, ·). Thus

lim
ν→∞

SV(uν(s, ·)) = SV(u(s, ·))

and therefore SV(u(0, ·)) = c∗ by (87). Recall that ∂su = ∇t∂tu + gradV(u).
When restricted to s = 0 this means that the vector field ∂su(0, ·) is equal to
the L2 gradient of SV at the loop u(0, ·). But SV(u(0, ·)) = c∗ and c∗ is a regular
value. Hence ∂su(0, ·) cannot vanish identically.

On the other hand, by (84) and axiom (V0) with constant C0 it follows
exactly as above that

sup
ν

SV(uν(s, ·)) = sup
ν

1

2
‖∂tuν(s, ·)‖22 − V(uν) ≤ a0.

This shows that all relevant trajectories including relevant limits over s or ν
lie in the sublevel set La0M on which SV is Morse–Smale by assumption. In
particular, we have that sups∈R SV(u(s, ·)) ≤ a0 and therefore the energy of
u is finite by lemma 4.8. Hence by the exponential decay theorem 1.8 there
are critical points y± ∈ Pa0(V) such that u(s, ·) converges to y± in C2(S1), as
s→ ±∞. Moreover, the limits y− and y+ are distinct, because the action along
a nonconstant trajectory is strictly decreasing and the trajectory is nonconstant
because ∂su is not identically zero as observed above.

More generally, a standard argument shows the following, see e.g. [SW03,
lemma 10.3]. There exist critical points x− = x0, x1, . . . , xℓ = x+ ∈ Pa0(V) and
trajectories uk ∈ M(xk−1, xk;V), ∂suk 6≡ 0, for k ∈ {1, . . . , ℓ}, a subsequence,
still denoted by uν , and sequences skν ∈ R, k ∈ {1, . . . , ℓ}, such that the shifted
sequence uν(s

k
ν+s, t) converges to u

k(s, t) in an appropriate topology. The point
here is that ∂su

k 6≡ 0 and therefore the Morse index strictly decreases along the
sequence x− = x0, x1, . . . , xℓ = x+. Namely, by the Morse–Smale condition
each Fredholm operator Duk is onto, hence its Fredholm index is equal to the
dimension of its kernel. But this is strictly positive because the kernel contains
the nonzero element ∂su

k. On the other hand, by lemma 4.13 the Fredholm
index is given by the difference of Morse indices indV(x

k−1) − indV(x
k). Our

assumption that the pair x± has Morse index difference one then implies that
ℓ = 1 and this proves that u ∈ M(x−, x+;V). The first assertion of step 1.

It remains to prove the second assertion, that is (90). The key fact to
prove (90) is that uν(s, ·) not only converges in W 1,2(S1) to x±, as s → ±∞,
but that the rate of convergence is independent of ν. More precisely, we prove
that for every ε > 0 there is a time T = T (ε) > 1 such that

s > T =⇒ d
(
uν(s, t), x

+(t)
)
< ε (92)
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for all t ∈ S1 and ν ∈ N. Recall that M is embedded isometrically in R
N . By

the fundamental theorem of calculus and uniform decay (84) we have that

∣∣x+(t)− uν(σ, t)
∣∣
RN =

∣∣∣∣
∫ ∞

σ

∂suν(s, t) ds

∣∣∣∣
RN

≤
∫ ∞

σ

c0
s2
ds =

c0
σ

(93)

for all t ∈ S1, ν ∈ N, and σ > 1 sufficiently large. The Riemannian distance d in
M and the restriction of the Euclidean distance in R

N to the compact manifold
M are locally equivalent. Hence (93) implies (92). Let Z+

T := [T,∞)×S1 denote
the positive end of the cylinder R×S1 and Z−

T the negative end. Let ι > 0 be the
injectivity radius of M . Now fix ε ∈ (0, ι/2) and choose T = T (ε) > 0 such that
the ends u(Z±

T ) and uν(Z
±
T ) for all ν are contained in the (ε/6)-neighborhood

of x±(S1). Such T exists by (92). Since uν converges to u uniformly on ZT ,
there exists ν0 = ν0(T (ε)) ∈ N such that ‖ξν‖L∞(ZT ) < ε/3 for every ν ≥ ν0.
Hence

‖ξν‖∞ = ‖ξν‖L∞(Z−

T ) + ‖ξν‖L∞(ZT ) + ‖ξν‖L∞(Z+
T )

≤ sup
Z−

T

(
d(uν , x

−) + d(x−, u)
)
+ ‖ξν‖L∞(ZT )

+ sup
Z+

T

(
d(uν , x

+) + d(x+, u)
)

≤ ε

(94)

for every ν ≥ ν0. This proves that the L∞ limit in (90) is zero. To prove that
the Lp limit is zero one uses again the decomposition of R×S1 into the compact
part ZT and the two ends Z±

T . The left hand side of (93) is p-integrable over
the ends Z±

T . The key fact is that the value of this integral does not depend on
ν and converges to zero as |T | → ∞. A similar integral is needed in the case of
u. Here the exponential decay theorem 1.8 shows that the integral exists and
converges to zero as |T | → ∞. This concludes the proof of step 1.

Step 2. Set εν := ‖ξν‖∞+‖ξν‖p and let C0 be the constant in (88). Then there
is a constant σ0 > 0 and integer ν0 ≥ 1 such that η = η(σ, ν) is determined by
the identity uν = expuσ η and satisfies ‖η‖∞ < ι/2 for all σ ∈ [−σ0, σ0] and
ν ≥ ν0. Furthermore, there is a constant c2 = c2(a0, σ0) > 0 such that

‖η‖∞ ≤ εν + C0 |σ| , ‖η‖p ≤ 2εν + c2 |σ|

and
‖∇sη‖p ≤ c2, ‖∇tη‖∞ ≤ c2, ‖∇t∇tη‖p ≤ c2

for all σ ∈ [−σ0, σ0] and ν ≥ ν0.

Proof. Existence of σ0 and ν0 follows from the fact that η(ν, 0) = ξν , continuity
of time shift, and the L∞ limit in (90). Now denote by L the length functional.
Then for every σ ∈ R and γ(r) := u(s+ rσ, t) for r ∈ [0, 1] we have that

d (u(s, t), u(s+ σ, t)) ≤ L(γ) = |σ|
∫ 1

0

|∂su(s+ rσ, t)| dr ≤ |σ| ‖∂su‖∞ . (95)
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Since d (uν(s, t), u(s, t)) = |ξν(s, t)| ≤ εν , the first estimate of step 2 follows from
|η(s, t)| = d (uν(s, t), u(s+ σ, t)), the triangle inequality, and (88). To prove the
second estimate note that the triangle inequality also implies that

‖η‖pp ≤ 2p−1 ‖ξν‖pp + 2p−1

∫ ∞

−∞

∫ 1

0

d (u(s, t), u(s+ σ, t))
p
dtds.

By theorem 1.8 on exponential decay there are constants ρ, c3 > 2 such that for
all (s̃, t) ∈ R× S1 we have that

|∂su(s̃, t)| ≤ c3e
−ρ|s̃|, ‖∂su‖r ≤ c3 ∀r > 1. (96)

Note that the constants ρ and c3 depend only on a0, since the set Pa0(V) is finite
and there are only finitely many elements of M(x−, x+;V) which satisfy (87).
By the first inequality in (95) and the first estimate in (96) with s̃ = s+ rσ

d (u(s, t), u(s+ σ, t)) ≤ |σ|
∫ 1

0

|∂su(s+ rσ, t)| dr ≤ |σ| c3eρσ0e−ρ|s|.

Hence the left hand side is Lp integrable. This concludes the proof of the second
estimate of step 2. To prove the next two estimates we differentiate the identity
expuσ η = uν with respect to s and t to obtain that

E1(u
σ, η)∂su

σ + E2(u
σ, η)∇sη = ∂suν (97)

E1(u
σ, η)∂tu

σ + E2(u
σ, η)∇tη = ∂tuν . (98)

Here the maps Ei are defined by (51). Since ‖∂suσ‖p ≤ c3 by (96) and
‖∂suν‖p ≤ 4c0 by (91), the Lp norm of ∇sη is uniformly bounded as well.
Similarly, since ‖∂tuσ‖∞ ≤ C0 by (88) and ‖∂tuν‖∞ ≤ c0 by (84), the L∞ norm
of ∇tη is uniformly bounded. To prove the last estimate of step 2 differentiate
(98) covariantly with respect to t and abbreviate Eij = Eij(u

σ, η) to obtain

E11(u
σ, η) (∂tu

σ, ∂tu
σ) + E12(u

σ, η) (∂tu
σ,∇tη) + E1(u

σ, η)∇t∂tu
σ

+ E21(u
σ, η) (∇tη, ∂tu

σ) + E22(u
σ, η) (∇tη,∇tη) + E2(u

σ, η)∇t∇tη

+ gradV(uν)− ∂suν

= ∇t∂tuν + gradV(uν)− ∂suν .

This identity implies a uniform Lp bound for ∇t∇tη as follows. The right hand
side is bounded in Lp by 1/ν and the last term of the left hand side by 4c0
according to (91). Since Eij(u

σ, 0) = 0 and we have uniform L∞ bounds for
each of the two linear terms to which Eij(u

σ, η) is applied, we can estimate the
Lp norm by a constant times ‖η‖p. The only terms left are term three and term
seven of the left hand side. By the heat equation (6) their sum equals

E1(u
σ, η) ∂su

σ − E1(u
σ, η) gradV(uσ) + gradV(uν).

Since ‖∂suσ‖p ≤ c3 by (96), the Lp norm of the first term is uniformly bounded.
Consider the remaining two terms as a function f of η. Then f(0) = 0, because
E1(u

σ, 0) = 1l and η = 0 means uν = uσ. Hence ‖f‖p is uniformly bounded by
a constant times ‖η‖p. Here we used axiom (V0). This proves step 2.
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Step 3. For σ ∈ [−σ0, σ0] consider the function θν(σ) := −〈∂suσ, η〉 where
η = η(σ, ν) has been defined in step 2 by the identity uν = expuσ η and where
〈·, ·〉 denotes the L2(R× S1) inner product. This function has the property that

θν(σ) = 0 ⇐⇒ η ∈ imD∗
uσ .

Moreover, there exist new constants σ0 > 0 and ν0 ∈ N such that

|θν(0)| ≤ c3εν ,
d

dσ
θν(σ) ≥

µ

2
,

for all σ ∈ [−σ0, σ0] and ν ≥ ν0 where µ := SV(x
−)− SV(x

+) > 0.

Proof. ‘⇐’ follows by definition of the formal adjoint operator using that ∂su
σ ∈

kerDuσ . We prove ‘⇒’. The kernel of the linear operator Duσ is 1-dimensional:
It is Fredholm of index one by theorem 1.9 and it is onto by the Morse–
Smale condition. This kernel is spanned by the (nonzero) element ∂su

σ. Now
consider D∗

uσ on the domain W2,p and apply proposition 3.19 to obtain that
W1,p = kerDuσ ⊕ imD∗

uσ . The implication ’⇒’ now follows immediately by
contradiction.

Set 1/q + 1/p = 1. By (96) and the definition of the sequence εν → 0 in
step 2 it follows that

|θν(0)| = |〈∂su, ξν〉L2 | ≤ ‖∂su‖q ‖ξν‖p ≤ c3εν .

Abbreviate Ei = Ei(u
σ, η). Then straightforward calculation using the iden-

tity (97) for ∇sη shows that

d

dσ
θν(σ) = −〈∇s∂su

σ, η〉L2 − 〈∂suσ,−∂suσ + ∂su
σ − E−1

2 E1∂su
σ〉L2

≥ −‖∇s∂su
σ‖q ‖η‖p + ‖∂suσ‖22 − ‖∂suσ‖q ‖∂suσ‖∞ c4 ‖η‖p

= ‖∂su‖22 − ‖η‖p
(
‖∇s∂su‖q + c4 ‖∂su‖q ‖∂su‖∞

)

≥ ‖∂su‖22 − (2εν + c2|σ|)(c5 + c23c4)

for some constant c4 = c4(a0, σ0) > 0. The last step is by (96) with constant c3.
We also used that ‖∇s∂su‖q ≤ c5 for some positive constant c5 = c5(a0), which
follows from exponential decay of ∇s∂su according to theorem 1.8. The energy
identity (9) shows that ‖∂su‖22 = µ > 0. Now choose σ0 > 0 sufficiently small
and ν0 sufficiently large to conclude the proof of step 3.

Step 4. We prove the claim.

Proof. By step 3 there exists, for every sufficiently large ν, an element σν ∈
[−σ0, σ0] such that θν(σν) = 0 and |σν | ≤ εν(2c3/µ). Set ην := η(σν , ν). Then
ην ∈ imD∗

uσν again by step 3 and

‖ην‖∞ + ‖ην‖p ≤ εν (3 + (c2 + C0)2c3/µ) , ‖ην‖W ≤ C,

by step 2. This proves (89), hence the claim, and therefore theorem 1.12.
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6 Unique Continuation

To prove unique continuation for the nonlinear heat equation we slightly extend
a result of Agmon and Nirenberg [AN67] (to the case C1 6= 0). This generaliza-
tion is needed to deal with the nonlinear heat equation (6), since here nonzero
order terms appear on the right hand side of (99). For the linear heat equation
the original result for C1 = 0 is sufficient.

Theorem 6.1. Let H be a real Hilbert space and let A(s) : domA(s) → H be a
family of symmetric linear operators. Assume that ζ : [0, T ] → H is continuously
differentiable in the weak topology such that ζ(s) ∈ domA(s) and

‖ζ ′(s)−A(s)ζ(s)‖ ≤ c1 ‖ζ(s)‖+ C1 |〈A(s)ζ(s), ζ(s)〉|1/2 (99)

for every s ∈ [0, T ] and two constants c1, C1 ≥ 0. Here ζ ′(s) ∈ H denotes
the derivative of ζ with respect to s. Assume further that the function s 7→
〈ζ(s), A(s)ζ(s)〉 is also continuously differentiable and satisfies

d

ds
〈ζ, Aζ〉 − 2〈ζ ′, Aζ〉 ≥ −c2 ‖Aζ‖ ‖ζ‖ − c3 ‖ζ‖2 (100)

pointwise for every s ∈ [0, T ] and constants c2, c3 > 0. Then the following holds.
(1) If ζ(0) = 0 then ζ(s) = 0 for all s ∈ [0, T ].
(2) If ζ(0) 6= 0 then ζ(s) 6= 0 for all s ∈ [0, T ] and, moreover,

log ‖ζ(s)‖2 ≥ log ‖ζ(0)‖2 −
(
2
〈ζ(0), A(0)ζ(0)〉

‖ζ(0)‖2 +
b

a

)
eas − 1

a
− 2c1s

where a = 2C1
2 + c2 and b = 4c1

2 + c2
2/2 + 2c3.

Proof. A beautyful exposition in the case C1 = 0 was given by Salamon in [S97,
appendix E] in the case C1 = 0. It generalizes easily. A key step is to prove
that the function

ϕ(s) := log‖ζ(s)‖2 −
∫ s

0

2〈ζ(σ), ζ ′(σ)−A(σ)ζ(σ)〉
‖ζ(σ)‖2 dσ

satisfies the differential inequality

ϕ′′ + a |ϕ′|+ b ≥ 0 (101)

for two constants a, b > 0.
In [S97] it is shown that assumption (100) implies the inequality

ϕ′′ ≥ 2 ‖η − 〈η, ξ〉ξ‖2 − 2 ‖ζ ′ −Aζ‖2

‖ζ‖2
− 2c2 ‖η‖ − 2c3

where

ξ :=
ζ

‖ζ‖ , η :=
Aζ

‖ζ‖ .
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Now it follows by assumption (99) that

2 ‖ζ ′ −Aζ‖2

‖ζ‖2
≤ 4c1

2 + 4C1
2 |〈Aζ, ζ〉|

‖ζ‖2
= 4c1

2 + 4C1
2 |〈η, ξ〉|

and therefore

ϕ′′ ≥ 2 ‖η − 〈η, ξ〉ξ‖2 − 4c1
2 − 4C1

2 |〈η, ξ〉| − 2c2 ‖η‖ − 2c3.

To obtain the inequality (101) it remains to prove that

2 ‖η − 〈η, ξ〉ξ‖2 − 4c1
2 − 4C1

2 |〈η, ξ〉| − 2c2 ‖η‖ − 2c3 ≥ −a |ϕ′| − b.

Since ϕ′ = 2〈ξ, η〉 this is equivalent to

c2 ‖η‖ ≤ ‖η − 〈η, ξ〉ξ‖2 + (a− 2C1
2) |〈η, ξ〉|+ (b/2− 2c1

2 − c3).

Abbreviate
u := ‖η − 〈η, ξ〉ξ‖2 , v := |〈η, ξ〉| ,

then ‖η‖2 = u2 + v2 and the desired inequality has the form

c2
√
u2 + v2 ≤ u2 + (a− 2C1

2)v + (b/2− 2c1
2 − c3).

Since c2
√
u2 + v2 ≤ c2u+ c2v ≤ u2 + c2v + c2

2/4 this is satisfies with

a = 2C1
2 + c2, b = 4c1

2 + c2
2/2 + 2c3.

This proves the inequality (101). The remaining part of the proof of theorem 6.1
carries over from [S97] unchanged.

6.1 Linear equation

Unique continuation for the linearized heat equation is used to prove propo-
sition 7.5 on transversality of the universal section and the unstable manifold
theorem 8.1.

Proposition 6.2. Fix a perturbation V : LM → R that satisfies (V0)–(V2)
and two constants a < b. Let u : [a, b] × S1 → M be a smooth map and let
ξ = ξ(s, t) be a smooth vector field along u such that Duξ = 0 or D∗

uξ = 0,
where the operators are defined by (57) and (58), respectively. Abbreviate ξ(s, ·)
by ξ(s). Then the following is true.

(a) If ξ(s∗) = 0 for some s∗, then ξ(s) = 0 for all s ∈ [a, b].

(b) If ξ(s∗) 6= 0 for some s∗, then ξ(s) 6= 0 for all s ∈ [a, b].

Proof. We represent Du by the operator DA+C = d
ds+A(s)+C(s) given by (59).

Here the family A(s) consists of self-adjoint operators on the Hilbert space H :=
L2(S1,Rn) with dense domain W ; see (ii) and (iv) in section 3.4. The space
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W has been defined prior to (59). Recall that if the vector bundle u∗TM →
[a, b] × S1 is trivial then W = W 2,2(S1,Rn) and otherwise some boundary
condition enters. In either case W =: domA(s) is independent of s.

(b) Let ξ ∈ kerDA+C satisfy ξ(s∗) 6= 0. Assume by contradiction that
ξ(s0) = 0 for some s0 ∈ [a, b]. Now if s0 > s∗, then replace ξ(s) by ξ(s+s∗) and
set T = b − s∗ and s1 = s0 − s∗, otherwise replace ξ(s) by ξ(−s + s∗) and set
T = −a+s∗ and s1 = −s0+s∗. Hence we may assume without loss of generality
that ξ ∈ kerDA+C maps [0, T ] to H and satisfies ξ(0) 6= 0 and ξ(s1) = 0 for
some s1 ∈ (0, T ].

Next we check that the conditions in theorem 6.1 are satisfied: Firstly,
the vector field ξ is smooth by assumption. Secondly, the family A(s) con-
sists of self-adjoint operators by (ii) in section 3.4. Thirdly, the function s 7→
〈ξ(s), A(s)ξ(s)〉 is continuously differentiable. Here we use the first condition in
axiom (V2), which tells that the Hessian HV is a zeroth order operator, and the
fact that by compactness of the domain the vector fields ∂tu, ∂su, ∇t∂su, and
∇t∇t∂su are bounded in L∞([0, T ] × S1) by a constant cT > 0. Next assump-
tion (99) is satisfied with C1 = 0, because

‖ξ′(s)−A(s)ξ(s)‖ = ‖C(s)ξ(s)‖ ≤ c′T ‖ξ(s)‖

where the constant c′T = sup[0,T ]×S1‖C(s, t)‖L(Rn) is finite by compactness of
the domain. To verify the inequality (100) note that its left hand side is given
by 〈ξ(s), A′(s)ξ(s)〉; see [AN67, Rmk. in sec. 1] and [S97, Rmk. F.3]. Now

〈ξ(s), A′(s)ξ(s)〉 ≥ −‖ξ(s)‖ ‖A′(s)ξ(s)‖
≥ −c′′T ‖ξ(s)‖ (‖ξ(s)‖+ ‖∂tξ(s)‖) .

where the second step is by straightforward calculation of A′(s). Replacing
‖∂tξ(s)‖ according to the elliptic estimate for A(s) yields (100).

Now the Agmon-Nirenberg theorem 6.1 applies and part (2) tells that ξ(s) 6=
0 for all s ∈ [0, T ]. This contradiction proves (b) for elements in the kernel of Du.
The same argument covers the case of the operator D∗

u, since it is represented
by −D−A−C according to remark 3.16.

(a) This follows either by a time reversing argument (see proof of the Agmon-
Nirenberg Theorem in [S97]) and application of (b) or by a line of argument
analoguous to the proof of (b) given above, where in the final step part (2) of
theorem 6.1 is replaced by part (1).

6.2 Nonlinear equation

Unique continuation for the nonlinear heat equation is used to prove the unstable
manifold theorem 8.1.

Theorem 6.3 (Unique Continuation for compact cylindrical domains). Fix two
constants a < b and a perturbation V : LM → R that satisfies (V0) and (V1).
If two smooth solutions u, v : [a, b]× S1 → M of the heat equation (6) coincide
along one loop, then u = v.
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Proof. Abbreviate us = u(s, ·) and assume uσ = vσ : S1 → M for some σ ∈
[a, b]. Moreover, we may assume without loss of generality that ∂su is nonzero
at some point (s, t). Otherwise u coincides with a critical point x of the action
functional SV and, since vσ = uσ = x, so does v and we are done. It follows
similarly that ∂sv is nonzero somewhere. Hence

δ :=
ι

2 + ‖∂su‖∞ + ‖∂sv‖∞
∈ (0, ι/2). (102)

Here ι > 0 denotes the injectivity radius of our compact Riemannian manifold.
The first step is to prove that the restrictions of u and v to [σ−δ, σ+δ]×S1 are

equal. (In fact we should take the intersection with [a, b]×S1, but suppress this
throughout for simplicity of notation.) The key idea is to express the difference
of u and v near σ with respect to geodesic normal coordinates based at uσ and
show that this difference ζ and a suitable operator A satisfy the requirements
of theorem 6.1 (with nonzero constant C1). Then, since ζ(σ) = 0, part (1) of
the theorem shows that ζ = 0 and therefore u = v on [σ − δ, σ + δ]× S1.

Once the above has been achieved we successively restrict u and v to cylinders
of the form [σ+ (2k− 1)δ, σ+ (2k+1)δ]×S1, where k ∈ Z, and use that u and
v coincide along one of the two boundary components to conclude by the same
argument as above that u = v on each of these cylinders. Due to compactness
of Z the same constants c1 and C1 can be chosen in (99) for all cylinders. After
finitely many steps the union of these cylinders covers [a, b]×S1 and this proves
the theorem.

It remains to carry out the first step. Consider the interval I = [σ− δ, σ+ δ]
and the cylinder

Z = I × S1 = [σ − δ, σ + δ]× S1.

From now on u and v are restricted to the domain Z. Note that the Riemannian
distance between u(σ, t) and u(s, t) is less than half the injectivity radius ι for
every (s, t) ∈ Z. Hence the identities

u(s, t) = expu(σ,t) ξ(s, t), v(s, t) = expu(σ,t) η(s, t)

for (s, t) ∈ Z uniquely determine smooth families of vector fields ξ and η along
the loop uσ. The domain of ξ and η is Z, they satisfy the estimates

‖ξ‖∞ <
ι

2
, ‖η‖∞ <

ι

2
,

and ξ(σ, t) = 0 = η(σ, t) for every t ∈ S1. Moreover, since ξ(s, t) and η(s, t) live
in the same tangent space Tu(σ,t)M their difference ζ = ξ − η is well defined.
Now consider the Hilbert space H = L2(S1, uσ

∗TM) and the symmetric differ-
ential operator A = ∇t∇t with domainW =W 2,2(S1, uσ

∗TM). Here ∇t denotes
the covariant derivative along the loop uσ. Hence the operator A is independent
of s and condition (100) in the Agmon-Nirenberg theorem 6.1 is vacuous. If we
can verify condition (99) as well, then ζ(σ) = 0 implies that ζ(s) = 0 for every
s ∈ I by theorem 6.1 (1). Since ζ is smooth, this means that on Z we have
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ξ = η pointwise and therefore u = v.
It remains to verify (99). Use (51) to obtain the identities

∂su = E2(uσ, ξ)∂sξ

∇t∂tu = E11(uσ, ξ)
(
∂tuσ, ∂tuσ

)
+ 2E12(uσ, ξ)

(
∂tuσ,∇tξ

)

+ E1(uσ, ξ)∇t∂tuσ + E22(uσ, ξ)
(
∇tξ,∇tξ

)
+ E2(uσ, ξ)∇t∇tξ

(103)

pointwise for (s, t) ∈ Z and similarly for v and η. To obtain the second identity
we used the symmetry property (52) of E12. Now consider the heat equation (6)
and replace ∂su and ∇t∂tu according to (103), then solve for ∂sξ − ∇t∇tξ. Do
the same for v and η to obtain a similar expression for −∂sη+∇t∇tη. Add both
expressions to get the pointwise identity
(
∂s −∇t∇t

)(
ξ − η

)

=
(
E2(uσ, ξ)

−1E11(uσ, ξ)− E2(uσ, η)
−1E11(uσ, η)

) (
∂tuσ, ∂tuσ

)

+
(
E2(uσ, ξ)

−1E1(uσ, ξ)− E2(uσ, η)
−1E1(uσ, η)

)
∇t∂tuσ

+ 2
(
E2(uσ, ξ)

−1E21(uσ, ξ)∇tξ − E2(uσ, η)
−1E21(uσ, η)∇tη

)
∂tuσ

+ E2(uσ, ξ)
−1gradV(expuσ

ξ)− E2(uσ, η)
−1gradV(expuσ

η)

+ E2(uσ, ξ)
−1E22(uσ, ξ)

(
∇tξ,∇tξ

)
− E2(uσ, η)

−1E22(uσ, η)
(
∇tη,∇tη

)
.

Now by compactness of the domain Z there is a constant C > 0 such that

‖∂tuσ‖L∞(S1) ≤ ‖∂tu‖L∞(Z) < C, ‖∇t∂tuσ‖L∞(S1) < C.

Moreover, since the maps Ei and Eij are uniformly continuous on the radius ι/2
disk tangent bundle O ⊂ TM in which ξ and η take their values, there exists a
constant c1 > 0 such that

|∂s(ξ − η)−∇t∇t(ξ − η)|
≤ (c1C

2 + c1C) |ξ − η|
+ 2C

∣∣E2(uσ, ξ)
−1E21(uσ, ξ)∇tξ − E2(uσ, η)

−1E21(uσ, η)∇tη
∣∣

+
∣∣E2(uσ, ξ)

−1gradV(expuσ
ξ)− E2(uσ, η)

−1gradV(expuσ
η)
∣∣

+
∣∣E2(uσ, ξ)

−1E22(uσ, ξ)
(
∇tξ,∇tξ

)
− E2(uσ, η)

−1E22(uσ, η)
(
∇tη,∇tη

)∣∣

pointwise for (s, t) ∈ Z. It remains to estimate the last three terms in the sum.
First we estimate term three. Use linearity and the symmetry property (52) of
E22 to obtain the first identity in the pointwise estimate

∣∣E2(uσ, ξ)
−1E22(uσ, ξ)

(
∇tξ,∇tξ

)
− E2(uσ, η)

−1E22(uσ, η)
(
∇tη,∇tη

)∣∣
=
∣∣E2(uσ, ξ)

−1E22(uσ, ξ)
(
∇tξ −∇tη,∇tξ

)

+ E2(uσ, η)
−1E22(uσ, η)

(
∇tξ −∇tη,∇tη

)

+
(
E2(uσ, ξ)

−1E22(uσ, ξ)− E2(uσ, η)
−1E22(uσ, η)

) (
∇tξ,∇tη

)∣∣
≤
∥∥E2

−1E22

∥∥
L∞(O)

(‖∇tξ‖∞ + ‖∇tη‖∞) |∇t(ξ − η)|
+ c1 ‖∇tξ‖∞ ‖∇tη‖∞ |ξ − η|

≤ µ1 |∇t(ξ − η)|+ µ2 |ξ − η|
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where µ1 = 2c2
2C(1 + c2), µ2 = c1c2

2C2(1 + c2)
2, and the constant c2 > 0 is

chosen sufficiently large such that for j = 0, 1 we have

‖Ej‖L∞(O) +
∥∥E2

−1
∥∥
L∞(O)

+
∥∥E2

−1E22

∥∥
L∞(O)

+
∥∥E2

−1E21

∥∥
L∞(O)

≤ c2.

Moreover, we used that by the first identity in (51)

∇tξ = E2(uσ, ξ)
−1 (∂tu− E1(uσ, ξ)∂tuσ) .

Hence ‖∇tξ‖∞ ≤ c2C(1+ c2) and similarly for ∇tη. Next we estimate term one.
Replace ∇tξ by ∇tξ −∇tη +∇tη, then similarly as above we obtain that

2C
∣∣E2(uσ, ξ)

−1E21(uσ, ξ)∇tξ − E2(uσ, η)
−1E21(uσ, η)∇tη

∣∣
≤ 2c2C |∇t(ξ − η)|+ 2c1c2C

2(1 + c2) |ξ − η|

pointwise for (s, t) ∈ Z. Next rewrite term two setting X := η− ξ and replacing
η accordingly to obtain pointwise at (s, t) ∈ Z the identity

E2(uσ, ξ)
−1gradV(expuσ

ξ)− E2(uσ, ξ +X)−1gradV(expuσ
ξ +X)

=: f(X)

= f(0) +
d

dτ
f(τX)

=
d

dτ

(
E2(uσ, ξ + τX)−1gradV(expuσ

ξ + τX)
)

for some τ ∈ [0, 1]. Since f(0) = 0, this implies that

|f(X)| ≤
∥∥E2

−1E22

∥∥
L∞(O)

|X| ·
∥∥E2

−1
∥∥
L∞(O)

∣∣gradV(expuσ
(ξ + τX))

∣∣

+
∥∥E2

−1
∥∥
L∞(O)

∣∣∇τgradV(expuσ
(ξ + τX))

∣∣

≤ c22C0 |X|+ c22C1

(
|X|+ ‖Xs‖L1(S1)

)

pointwise at (s, t) ∈ Z. Here C0 and C1 denote the constants in axiom (V0)
and (V1), respectively. To obtain the final step we applied the first estimate
in axiom (V1) to the curve τ 7→ expuσ

(ξs + τXs) in the loop space LM . Now
replace X by η − ξ.

Putting things together we have proved that due to compactness of the
domain Z there exists a positive constant µ = µ(Z, g) such that for every s ∈ I

‖ζ ′(s)−Aζ(s)‖ ≤ µ (‖ζ(s)‖+ ‖∇tζ(s)‖) .

Here the norm is in L2(S1, uσ
∗TM). Now by integration by parts

‖∇tζ‖2 = 〈∇tζ,∇tζ〉 = −〈Aζ, ζ〉 ≤ |〈Aζ, ζ〉| .

Hence (99) is satisfied and this concludes the proof of theorem 6.3.

In the proof of the unstable manifold theorem 8.1 we use backward unique
continuation for the nonlinear heat equation.
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Theorem 6.4 (Forward and backward unique continuation). Fix a perturbation
V : LM → R that satisfies (V0)–(V1).

(F) Let u and v be smooth solutions of the heat equation (6) defined on the
forward halfcylinder [0,∞)×S1. If u and v agree along the loop at s = 0,
then u = v.

(B) Let u and v be smooth solutions of the heat equation (6) defined on the
backward halfcylinder (−∞, 0]× S1. Assume further that

sup
s∈(−∞,0]

SV

(
u(s, ·)

)
≤ c0, sup

s∈(−∞,0]

SV

(
v(s, ·)

)
≤ c0,

for some constant c0 > 0. Then the following is true. If u and v agree
along the loop at s = 0, then u = v.

Proof. The idea is the same as in the proof of theorem 6.3, namely to decompose
the halfcylinder into small cylinders of width δ and then show u = v on each
piece (by the method developed in the first step of the proof of theorem 6.3).
The only additional problem is noncompactness of the domain. One way to deal
with this is to choose the same width for each piece (in order to arrive at any
given time s in finitely many steps). Here we need uniform bounds for |∂su| and
|∂sv|. Once we have these we can define δ again by (102). Check the proof of
theorem 6.3 to see that the only further ingredients in proving u = v on each
small cylinder are uniform bounds for the first two t-derivatives of u and of v.
Hence to complete the proof it remains to show that

‖∂su‖∞ + ‖∂tu‖∞ + ‖∇t∂tu‖∞ + ‖∂sv‖∞ + ‖∂tv‖∞ + ‖∇t∂tv‖∞ ≤ C

for some constant C > 0.
ad (F) Let C0 be the constant in axiom (V0) and observe that SV ≥ −C0.

Now by theorem 4.9 with constant C1, more precisely, by checking its proof

|∂su(s, t)|2 ≤ C1E[s−1,s](u)

= C1 (SV(us−1)− SV(us))

≤ C1 (SV(u0) + C0)

for (s, t) ∈ [1,∞) × S1. In the second and the last step we used that u is a
negative gradient flow line and the action decreases along u. Note that the
proof of theorem 4.9 shows that the estimate at a point depends on its past.
This is why we get the above estimate only on [1,∞)×S1. However, the missing
part [0, 1]× S1 is compact and u is smooth. Hence ‖∂su‖∞ ≤ C and

‖∇t∂tu‖∞ ≤ ‖∂su‖∞ + ‖gradV(u)‖∞ ≤ C + C0.

Here we used the heat equation (6) and axiom (V0) with constant C0. It follows
similarly by (checking the proof of) theorem 4.5 that |∂tu(s, t)| is uniformly
bounded on [1,∞)× S1. The corresponding estimates for v are analoguous.

ad (B) The proof of the L∞ estimates follows the same steps as in (F). We
even get all estimates right away on the whole backward halfcylinder, because
this halfcylinder contains the past of each of its points.

91



7 Transversality

In section 7.1 we construct a separable Banach space Y of abstract perturba-
tions satisfying axioms (V0)–(V3). In section 7.2 we fix a perturbation V such
that (V0)–(V3) hold and SV is Morse. Then we choose a closed L2 neighborhood
U of the critical points of the function SV and – given a regular value a – we
define a separable Banach manifold Oa = Oa(V, U) of admissible perturbations
v. They have the property that their support lies in the sublevel set LaM and is
disjoint to U . Furthermore, the functions SV and SV+v do have the same critical
points on the whole loop space LM and their sublevel sets with respect to a
coincide. For such a triple (V, a, U) we prove in section 7.3 that there is a resid-
ual subset Oa

reg ⊂ Oa of regular perturbations v. They have the property that
SV+v is Morse–Smale below level a and this proves theorem 1.13. The crucial
step is to prove proposition 7.5 on surjectivity of the universal section F . Here
unique continuation for the linear heat equation enters. A further key ingredi-
ent in the ’no return’ part of the proof is the (negative) gradient flow property
which implies that the functional is strictly decreasing along nonconstant heat
flow solutions.

7.1 The universal Banach space of perturbations

We fix, once and for all, the following data.

a) A dense sequence
(
xi
)
i∈N

in LM = C∞(S1,M).

b) For every xi a dense sequence
(
ηij
)
j∈N

in C∞(S1, x∗i TM).

c) A smooth cutoff function ρ : R → [0, 1] such that ρ = 1 on [−1, 1] and
ρ = 0 outside [−4, 4] and such that ‖ρ′‖∞ < 1. Then set ρ1/k(r) = ρ(rk2)
for k ∈ N (Figure 1).

Moreover, let ι > 0 denote the injectivity radius of the closed Riemannian man-
ifold M and fix a smooth cutoff function β such that β = 1 on [−(ι/2)2, (ι/2)2]
and β = 1 outside [−ι2, ι2] (Figure 2).

r rk1/k
2ρ   ( )=ρ(    )

1

0

.r=|| ||2
2

2 (2/k)2(1/k)

Figure 1: The cutoff function ρ1/k

β

1

0
ι(ι/2)2 2

2.r=| |

Figure 2: The cutoff function β

Then for any choice of i, j, k ∈ N there is a smooth function on the loop space
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given by

Vℓ(x) = Vijk(x) = ρ1/k

(
‖x− xi‖2L2

)∫ 1

0

V ij(t, x(t)) dt, (104)

where V ij is the smooth function on S1 ×M defined by

V ij(t, q) :=

{
β
(
|ξiq(t)|2

) 〈
ξiq(t), η

ij(t)
〉

, |ξiq(t)| < ι,

0 , else.

Here the vector ξiq(t) is determined by the identity

q = expxi(t) ξ
i
q(t)

whenever the Riemannian distance between q and xi(t) is less than ι. To simplify
notation we fixed a bijection ℓ : N3 → N0. Observe that the support of Vijk is
contained in the L2 ball of radius 2/k about xi. Each function Vℓ : LM → R is
uniformly continuous with respect to the C0 topology and satisfies (V0)–(V3).
This follows by compactness of M , smoothness of the potential V , and by the
identity

〈gradV(u), ∂su〉L2 =
d

ds
V(u)

= 2ρ′
(
‖u− x0‖22

)(∫ 1

0

Vt(u(s, t)) dt

)
〈u− x0, ∂su〉L2

+ ρ
(
‖u− x0‖22

)
〈∇V (u), ∂su〉L2

which determines gradV. Here R → LM : s 7→ u(s, ·) is any smooth map.
Given Vℓ, we fix a constant C0

ℓ ≥ 1 which is greater than its constant of
uniform continuity and for which (V0) holds true. Then we fix a constant
C1

ℓ ≥ C0
ℓ for which both estimates in (V1) hold true and a constant C2

ℓ ≥ C1
ℓ

to cover the three estimates of (V2). Furthermore, for every integer i ≥ 3, we
choose a constant Ci

ℓ ≥ Ci−1
ℓ that covers all estimates in (V3) with k′ + ℓ′ = i

(here k′ and ℓ′ denote the integers k and ℓ that appear in (V3)). To summarize,
for each integer ℓ ≥ 0 we have fixed a sequence of constants

1 ≤ C0
ℓ ≤ C1

ℓ ≤ ... ≤ Cℓ
ℓ ≤ ... ∀ℓ ∈ N0. (105)

The universal space of perturbations is the normed linear space

Y =

{
vλ :=

∞∑

ℓ=0

λℓVℓ

∣∣∣ λ = (λℓ) ⊂ R and ‖vλ‖ :=

∞∑

ℓ=0

|λℓ|Cℓ
ℓ <∞

}
. (106)

Proposition 7.1. The universal space Y of perturbations is a separable Banach
space and every vλ ∈ Y satisfies the axioms (V0)–(V3).
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Proof. The map vλ 7→ (λℓC
ℓ
ℓ )ℓ∈N0

provides an isomorphism from Y to the sepa-
rable Banach space ℓ1 of absolutely summable real sequences. This proves that
Y is a separable Banach space. That every element vλ =

∑
λℓVℓ of Y satis-

fies (V0)–(V3) follows readily from the corresponding property of the generators
Vℓ. To explain the idea we give the proof of the second estimate in (V2), namely

|∇t∇sgradvλ(u)| ≤
∞∑

ℓ=0

|λℓ| · |∇t∇sgradVℓ(u)|

≤
(
|λ0|C2

0 + |λ1|C2
1 +

∞∑

ℓ=2

|λℓ|C2
ℓ

)
f(u)

≤
(
|λ0|C2

0 + |λ1|C2
1 + ‖vλ‖

)
f(u)

for every smooth map R → LM : s 7→ u(s, ·) and every (s, t) ∈ R × S1. We
abbreviated f(u) = (|∇t∂su|+ (1 + |∂tu|)(|∂su|+ ‖∂su‖L1)). Step two uses the
second estimate in (V2) for each Vℓ with constant C2

ℓ . Step three follows from
Ck

ℓ ≤ Cℓ
ℓ whenever ℓ ≥ k, see (105). The remaining estimates in (V0)–(V3)

follow by the same argument. Continuity of vλ with respect to the C0 topology
follows similarly using uniform continuity of the functions Vℓ.

7.2 Admissible perturbations

Throughout we fix a perturbation V that satisfies (V0)–(V3) and such that
SV : LM → R is Morse. The idea to prove the transversality theorem 1.13 is
to perturb SV outside some neigborhood U of its critical points in such a way
that no new critical points arise. To achieve this we fix for every critical point
x a closed L2 neighborhood Ux such that Ux ∩ Uy = ∅ whenever x 6= y. This is
possible, because on any sublevel set there are only finitely many critical points
(SV is Morse and satisfies the Palais-Smale condition; see e.g. [W02, app. A]).
Set

U = U(V) :=
⋃

x∈P(V)

Ux

and consider the Banach space of perturbations Y given by (106). We are
interested in the subset of those perturbations supported away from U , namely

Y (V, U) :=

{
vλ =

∞∑

ℓ=0

λℓVℓ ∈ Y
∣∣∣ suppVℓ ∩ U 6= ∅ ⇒ λℓ = 0

}
.

Lemma 7.2. Y (V, U) is a closed subspace of the separable Banach space Y .

Proof. Let α, β ∈ R and let vλ and vλ̃ be elements of Y (V, U). By definition of
Y (V, U) the following is true for every ℓ ∈ N0. If suppVℓ ∩ U 6= ∅, then λℓ = 0
and λ̃ℓ = 0. Hence αλℓ + βλ̃ℓ = 0 and therefore αvλ + βvλ̃ ∈ Y (V, U). To see
that the subspace Y (V, U) is closed let viλ =

∑
λiℓVℓ be a sequence in Y (V, U)

which converges to some element vλ =
∑
λℓVℓ of Y . This means that λiℓ → λℓ
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as i → ∞, for every ℓ. Now assume suppVℓ ∩ U 6= ∅. It follows that λiℓ = 0,
because viλ ∈ Y (V, U), and this is true for all i. Hence the limit λℓ is zero and
therefore vλ ∈ Y (V, U).

Given a constant b, we denote by cb the largest critical value of SV which is
smaller or equal to b; that is

cb = cb(V) := max
x∈Pb(V)

SV(x). (107)

Now we consider those perturbations supported in {SV < cb} but not in U ,
namely

Y b(V, U) :=

{
∞∑

ℓ=0

λℓVℓ ∈ Y (V, U)
∣∣∣ suppVℓ ∩ {SV ≥ cb} 6= ∅ ⇒ λℓ = 0

}
.

Lemma 7.3. Y b(V, U) is a closed subspace of the separable Banach space Y .

Proof. Same arguments as in proof of lemma 7.2.

Now fix a regular value a of SV and consider the positive constant given by

κa = κa(V, U) := inf
x∈LaM\U

‖gradSV(x)‖2 > 0, LaM = {SV ≤ a}.

To prove the strict inequality assume by contradiction that κa = 0. Then by
Palais-Smale there exists a sequence (xk) ⊂ LaM \ U converging in the W 1,2

and therefore in the L2 topology to a critical point x ∈ LaM . Hence x ∈ U and
U is a neighborhood of x, both by definition of U . But this contradicts the fact
that xk /∈ U for every k ∈ N.
Our next step is to avoid creating new critical points outside U by admitting
only perturbations supported in LaM \ U with sufficiently small L2 gradient.
Simultaneously we achieve that the sublevel set {SV ≤ a} will not change under
these perturbations. More precisely, the set of admissible perturbations is given
by the open ball of radius

ra = ra(V, U) :=
1

2
min {κa, a− ca} > 0

in the Banach space Y a(V, U), namely

Oa = Oa(V, U) := {vλ ∈ Y a(V, U) : ‖vλ‖ < ra}. (108)

This is a separable Banach manifold by lemma 7.3. The following lemma asserts
that SV and SV+vλ

have the same sublevel sets with respect to a and the same
critical points on the whole loop space, whenever vλ ∈ Oa. This proves the first
part of theorem 1.13.

Lemma 7.4. For V, U , and a as above the following is true. If vλ ∈ Oa, then

P(V) = P(V + vλ), {SV ≤ a} = {SV+vλ
≤ a}.
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Proof. Fix a perturbation vλ ∈ Oa. To prove the first assertion of the lemma
we show that on the set U = U(V) the functionals SV and SV+vλ

coincide and
that outside U they have no critical points at all. To see this observe that
SV+vλ

= SV − vλ and that vλ lies in Y a(V, U). In particular, the support of vλ
is disjoint to U and therefore SV+vλ

= SV on U . Now recall that by definition
of U there are no critical points of SV outside U . Moreover, since the support
of vλ is contained in LaM \U , it remains to prove that the perturbed functional
SV+vλ

does not admit any critical point on LaM \U . Assume by contradiction
that it does admit a critical point x ∈ LaM \ U . Then

0 = gradSV+vλ
(x) = gradSV(x)− gradvλ(x).

Hence ‖gradvλ(x)‖2 = ‖gradSV(x)‖2 ≥ κa by definition of κa. On the other
hand, since vλ =

∑
λℓVℓ it follows that

‖gradvλ(x)‖2 ≤
∞∑

ℓ=0

|λℓ| ‖gradVℓ(x)‖∞

≤
∞∑

ℓ=0

|λℓ|C0
ℓ

≤ ‖vλ‖ <
κa
2
.

Here we used ‖·‖2 ≤ ‖·‖∞, axiom (V0) for Vℓ and the fact that C0
ℓ ≤ Cℓ

ℓ

by (105). The last line is by definition of the norm and Oa.
We prove the second assertion of the lemma. First we prove the inclusion ⊃.

It is easy to see that SV+vλ
(x) ≤ a implies SV(x) ≤ a. Assume by contradiction

that SV(x) > a, then vλ(x) = 0, because supp vλ ⊂ LaM . Hence SV(x) =
SV(x)− vλ(x) = SV+vλ

(x) ≤ a.
To prove the inclusion ⊂ assume that SV(x) ≤ a. Now there are two cases,
namely SV(x) ≥ ca and SV(x) < ca. In the first case vλ(x) = 0, because
supp vλ ⊂ {SV < ca}, and therefore SV+vλ

(x) = SV(x)− vλ(x) = SV(x) ≤ a. In
the second case observe that

|vλ(x)| ≤
∞∑

ℓ=0

|λℓVℓ(x)| ≤
∞∑

ℓ=0

|λℓ|C0
ℓ ≤

∞∑

ℓ=0

|λℓ|Cℓ
ℓ = ‖vλ‖ < a− ca.

Here we used axiom (V0) for Vℓ, the fact that C0
ℓ ≤ Cℓ

ℓ by (105), the definition
of the norm in (106) and the assumption that vλ ∈ Oa. Hence SV+vλ

(x) =
SV(x)− vλ(x) < ca + |vλ(x)| < a. This concludes the proof of lemma 7.4.

7.3 Surjectivity

Proof of theorem 1.13. Assume that the perturbation V satisfies (V0)–(V3) and
the function SV : LM → R is Morse. Fix a neighborhood U of the critical points
of SV as in the previous section and a regular value a. For Oa = Oa(V, U) given
by (108) the first part of theorem 1.13 is true by lemma 7.4. To prove the second
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part fix in addition two distinct critical points x, y ∈ Pa(V) and a constant
p > 2. We denote by B1,p

x,y the smooth Banach manifold of cylinders between x
and y defined near (78) in section 5. This manifold is separable and admits a
countable atlas. For Oa = Oa(V, U) given by (108) consider the smooth Banach
space bundle

Ep → B1,p
x,y ×Oa

whose fibre over (u, vλ) are the Lp vector fields along u. The formula

F(u, vλ) = ∂su−∇t∂tu− grad
(
V + vλ

)
(u) (109)

defines a smooth section of this bundle. Its zero set

Z = Z(x, y, a) = F−1(0)

is called the universal moduli space. It does not depend on p > 2, since all
solutions of the heat equation (6) are smooth by theorem 1.5. We claim that
zero is a regular value of F . This means, by definition, that dF(u, vλ) is onto
and ker dF(u, vλ) admits a topological complement, whenever F(u, vλ) = 0.
Surjectivity is the content of proposition 7.5 below and existence of a topological
complement follows (see e.g. [W02, prop. 3.3]) from surjectivity and the fact that
by theorem 1.9 and theorem 1.8 the operator Du is Fredholm. Hence Z is a
smooth Banach manifold by the implicit function theorem. Now consider the
projection onto the second factor

π : Z → Oa.

By standard Thom-Smale transversality theory (see e.g. [MS04, lemma A.3.6])
π is a smooth Fredholm map whose index is given by the Fredholm index of Du.
This index is equal to the difference of the Morse indices of x and y again by
theorem 1.9. Since Z is separable and admits a countable atlas, we can apply
the Sard-Smale theorem [Sm73] to countably many coordinate representations
of π. It follows that the set of regular values of π is residual in Oa. We denote
this set by Oa

reg(x, y) = Oa
reg(x, y;V, U) and observe that

Oa
reg(x, y) = {vλ ∈ Oa | Du onto ∀u ∈ M(x, y;V + vλ)}

again by standard transversality theory; see e.g. [W02, prop. 3.4]. Then

Oa
reg = Oa

reg(V, U) :=
⋂

x,y∈Pa(V)

Oa
reg(x, y)

is a residual subset of Oa, since it consists of a finite intersection of residual
subsets. This proves theorem 1.13 up to proposition 7.5.

Proposition 7.5 (Surjectivity). Let V, U , a, x, y, and p > 2 be as in the proof
of theorem 1.13 and consider the section F given by (109). Then the following
is true. The linearization

dF(u, vλ) : W1,p
u × Y a(V, U) → Lp

u

is onto at every zero (u, vλ) of F .
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Proof. Fix q > 1 such that 1/p + 1/q = 1. By the regularity theorem 1.5 the
map u is smooth and by theorem 1.8 on exponential decay all derivatives of ∂su
are bounded. Now the linearized operator is given by

dF(u, vλ) (ξ, V̂) = dFvλ
(u) ξ + dFu(vλ) V̂

= Duξ − gradV̂(u)

where Fvλ
(u) := F(u, vλ) =: Fu(vλ). By theorem 1.8 the Fredholm theorem 1.9

applies and shows that the operator Du is Fredholm. Moreover, the second
operator

Y a(V, U) → Lp
u : V̂ 7→ −gradV̂(u)

is bounded (for each Vℓ use the last condition in (V0) with constant C0
ℓ ≤ Cℓ

ℓ ).
Hence the range of dF(u, vλ) is closed by standard arguments; see e.g. [W02,
proposition 3.3]. It remains to prove that it is dense. We use that density of
the range is equivalent to triviality of its annihilator : By definition this means
that, given η ∈ Lq

u, then

〈η,Duξ〉 = 0, ∀ξ ∈ W1,p
u , (110)

and
〈η, gradV̂(u)〉 = 0, ∀V̂ ∈ Y a(V, U), (111)

imply that η = 0.
Assume by contradiction that η ∈ Lq

u satisfies (110) and η 6= 0. In five
steps we derive a contradiction to (111). Steps 1–3 are preparatory, in step 4 we
construct a model perturbation Vε violating (111) and in step 5 we approximate
Vε by the fundamental perturbations Vijk of the form (104). To start with
observe that η is smooth by (110) and theorem 3.1. Furthermore, integration
by parts shows that D∗

uη = 0 pointwise. Throughout we use the notation
ηs(t) = η(s, t), hence ηs ∈ Ω(S1, u∗sTM).

Step 1. (Unique Continuation) ηs 6= 0 and ∂sus 6= 0 for every s ∈ R.

Because η is smooth, nonzero, and D∗
uη = 0, proposition 6.2 on unique contin-

uation shows that ηs 6= 0 for every s ∈ R. Next observe that ∂su is smooth,
because u is smooth, and that 0 = d

dsFvλ
(u) = Du∂su. Since u connects dif-

ferent critical points, the derivative ∂su cannot vanish everywhere on R × S1.
Hence ξ(s) := ∂sus 6= 0 for every s ∈ R by proposition 6.2. This proves step 1.

Step 2. (Slicewise Orthogonal) 〈ηs, ∂sus〉 = 0 for every s ∈ R.

Straightforward calculation shows that

d

ds
〈ηs, ∂sus〉 = 〈∇sηs, ∂sus〉+ 〈ηs,∇s∂sus〉

= 〈−∇t∇tηs −R(ηs, ∂tus)∂tus −HV+vλ
(us)ηs, ∂sus〉

+ 〈ηs,∇t∇t∂sus −R(∂sus, ∂tus)∂tus −HV+vλ
(us)∂sus〉

= 0.
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In the second equality we replaced ∇sηs according to the identity D∗
uη = 0

and (58) and ∇s∂sus according to Du∂su = 0 and (57). The last step is by
integration by parts, symmetry of the Hessian H, and the first Bianchi identity
for the curvature operator R. It follows that 〈ηs, ∂sus〉 is constant in s. Now
this constant, say c, must be zero since

∫ ∞

−∞

c ds =

∫ ∞

−∞

〈ηs, ∂sus〉 ds = 〈η, ∂su〉

and the inner product on the right hand side is finite, because η ∈ Lq
u and

∂su ∈ Lp
u where 1/p+ 1/q = 1. This proves step 2.

Observe that ηs and ∂sus are linearly independent for every s ∈ R as a conse-
quence of step 1 and step 2.

Step 3. (No Return) Assume the loop us0 is different from the asymptotic
limits x and y and let δ > 0. Then there exists ε > 0 such that for every s ∈ R

‖us − us0‖2 < 3ε =⇒ s ∈ (s0 − δ, s0 + δ).

In words, once s leaves a given δ-interval about s0 the loops us cannot return to
some L2 ε-neighborhood of us0 .

Key ingredients in the proof are smoothness of u, existence of asymptotic limits,
and the gradient flow property. Recall the footnote in remark 1.3 concerning
the difference of loops us − us0 . Now assume by contradiction that there is
a sequence of positive reals εi → 0 and a sequence of reals si which satisfy
‖usi − us0‖2 < 3εi and si /∈ (s0 − δ, s0 + δ). In particular, it follows that

usi
L2

−→ us0 as i→ ∞. (112)

Assume first that the sequence si is unbounded. Hence we can choose a subse-
quence, without changing notation, such that si converges to +∞ or −∞. In
either case usi converges to one of the critical points x or y and the convergence
is in C0(S1) by theorem 1.8. By (112) and uniqueness of limits it follows that
us0 equals one of the critical points x, y, but this contradicts our assumption.
Assume now that the sequence si is bounded. Then we can choose a sub-
sequence, without changing notation, such that si converges to some element
s1 /∈ (s0 − δ, s0 + δ). Since u is smooth, it follows that usi converges to us1 in
C0(S1). Again by uniqueness of limits us1 = us0 . On the other hand, the action
functional is strictly decreasing along nonconstant negative gradient flow lines.
Therefore s1 = s0 and this contradiction concludes the proof of step 3.

Step 4. There exists a time s0 such that SV(us0) < ca, where ca is the largest
critical value below a. Furthermore there exist a positive constant ε and a smooth
function V0 : LM → R supported in the L2 ball of radius 2ε about us0 such that

V0(us0) = 0, dV0(us0)ηs0 = ‖ηs0‖22 , 〈gradV0(u), η〉 6= 0.
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Recall that the asymptotic limits x and y are different and the closed L2 neigh-
borhoods Ux and Uy were chosen in the first paragraph of section 7 to be disjoint.
Moreover, both x and y are not above level ca and SV(us) is strictly decreasing
in s. Therefore there exists a time s0 such that us0 lies not in U and strictly
below level ca.

Observe that the graph t 7→ (t, us0(t)) of the loop us0 is embedded in S1×M .
Now we define a smooth function V on S1 × M supported near the graph
as follows. Denote by ι > 0 the injectivity radius of the closed Riemannian
manifold M . Pick a smooth cutoff function β : R → [0, 1] such that β = 1 on
[−(ι/2)2, (ι/2)2] and β = 0 outside [−ι2, ι2]; see Figure 2. Then define

Vt(q) := V (t, q) :=

{
β
(
|ξq(t)|2

) 〈
ξq(t), ηs0(t)

〉
, |ξq(t)| < ι,

0 , else,
(113)

where the vector ξq(t) is determined by the identity

q = expus0
(t) ξq(t)

whenever the Riemannian distance between q and us0(t) is less than ι. Note
that the function V vanishes on the graph of the loop us0 .

Since all maps involved are smooth, we can choose a constant δ > 0 suffi-
ciently small such that for every s ∈ (s0 − δ, s0 + δ) it holds

i) dC0(us, us0) = ‖ξs‖∞ < 1
2 ι, where ξs is uniquely determined by the iden-

tity us = expus0
ξs pointwise for every t ∈ S1,

ii) 〈E2(us0 , ξs)
−1ηs, ηs0〉 ≥ 1

2µ0, where µ0 := ‖ηs0‖22 > 0,

iii) 1
2µ1 ≤ ‖us−us0‖2

|s−s0|
≤ 3

2µ1, where µ1 := ‖∂sus0‖2 > 0.

Let s ∈ (s0 − δ, s0 + δ), then

dVt(us) ηs =
d
dr

∣∣
r=0

Vt(expus
rηs)

= 2β′(|ξs|2) 〈ξs, E2(us0 , ξs)
−1ηs〉 · 〈ξs, ηs0〉

+ β(|ξs|2) 〈E2(us0 , ξs)
−1ηs, ηs0〉

= 〈E2(us0 , ξs)
−1ηs, ηs0〉

(114)

pointwise for every t ∈ S1. The final step uses i) and the definition of β. Note
that dVt(us0) ηs0 = |ηs0 |2 pointwise.

Integrating V along a loop defines a smooth function on the loop space which
vanishes on us0 . Next we cut it off with respect to the L2 distance. Fix a smooth
cutoff function ρ : R → [0, 1] such that ρ = 1 on [−1, 1], ρ = 0 outside [−4, 4],
and ‖ρ′‖∞ < 1. Then, for the constant δ fixed above, choose ε > 0 according
to step 3 (No Return) and set ρε(r) = ρ(r/ε2); see Figure 1 with ε = 1/k. Note
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that ‖ρ′ε‖∞ < ε−2. Observe that we can choose ε > 0 smaller and the assertion
of step 3 remains true. Now define a smooth function on LM by

V0(x) := ρε

(
‖x− us0‖22

)∫ 1

0

V (t, x(t)) dt

where V is given by (113). The function V0 vanishes on the loop us0 and satisfies

dV0(us) ηs =
d
dr

∣∣
r=0

V0(expus
rηs)

= 2ρ′ε
(
‖us − us0‖22

)
〈us − us0 , ηs〉

∫ 1

0

Vt(us(t)) dt

+ ρε
(
‖us − us0‖22

) ∫ 1

0

dVt(us(t)) ηs(t) dt.

Hence dV0(us0)ηs0 = ‖ηs0‖22.
To prove the final assertion of step 4 observe that s /∈ (s0− δ, s0+ δ) implies

‖us − us0‖2 ≥ 3ε, by step 3, and therefore us /∈ suppV0. It follows that

〈gradV0(u), η〉 =
∫ s0+δ

s0−δ

dV0(us)ηs ds

=

∫ s0+δ

s0−δ

2ρ′ε
(
‖us − us0‖22

)
〈us − us0 , ηs〉〈ξs, ηs0〉 ds

+

∫ s0+δ

s0−δ

ρε
(
‖us − us0‖22

)
〈E2(us0 , ξs)

−1ηs, ηs0〉 ds.

(115)

We shall estimate the two terms in the sum separately. Let s2 > s0 be such
that ‖us2 −us0‖2 = ε and ‖us−us0‖2 < ε whenever s ∈ (s0, s2). In other words
s2 is the forward exit time of us with respect to the L2 ball of radius ε about
us0 . Let s1 < s0 be the corresponding backward exit time; see Figure 3. Then,
by ii) and ρε ≥ 0, it holds that

∫ s0+δ

s0−δ

ρε
(
‖us − us0‖22

)
〈E2(us0 , ξs)

−1ηs, ηs0〉 ds

≥
∫ s2

s1

1 · µ0

2
ds =

µ0

2
(s2 − s0 + s0 − s1)

≥ µ0

3µ1
(‖us2 − us0‖2 + ‖us0 − us1‖2) =

2µ0

3µ1
ε.

Here the second inequality uses iii). To estimate the other term in (115) let σ1
be the time of first entry into the L2 ball of radius 2ε starting from s0 − δ and
let σ2 be the corresponding time when time runs backwards and we start from
s0 + δ; see Figure 3. Then
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Figure 3: Exit times s1, s2 and entry times σ1, σ2

∫ s0+δ

s0−δ

2ρ′ε
(
‖us − us0‖22

)
〈us − us0 , ηs〉〈ξs, ηs0〉 ds

≥ −2

∫ σ2

σ1

‖ρ′ε‖∞ |〈us − us0 , ηs〉| · |〈ξs, ηs0〉| ds

≥ −2c1c2ε
−2

∫ σ2

σ1

(s− s0)
4 ds

= −2c1c2
5ε2

(σ2 − s0 + s0 − σ1)
5 ≥ −2c1c28

5

5µ5
1

ε3.

It remains to explain the second and the final inequality. In the final one we
use that by iii) there is the estimate σ2 − s0 ≤ 2‖uσ2

− us0‖2/µ1 = 4ε/µ1 and
similarly for s0 − σ1. The second inequality is based on the geometric fact that
∂su and η are slicewise orthogonal by step 2: Let f(s) = 〈us − us0 , ηs〉 and
h(s) = 〈ξs, ηs0〉, then f(s0) = h(s0) = 0 and

f ′(s) = 〈∂sus, ηs〉+ 〈us − us0 ,∇sηs〉 = 〈us − us0 ,∇sηs〉
h′(s) = 〈E2(us0 , ξs)

−1∂sus, ηs0〉.
Hence f ′(s0) = h′(s0) = 0 and there exist constants c1 = c1(f) > 0 and
c2 = c2(h) > 0 depending continuously on δ such that for every s ∈ (s0−δ, s0+δ)

|f(s)| ≤ c1(s− s0)
2, |h(s)| ≤ c2(s− s0)

2.

This proves the second inequality. Now choose ε > 0 sufficiently small such
that ε2 < µ0µ

4
1/c1c2. This implies that 〈gradV0(u), η〉 > 0. Choosing ε again

smaller we may assume without loss of generality that the L2 ball of radius 3ε
about us0 is disjoint from U and contained in {SV < ca}, that 3ε is smaller than
the injectivity radius ι of M , and that ε = 1/k for some integer k. This proves
step 4.

Step 5. Given k as in the line above, there exist positive integers i and j such
that the function V̂ := Vijk given by (104) is element of Y a(V, U) and satisfies

〈gradVijk(u), η〉 > 0.

102



This contradicts (111) and thereby proves proposition 7.5.

Denote ε = 1/k and let s0 be the time determined in step 4. In section 7.1 we
have fixed a dense sequence (xi) in C

∞(S1,M) and for each i a dense sequence
(ηij) in C∞(S1, x∗i TM). Choose a subsequence, still denoted by (xi), such that

xi → us0 as i→ ∞.

Now we may assume without loss of generality that every xi lies in Bε(us0) the
L2 ball of radius ε about us0 . Hence B2ε(xi) ⊂ B3ε(us0). Let ξis0 be defined
by the identity us0 = expxi

ξis0 pointwise for every t ∈ S1. Choose a diagonal
subsequence, denoted by (ηii), such that

Φxi
(ξis0)η

ii → ηs0 as i→ ∞.

Here Φx(ξ) is parallel transport from x to expx ξ along τ 7→ expx τξ pointwise
for every t ∈ S1. Let (Viik)i∈N be the corresponding sequence of functions where
each Viik is given by (104). The sequence is contained in Y a(V, U), because

suppViik ⊂ B2/k(xi) = B2ε(xi) ⊂ B3ε(us0) ⊂ {SV < ca} (116)

and B3ε(us0) ∩ U = ∅. This uses our choice of ε right before step 5.
Now recall that the constant δ > 0 has been chosen in the proof of step 4

in order to exclude any return of the trajectory s 7→ us to the ball B3ε(us0)
once s has left the interval (s0 − δ, s0 + δ). Together with (116) this shows that
Viik(us) = 0, whenever s /∈ (s0 − δ, s0 + δ). Therefore

〈gradViik(u), η〉 =
∫ s0+δ

s0−δ

2ρ′1/k
(
‖us − xi‖22

)
〈us − xi, ηs〉〈ξis, ηii〉 ds

+

∫ s0+δ

s0−δ

ρ1/k
(
‖us − xi‖22

)
〈E2(xi, ξ

i
s)

−1ηs, η
ii〉 ds

where ξis is determined by us = expxi
ξis. Now the right hand side converges, as

i → ∞, to the right hand side of (115), which equals 〈gradV0(u), η〉 > 0. This
proves step 5 and proposition 7.5.
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8 Heat flow homology

In section 8.1 we define the unstable manifold of a critical point x of the action
functional SV : LM → R as the set of endpoints at time zero of all backward
halfcylinders solving the heat equation (6) and emanating from x at −∞. The
main result is theorem 8.1 saying that if x is nondegenerate, then this is a
submanifold of the loop space and its dimension equals the Morse index of x.

Section 8.2 puts together the results proved so far to construct the Morse
complex for the negative L2 gradient of the action functional on the loop space.

8.1 The unstable manifold theorem

Fix a perturbation V : LM → R that satisfies (V0)–(V3) and let Z− be the
backward halfcylinder (−∞, 0] × S1. Given a critical point x of the action
functional SV the moduli space

M−(x;V) (117)

is, by definition, the set of all smooth solutions u− : Z− → M of the heat
equation (6) such that u−(s, t) → x(t) as s → −∞, uniformly in t ∈ S1. Note
that the moduli space is not empty, since it contains the stationary solution
u−(s, t) = x(t). The unstable manifold of x is defined by

Wu(x;V) = {u−(0, ·) | u− ∈ M−(x;V)}.

Theorem 8.1. Let V : LM → R be a perturbation that satisfies (V0)–(V3). If
x is a nondegenerate critical point of the action functional SV , then the unstable
manifold Wu(x;V) is a smooth contractible embedded submanifold of the loop
space and its dimension is equal to the Morse index of x.

The idea to prove theorem 8.1 is to first show in proposition 8.2 that non-
degeneracy of x implies that the moduli space M−(x;V) is a smooth manifold
of the desired dimension. A crucial ingredient is proposition 8.3 on surjectivity
of the operator Du− : W1,p → Lp whenever u− ∈ M−(x;V) and p ≥ 2. Here
the operator Du− given by (57) arises by linearizing the heat equation at the
backward trajectory u−. A further key result to prove theorem 8.1 is unique
continuation for the linear and the nonlinear heat equation, proposition 6.2 and
theorem 6.4. Namely, unique continuation implies that the evaluation map

ev0 : M−(x;V) → LM, u− 7→ u−(0, ·)

is an injective immersion. It is even an embedding by the gradient flow property.

Proposition 8.2 (Moduli space). Let V : LM → R be a perturbation sat-
isfying (V0)–(V3) and suppose that x is a nondegenerate critical point of SV .
Then the moduli space M−(x;V) is a smooth contractible manifold of dimension
indV(x). Its tangent space at u− is equal to the vector space X− given by (118).
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Proposition 8.3 (Surjectivity). Fix a constant p > 2, a perturbation V that sat-
isfies (V0)–(V3), and a nondegenerate critical point x of SV . If u

− ∈ M−(x;V),
then the operator Du− : W1,p → Lp is onto and its kernel is given by

X− :=
{
ξ ∈ C∞(Z−, u−

∗
TM) | Du−ξ = 0, ∃c, δ > 0 ∀s ≤ 0 :

‖ξs‖∞ + ‖∇tξs‖∞ + ‖∇t∇tξs‖∞ + ‖∇sξs‖∞ ≤ ceδs
}
.

(118)

Moreover, the dimension of X− is equal to the Morse index of x.

Proposition 8.3 is in fact a corollary of theorem 8.5 below which asserts sur-
jectivity in the special case of a stationary solution u−(s, t) = x(t), where x is
a nondegenerate critical point of SV . The idea is that if a solution u− is nearby
the stationary solution x in the W1,p topology, then the corresponding lineariza-
tions Du− and Dx are close in the operator norm topology. But surjectivity is
an open condition with respect to the norm topology. The case of a general
solution reduces to the nearby case by shifting the s-variable.

Remark 8.4. AbbreviateH = L2(S1,Rn) andW =W 2,2(S1,Rn) and consider
the operator

AS = − d2

dt2
− S : H → H

with dense domain W . Here we assume that S : W → H is a symmetric and
compact linear operator. Under these assumptions it is well known (see (ii) in
section 3.4) that AS is self-adjoint and that its Morse index ind(AS), that is the
dimension of the negative eigenspace E− of AS , is finite.

Theorem 8.5. Let S and AS be as in remark 8.4. Fix p ≥ 2 and assume that
the linear operator S : W 1,p(S1,Rn) → Lp(S1,Rn) is bounded with bound cS.
Then the following is true. If AS is injective, then the operator

D = ∂s − ∂t∂t − S : W1,p(Z−,Rn) → Lp(Z−,Rn)

is onto. In the case p = 2 the map E− → kerD, v 7→ e−sASv is an isomorpism.

Proof of theorem 8.5. The proof takes four steps. Step 1 proves the theorem for
p = 2. The proof by Salamon [S99, lemma 2.4 step 1] of the corresponding result
in Floer theory carries over with minor but important modifications. These are
due to the fact that our domain Z− does have a boundary. The proof uses
the theory of semigroups. We recall the details for convenience of the reader.
The generalization of surjectivity in step 4 to p > 2 follows an argument due to
Donaldson [Do02]. It uses the case p = 2 and the estimates provided by step 2
and step 3. Again we follow the presentation in [S99, lemma 2.4 steps 2–4]
up to minor but subtle modifications. One subtlety is related to the parabolic
estimate of step 2. Here in contrast to the elliptic case the domain needs to be
increased only towards the past. Hence the estimates of step 3 work precisely for
the backward halfcylinder. Throughout the proof, unless indicated differently,
the domain of all spaces is the backward halfcylinder Z− and the target is Rn.
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Step 1. The theorem is true for p = 2.

The operator AS is unbounded and self-adjoint on the Hilbert space H with
dense domainW . Denote the negative and positive eigenspaces of AS by E− and
E+, respectively. Note that dimE− < ∞ by remark 8.4. By assumption AS is
injective, hence zero is not an eigenvalue and there is a splitting H = E−⊕E+.
Denote by P± : H → E± the orthogonal projections and set A± = AS |E± .
The self-adjoint negative semidefinite operators A− and −A+ generate contrac-
tion semigroups on E− and E+, respectively, by the Hille-Yosida theorem; see
e.g. [ReS75, sec. X.8 ex. 1]. We denote them by s 7→ esA

−

and s 7→ e−sA+

,
respectively. Both are defined for s ≥ 0. Define the map K : R → L(H) by

K(s) =

{
−e−sA−

P−, for s ≤ 0,

e−sA+

P+, for s > 0.

This function is strongly continuous for s 6= 0 and satisfies

‖K(s)‖L(H) ≤ e−δ|s| (119)

where δ = min{−λ−, λ+} > 0. Here λ− denotes the largest eigenvalue of
A− and λ+ the smallest eigenvalue of A+. Abbreviate R

− = (−∞, 0]. For
η ∈ L2(R−, H) consider the operator

(Qη) (s) :=

∫ 0

−∞

K(s− σ)η(σ) dσ.

Now the operator Q maps L2(R−, H) to the intersection of Banach spaces
W 1,2(R−, H) ∩ L2(R−,W ) and it is a right inverse of D. To prove the lat-
ter set ξ := Qη. Then ξ = ξ− + ξ+, where

ξ+(s) =

∫ s

−∞

e−(s−σ)A+

P+η(σ) dσ, ξ−(s) = −
∫ 0

s

e−(s−σ)A−

P−η(σ) dσ.

Calculation shows that Dξ± = P±η pointwise for every s ∈ R
−. It follows that

DQη = Dξ = Dξ− +Dξ+ = P−η + P+η = η.

Since the space W 1,2(R−, H) ∩ L2(R−,W ) agrees with W1,2, this proves that
Q is a right inverse of D. Hence Q is injective and D is onto. To calculate the
kernel of D fix ξ ∈ W1,2 and set η := Dξ. Then by straightforward calculation

(QDξ) (s) = (Qη) (s) = ξ+(s) + ξ−(s)

=

∫ s

−∞

d

dσ

(
e−(s−σ)A+

P+ξ(σ)
)
dσ −

∫ 0

s

d

dσ

(
e−(s−σ)A−

P−ξ(σ)
)
dσ

= P+ξ(s)− e−sA−

P−ξ(0) + P−ξ(s)

= ξ(s)− e−sA−

P−ξ(0).
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To obtain the third identity replace η(σ) in ξ±(s) by ξ′(σ)+ASξ(σ) and use the
fact that A±P± = P±AS . Now observe that ξ ∈ kerD is equivalent to Dξ ∈
kerQ, because Q is injective. But QDξ = 0 means that ξ(s) = e−sA−

P−ξ(0)
for every s ∈ R

−. This shows that the map

E− → ker
[
D : W1,2 → L2

]
: vk 7→ e−sλkvk (120)

induces an isomorphism. Here v1, . . . , vN is an orthonormal basis of E− consist-
ing of eigenvectors of AS with eigenvalues λ1, . . . , λN and where N = ind(AS).

Step 2. Fix a constant p ≥ 2. Then there is a constant c1 = c1(p, cS) such that

‖ξ‖W1,p([−1,0]×S1) ≤ c1

(
‖Dξ‖Lp([−3,0]×S1) + ‖ξ‖L2([−3,0]×S1)

)

for ξ ∈ C∞([−3, 0]×S1). Moreover, if ξ ∈ W1,2 and Dξ ∈ Lp
loc, then ξ ∈ W1,p

loc .

Choose a smooth compactly supported cutoff function ρ : (−2, 0] → [0, 1] such
that ρ = 1 on [−1, 0] and ‖∂sρ‖∞ ≤ 2. Now apply proposition 2.13 for the
backward halfcylinder Z−, Euclidean space R

n, covariant derivatives replaced
by partial derivatives, and with constant c to the function ρξ to obtain that

‖ξ‖W1,p([−1,0]×S1) ≤ c
(
2 ‖(∂s − ∂t∂t)ξ‖Lp([−2,0]×S1) + ‖ξ‖Lp([−2,0]×S1)

)

for every ξ ∈ C∞([−2, 0] × S1). To obtain the first estimate in step 3 for the
backward half cylinder it will be crucial that the domain on the right hand side
does not extend to the future. Now write ∂s − ∂t∂t = D + S and use that the
operator S :W 1,p(S1) → Lp(S1) is bounded to obtain that

‖ξ‖W1,p([−1,0]×S1) ≤ c
(
‖Dξ‖Lp([−2,0]×S1) + (1 + cS) ‖ξ‖Lp([−2,0]×S1)

+ cS ‖∂tξ‖Lp([−2,0]×S1)

)

for every ξ ∈ C∞([−2, 0]×S1) and some constant c̃ = c̃(p, c, cS). Now integrate
the estimate in lemma 2.12 over s ∈ [−2, 0] and chose δ > 0 sufficiently small in
order to throw the arising term ∂t∂tξ to the left hand side. It follows that

‖ξ‖W1,p([−1,0]×S1) ≤ c̃
(
‖Dξ‖Lp([−2,0]×S1) + ‖ξ‖Lp([−2,0]×S1)

)
(121)

for every ξ ∈ C∞([−2, 0] × S1) and some constant c̃ = c̃(p, c, cS). It remains
to replace the Lp norm of ξ by the L2 norm. Since p ≥ 2, there is the Sobolev
inequality ‖ξ‖Lp ≤ cp‖ξ‖W 1,2 for ξ ∈ W 1,2; see e.g. [LL97, theorem 8.5 (ii)] for
the domain R

2. The first step is to replace the last term in (121) according to
the Sobolev inequality. Then use (121) with p = 2 and on increased domains to
complete the proof of the estimate in step 2 (use Hölder’s inequality to estimate
the L2 norm of Dξ by the Lp norm).

To conclude the proof of step 2 assume ξ ∈ W1,2, then of course ξ ∈ L2 and
Dξ ∈ L2. If in addition Dξ is locally Lp integrable, then the estimate of step 2
which we just proved shows that ξ ∈ W1,p

loc .
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Step 3. Fix a constant p ≥ 2 and consider the norm

‖ξ‖2;p =

(∫ 0

−∞

‖ξ(s, ·)‖pL2(S1) ds

)1/p

.

Then there exist constants c2 and c3 both depending on p and cS such that the
following is true. If ξ ∈ W1,2 and Dξ ∈ Lp, then ξ ∈ W1,p and

‖ξ‖W1,p ≤ c2

(
‖Dξ‖Lp + ‖ξ‖2;p

)
, ‖QDξ‖2;p ≤ c3 ‖Dξ‖Lp .

Fix ξ ∈ W1,2 such that Dξ ∈ Lp. Then ξ ∈ W1,p
loc by step 2. Moreover, the

estimate of step 2 implies that

‖ξ‖pW1,p([k,k+1]×S1) ≤ 3p/2−12pc1
p

∫ k+1

k−2

(
‖Dξ‖pLp(S1) + ‖ξ‖pL2(S1)

)
ds

for every integer k < 0; see [S99, lemma 2.4 step 3] for details. Now take the
sum over all such k to obtain the first estimate of step 3.

Next observe that η := Dξ lies in L2(R−, H) and in Lp(R−, H). Here H =
L2(S1) and we used that by Hölder’s inequality

‖·‖L2(S1) ≤ ‖·‖Lp(S1) . (122)

Since η is in the domain L2(R−, H) of the operator Q from step 1, we obtain

QDξ = Qη = K ∗ η.

Now Young’s inequality applies to K ∗ η, because η ∈ Lp(R−, H). Hence

‖K ∗ η‖2;p ≤ ‖K‖L1(R−,L(H)) ‖η‖Lp(R−,H) ≤ C ‖Dξ‖Lp (123)

where C depends on the constant δ in estimate (119) for the norm ofK; see [S99].
The last step uses (122) again. This proves the second estimate of step 3.

It remains to prove that ξ ∈ W1,p. The two estimates of step 3 imply that

‖ξ‖W1,p ≤ c2

(
(1 + c3) ‖Dξ‖Lp + ‖ξ −QDξ‖2;p

)
.

To see that the right hand side is finite recall that Dξ ∈ Lp by assumption and
ξ−QDξ lies in the kernel of D : W1,2 → L2 by (the proof of) step 1. Moreover,
by (120) every element of this kernel is a finite sum of functions of the form
ξk = e−sλkvk and ‖ξk‖2;p <∞ by calculation.

Step 4. The theorem is true for p > 2.

Fix p > 2 and set X− := ker[D : W1,2 → L2]. Then the linear operator

π : W1,p →
(
X−, ‖·‖2;p

)
, ξ 7→ ξ −QDξ,

108



is well defined, bounded and of finite rank, hence compact. To prove this observe
that π is well defined on the dense subset C∞

0 (Z−) of W1,p. Since C∞
0 (Z−) is

also dense in W1,2, step 1 shows that ξ−QDξ ∈ X−. To see that π is bounded
on C∞

0 (Z−) let ξ ∈ C∞
0 (Z−). Then

‖πξ‖2;p = ‖ξ −QDξ‖2;p ≤ ‖ξ‖p + c3 ‖Dξ‖p ≤ (1 + c3c4) ‖ξ‖W1,p

by definition of π, the triangle inequality, the estimate (122), and the second
estimate of step 3. The last inequality follows from the estimate

‖Dξ‖Lp ≤ ‖∂sξ‖Lp + ‖∂t∂tξ‖Lp + ‖Sξ‖Lp ≤ c4 ‖ξ‖W1,p

with suitable constant c4 = c4(p, cS). Here we used that ‖S‖p ≤ cS(‖ξ‖p +
‖∂tξ‖p) by boundedness of S. Now being bounded on a dense subset the operator
π extends to a bounded linear operator on W1,p. The rank of π is finite, because
the dimension of its target X− is equal to the Morse index of AS by step 1.

To prove that D : W1,p → Lp is onto we show first that the range is closed
and then that it is dense. By the two estimates of step 3 we have that

‖ξ‖W1,p ≤ c2

(
(1 + c3) ‖Dξ‖Lp + ‖πξ‖2;p

)

for every ξ ∈ C∞
0 , hence for every ξ ∈ W1,p by density. Since π is compact,

the range of D is closed by the abstract closed range lemma. To prove density
of the range fix η ∈ Lp ∩ L2 and note that the subset Lp ∩ L2 is dense in Lp,
because it contains the dense subset C∞

0 of Lp. Now by surjectivity of D in the
case p = 2 (step 1) and since η ∈ L2, there exists an element ξ ∈ W1,2 such that
Dξ = η. But then ξ ∈ W1,p by step 3, because Dξ = η ∈ Lp by the choice of η.
Hence η is in the range of D : W1,p → Lp. This proves theorem 8.5.

Proof of proposition 8.3. The arguments in the proof of proposition 3.17 show
that the kernel of Du− : W1,p → Lp is equal to X− and X− does not depend
on p. On the other hand, for p = 2 the dimension of the kernel is equal to the
Morse index of x by theorem 8.5. Surjectivity of Du− follows in three stages.

The stationary case. Consider the stationary solution u−(s, t) = x(t), then
Dx is onto by theorem 8.5. To see this represent Dx with respect to an orthonor-
mal frame along x; see section 3.4.

The nearby case. Surjectivity is preserved under small perturbations with
respect to the operator norm. Moreover, the operator family Du− depends
continuously on u− with respect to the W1,p topology (here we use p > 2).
Hence, if u− ∈ M−(x;V) satisfies u− = expx(η) and ‖η‖W1,p is sufficiently
small, it follows that Du− is onto.

The general case. Given u ∈ M−(x;V) and σ < 0, consider the shifted
solution uσ(s, t) := u(s + σ, t). Then (Duξ)

σ
= Duσξσ by shift invariance of

the linear heat equation. This means that surjectivity of Du is equivalent to
surjectivity of Duσ . But the latter is true by the nearby case above, because
uσ converges to x in the W1,p topology as σ → −∞. To see this apply theo-
rem 4.10 (B) on exponential decay to u and note that uσ(0, t) = u(σ, t).
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Proof of proposition 8.2. The proof follows the same (standard) pattern as the
proof of theorem 1.10; see also the introduction to section 5. The first key
step is the definition of a Banach manifold B = B1,p

x of backward halfcylinders
emanating from x such that B contains the moduli space M−(x;V) whenever
p > 2. The second key step is to define a smooth map Fu− between Banach
spaces as in (79). Its significance lies in the fact that its zeroes correspond
precisely to the elements of the moduli space near u− and that dFu−(0) = Du− .
By proposition 8.3 this operator is surjective and the dimension of its kernel
is equal to the Morse index of x. Hence M−(x;V) is locally near u− modeled
on kerDu− by the implicit function theorem for Banach spaces. To see that
the moduli space is a contractible manifold observe that backward time shift
provides a contraction

h : M−(x;V)× [0, 1] → M−(x;V)
(u, r) 7→ u(· −

√
r/(1− r), ·)

onto the stationary solution x. This means that h is continuous and satisfies
h(u, 0) = u and h(u, 1) = x for every u ∈ M−(x;V).

Proof of theorem 8.1. We abbreviate M− = M−(x;V) and Wu = Wu(x;V).
Recall that the moduli space M− is a smooth manifold of dimension equal to
indV(x) by proposition 8.2 and, furthermore, by definition the unstable manifold
Wu is equal to the image of the evaluation map ev0 : M− → LM . We use the
notation ev0(u) =: u0, hence u0(t) = u(0, t). It remains to prove that ev0 and
its linearization are injective and that ev0 is a homeomorphism onto Wu.

To prove that ev0 is injective let u, v ∈ M− and assume that ev0(u) = ev0(v),
that is u0 = v0. Hence u = v by theorem 6.4 on backward unique continuation.

We prove that the linearization d(ev0)u of ev0 at u ∈ M− is injective. Let
ξ, η ∈ TuM−. Hence Duξ = 0 = Duη by proposition 8.2. Now assume that
d(ev0)uξ = d(ev0)uη. This means that ξ0 = η0. Therefore ξ = η by application
of proposition 6.2 (a) on linear unique continuation to the vector field ξ − η.

We prove that ev0 : M− → LM is a homeomorphism onto its image. Fix
u ∈ M− and recall that every immersion is locally an embedding. Hence there is
an open diskD inM− containing u such that ev0|D : D → LM is an embedding.
It remains to prove that there is an open neighborhood U of u0 = ev0(u) in LM
such that

U ∩Wu = U ∩ ev0(D). (124)

Now there are two cases. In case one u is constant in s and therefore u ≡ x. Here
we exploit the (negative) gradient flow property that the restricted function
SV |Wu takes on its maximum precisely at the critical point x. Case two is
the complementary case in which u depends on s. Here we use a convergence
argument based on the compactness theorem 4.3.

Case 1: u ≡ x. Set c = SV(x), then a set U having the desired property (124)
is given by

U := {c− ε < SV < c+ ε},
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where
2ε := min

u∈clD\D
(SV(x)− SV(u0)) .

Here the compact set clD \D is the topological boundary of the open disc D.
Note that the elements of Wu \ ev0(D) have action at most c− 2ε.

Case 2: u 6≡ x. Assume by contradiction that there is no U which satis-
fies (124). Then there is a sequence γν ∈ Wu \ ev0(D) that converges to u0 in
LM as ν → ∞. Note that γν = ev0(u

ν) where uν ∈ M− \ D. In particular,
each heat trajectory uν converges in backward time asymptotically to x. Thus
we obtain that

sup
s∈(−∞,0]

SV(u
ν
s ) ≤ SV(x) =: c

for every ν. Together with the energy identity this implies that

E(uν) = SV(x)− SV(u
ν
0)

= c− 1
2 ‖∂tuν0‖

2
L2(S1) + V(uν0)

≤ c+ C0

where C0 > 1 is the constant in axiom (V0). Adapting the proofs of the apriori
theorem 4.5 and the gradient bound theorem 4.9 to cover the case of backward
half cylinders it follows that there is a constant C = C(c,V) > 0 such that

‖∂tuν‖∞ ≤ C,

and
‖∂suν‖∞ ≤ C

√
E(uν) ≤ C(c+ C0)

for every ν. Here the norms are taken on the domain (−∞, 0] × S1. Adapting
also the proof of the compactness theorem 4.3 we obtain – in view of the uniform
apriori L∞ bounds for ∂tu

ν and ∂su
ν just derived –the existence of a smooth

heat flow solution v : (−∞, 0] × S1 → M and a subsequence, still denoted by
uν , such that uν converges to v in C∞

loc. In particular, this implies that u0 = v0
and that ∂tu

ν
s converges to ∂tvs, as ν → ∞, uniformly with all derivatives on

S1 and for each s. This and our earlier uniform action bound for uνs show that

SV(vs) = lim
ν→∞

SV(u
ν
s ) ≤ c

for every s. To summarize,we have two backward flow lines u and v defined
on (−∞, 0]× S1 along which the action is bounded from above by c and which
coincide along the loop u0 = v0. Hence theorem 6.4 (B) on backward unique
continuation asserts that u = v. Because uν converges to v in C∞

loc, this means
that uν ∈ D whenever ν is sufficiently large. For such ν we arrive at the
contradiction γν = ev0(u

ν) ∈ ev0(D) and this proves theorem 8.1.
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8.2 The Morse complex

Assume that the action SV is a Morse function on the loop space. This is true
for a generic potential V ∈ C∞(S1 ×M) by [W02]. Fix a regular value a of SV

and, furthermore, for each critical point x ∈ Pa(V ) fix an orientation 〈x〉 of
the tangent space at x to the (finite dimensional) unstable manifold Wu(x;V ).
By ν = ν(V, a) we denote a choice of orientations for all x ∈ Pa(V ). The
Morse chain groups are the Z-modules

CMa
k = CMa

k(V, ν) :=
⊕

x∈Pa(V )
indV (x)=k

Z 〈x〉, k ∈ Z.

These modules are finitely generated and graded by the Morse index. We set
Ca

k = {0} whenever the direct sum is taken over the empty set. We define

CMa
∗ :=

N⊕

k=0

CMa
k

where N is the largest Morse index of an element of the finite set Pa(V ).

Set V(x) =
∫ 1

0
Vt(x(t)) dt and note that V satisfies (V0)–(V3). Now consider

the associated set of admissible perturbations Oa of V defined by (108) and
the dense subset Oa

reg of regular perturbations provided by theorem 1.13. (The
ambient Banach space Y given by (106) provides the metric on Oa.) Now for
any v ∈ Oa

reg we have the following key facts: The functionals SV and SV+v

coincide near their critical points and have the same sublevel set with respect
to a. Moreover, the perturbed functional SV+v is Morse-Smale below level a.
Here and throughout we sometimes denote V + v in abuse of notation by V + v
to emphasize that we are actually perturbing a geometric potential.

To define the Morse boundary operator ∂ on CMa
∗ it suffices to define it on

the set of generators Pa(V ) and then extend linearly. Fix a regular perturbation
v ∈ Oa

reg. Note that each chosen orientation 〈x〉 orients the perturbed unstable
manifold Wu(x;V + v). This is because the tangent spaces at x to Wu(x;V )
and Wu(x;V + v) coincide (v is not supported near x) and unstable manifolds
are finite dimensional and contractible, hence orientable, by theorem 8.1. Now
given two critical points x± of action less than a, consider the heat moduli space
M(x−, x+;V + v) of solutions u of the heat equation (6) with V replaced by
V + v and subject to the boundary condition (8). Jointly with D. Salamon we
proved in [SW03, ch. 11] that a choice of orientations for all unstable manifolds
determines a system of coherent orientations on the heat moduli spaces in
the sense of Floer–Hofer [FH93].

From now on we assume that x± are of Morse index difference one. In this
case M(x−, x+;V + v) is a smooth 1-dimensional manifold by theorem 1.10
and its quotient M(x−, x+;V + v)/R by the (free) time shift action consists
of finitely many points by proposition 1.11. For [u] ∈ M(x−, x+;V + v)/R
time shift naturally induces an orientation of the corresponding component of
M(x−, x+;V + v); compare [SW03] and note that ∂su ∈ kerDu = det(Du). We

112



set nu = +1, if the time shift orientation coincides with the coherent orientation,
and we set nu = −1 otherwise. One calls nu the characteristic sign of the
heat trajectory u. It depends on the orientations 〈x−〉 and 〈x+〉. Consider the
(finite) sum of characteristic signs corresponding to all heat trajectories from
x− to x+, namely

n(x−, x+) :=
∑

[u]∈M(x−,x+;V+v)/R

nu.

If the sum runs over the empty set, we set n(x−, x+) = 0. For x ∈ Pa(V ) define
the Morse boundary operator ∂ = ∂(V, a, ν, v) by the (finite) sum

∂x :=
∑

y∈Pa(V )
indV (x)−indV (y)=1

n(x, y) y.

Set ∂x = 0, if the sum runs over the empty set.

Theorem 8.6 (Boundary operator and homology). Let V ∈ C∞(S1 ×M) be
a potential such that SV is Morse and let a be a regular value of SV . Take a
choice of orientations ν = ν(V, a) and fix a regular perturbation v ∈ Oa

reg. Then
∂ = ∂(V, a, ν, v) satisfies ∂ ◦ ∂ = 0 and Morse or heat flow homology is
defined by

HMa
∗(LM,SV ) :=

ker ∂(V, a, ν, v)

im ∂(V, a, ν, v)
.

The right hand side is independent of ν(V, a) and the regular perturbation v.

Proof. The main result of [SW03] is that for each heat flow line u between critical
points of Morse index difference one there is precisely one Floer trajectory in
the loop space of the cotangent bundle between corresponding critical points
of the symplectic action functional; see [SW03, cor. 10.4 (ii)]. Moreover, we
proved that the characteristic sign of u coincides with the characteristic sign of
the corresponding Floer trajectory. In other words, both chain complexes are
equal (up to natural identification). Hence ∂ ◦ ∂ = 0 follows immediately from
the well known analogue for the Floer boundary operator; see e.g. [F89b, S99].
(The required, but in case of our nongeometric potentials V slightly nonstandard
apriori C0 estimate is provided by [SW03, thm. 5.1] with ε = 1.)

The fact that heat flow homology is independent of the choice of orientations
ν(V, a) and the regular perturbation v follows from the homotopy argument
which is standard in Floer theory; see again e.g. [F89b, S99]. Here it is crucial
to observe that our admissible perturbations v ∈ Oa are supported away from
the level set {SV = a} on which the L2 gradient of SV (hence of SV+v) is
nonvanishing and inward pointing with respect to LaM . Likewise independence
follows by theorem 1.14.
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9 Homology of the loop space

9.1 The forward semiflow

Consider the Hilbert manifold of loops in M given by

ΛM :=W 1,2(S1,M).

In this section we prove that the Cauchy problem for the heat equation is solv-
able in forward time for any initial value in ΛM . This gives rise to a C1 semiflow
ϕ : (0,∞)× ΛM → ΛM which is continuous on [0,∞)× ΛM .

It is convenient to fix an isometric embedding of the Riemannian manifold
M into some Euclidean space R

N using Nash’s theorem. We denote by P the
corresponding second fundamental form. From now on we view loops in M
as loops in R

N taking values in M . Given a smooth such loop x, recall that
the covariant derivative ∇t∂tx is given by taking the derivative ∂t∂tx in the
ambient vector space R

N and subtracting the component normal to M . This
normal component is pointwise given by P (x) (∂tx, ∂tx). In these terms the heat
equation (6) reads

∂su− ∂t∂tu = −P (u) (∂tu, ∂tu) + gradV(u) =: φ(u) (125)

for maps u : R × S1 → R
N taking values in M . Changing perspective and

abusing notation we interpret this pde as a Cauchy problem

d

ds
u = ∆u+ φ(u), u(0) = γ ∈ ΛM, (126)

for maps u : [0,∞) → ΛM and where ∆ := ∂t∂t. The case V = 0 is the harmonic
map flow introduced by Eells and Sampson [ES64] in 1964. To prove short time
existence they applied the method of successive approximation. However, in the
mean time the elegant theory of abstract evolution equations in Banach spaces
has been developed; an excellent reference is the book by Henry [He81]. We will
use this theory to construct the semiflow.

Hence the next step is to interpret the pde above as an evolution equation
for maps s 7→ u(s) from an interval [0, T ] to some Banach space X. We set

X :=W 1,2(S1,RN ), Y := L1(S1,RN ).

Note that according to our convention X contains ΛM . Note also that the
perturbation gradV is defined only on the subset of smooth loops LM ⊂ X.
Since LM is dense in ΛM we extend V continuously to ΛM . Next we identify a
compact neighborhood U of M in R

N with a neighborhood of the zero section
of the normal bundle pr : νM → M of M in R

N . Now fix a sufficiently small
neighborhood U of ΛM in X such that the following is true. If z ∈ U , then
z(t) ∈ U for every t ∈ S1. Hence the projection

π : U → ΛM, (πz)(t) := pr(z(t)), ∀t ∈ S1, (127)
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is well defined. It provides a canonical means to define the desired extensions.
Namely, these are given for z ∈ U by gradV(πz) and P (πz) (∂t(πz), ∂t(πz)).

Now the task at hand is to prove that the Cauchy problem

d

ds
u = ∆u+ f(u), f := φ ◦ π, u(0) = γ ∈ ΛM, (128)

admits a unique short time solution u : [0, T ] → U ⊂ X. Note that f : U → Y .

Definition 9.1. A solution of the Cauchy problem (128) is a continuous map u :
[0, T ] → Y with u(0) = γ such that for s ∈ (0, T ] we have u(s) ∈ U ∩W 2,1(S1),
the derivative du

ds (s) exists in Y, the differential equation is satisfied, and the
map f ◦ u : (0, T ] → Y is locally Hölder continuous and bounded.

It is convenient to reformulate (128) as an integral equation, namely

u(s) = es∆γ +

∫ s

0

e(s−σ)∆f(u(σ)) dσ =: (Ψγu) (s). (129)

Definition 9.2. A solution of the integral equation with initial value γ ∈ ΛM
is a continuous map u : (0, T ] → U satisfying (129) such that the map f ◦ u :
(0, T ] → Y is continuous and bounded.

Both notions of solution are equivalent by lemma 9.11. (See the following
subsection for more information on the analytic semigroup es∆.) To prove
theorem 9.3 on local existence und uniqueness of a solution to (129) we set
up a complete metric space Z on which Ψγ acts as a strict contraction. Now Ψγ

admits a unique fixed point by the Banach contraction mapping principle. But
fixed points of Ψγ correspond precisely to solutions of the integral equation.

The next task, theorem 9.12, is to establish higher regularity of u. Here we
exploit the integral representation (129) of u in combination with the fact that
analytic semigroups are extremely regularizing. By the method of bootstrapping
we improve regularity step by step. Once we arrive at the point where u – now
viewed again as a map from (0, T ] × S1 to R

N – is locally of class W1,p for
some p > 2 we are done. Namely, this implies that u takes values in M and
therefore satisfies the earnest heat equation (125). But in this case our previous
regularity theorem 4.2 asserts smoothness. To summarize, if u(0) = γ is in ΛM ,
then all existing future loops u(s) remain in the set LM of smooth loops in M .
In particular, we don’t need to worry any more that u(s) might leave U .

Certainly this good news greatly enhances chances that solutions actually
exist globally, that is for all positive times. This is the content of theorem 9.13.
In theorem 9.14 we analyze the asymptotic behavior of u(s) as s → ∞. The-
orem 9.15 asserts that the dependence of the solution u of (126) on the initial
value γ ∈ ΛM is of class C1. Then

ϕ : (0,∞)× ΛM → ΛM, (s, γ) 7→ u(s), (130)

provides the desired C1 semiflow. It extends continuously to 0 by theorem 9.3.
In the main proofs below we follow the line of argument presented in [He81]

for fractional power spaces. We provide details in our setting for completeness.
Certain facts concerning semigroups are collected in remark 9.6 without proof.
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9.1.1 Local existence and uniqueness

Theorem 9.3. Fix a perturbation V that satisfies (V0)–(V1) and a loop γ ∈
ΛM . Then there exists a time T = T (γ) ∈ (0, 1] and a unique solution u ∈
C0([0, T ], X) taking values in U of the integral equation (129) such that u(0) = γ.
This solution is continuously differentiable as a map u : (0, T ] → Y and satisfies

u(s) ∈W 2,1(S1,RN ),
d

ds
u(s) = ∆u(s) + f(u(s)) in Y ,

for every s ∈ (0, T ] and where f = φ ◦ π; see (125) and (127).

The proof of this and subsequent results rests on the fact that the operator
−∆ generates an analytic semigroup on Lp(S1).5 First we define this notion and
recall a key proposition. Then we collect further relevant facts in remark 9.6.

Definition 9.4. A strongly continuous semigroup on a Banach space Z is a
family T = {T (s)}s≥0 of continuous linear operators on Z satisfying

s, t ≥ 0 ⇒ T (0) = 1l, T (s+ σ) = T (s)T (σ), (131)

z ∈ Z ⇒ T (s)z → z as s→ 0+. (132)

The infinitesimal generator L of this semigroup is defined as follows Lz :=
lims→0+

1
s (T (s)z − z), its domain domL consisting of all z ∈ Z for which this

limit exists in Z. One usually writes T (s) = esL. If T satisfies in addition

z ∈ Z ⇒ s 7→ T (s)z is real analytic on (0,∞) (133)

we call it an analytic semigroup.

Proposition 9.5. Let {esL}s≥0 be an analytic semigroup on a Banach space Z
with infinitesimal generator L. Then

s > 0, z ∈ Z ⇒ esLz ∈ domL,
d

ds
esLz = LesLz, (134)

and there is a constant C such that

∥∥LesLz
∥∥
Z
≤ C

s
‖z‖Z , for s ∈ (0, 1]. (135)

A strongly continuous semigroup still shares similar properties when re-
stricted to the domain of L. Namely, for z ∈ domL the map (0,∞) → Z :
s 7→ esLz is continuously differentiable and

s > 0, z ∈ domL ⇒ d

ds
esLz = LesLz. (136)

Moreover, there are constants µ ≥ 1 and ω ∈ R such that
∥∥esL

∥∥
L(Z)

≤ µesω, ∀s ≥ 0. (137)

5We abbreviate Lp := Lp(S1) := Lp(S1,RN ) and similarly for Sobolev spaces.
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Remark 9.6 (The semigroup es∆). Fix constants p ∈ [1,∞) and q ∈ (1,∞).

(a) The Laplacian ∆ = ∂t∂t on L
p(S1) with dense domain W 2,p generates an

analytic semigroup on Lp(S1).

(b) There is a constant C = C(p) > 0 such that

∥∥es∆
∥∥
L(L1,W 1,p)

≤ Cs−(1− 1
2p ), ∀s ∈ (0, 1]. (138)

The estimate continues to hold on a larger interval (0, T ] on the expense
that C in addition depends on T .

(c) There is a constant µ = µ ≥ 1 such that

∥∥es∆
∥∥
L(Lp)

≤ µ, ∀s ≥ 0. (139)

(d) The Laplacian ∆ = ∂t∂t onW
k,q(S1) with dense domainW k+2,q generates

a strongly continuous semigroup on W k,q(S1) for each integer k > 0.

(e) Suppose p ≥ q and fix integers k ≥ ℓ ≥ 0, then

∥∥es∆
∥∥
L(W ℓ,q,Wk,p)

≤ Cs−
1
2 (

1
q−

1
p )−

1
2 (k−ℓ), ∀s ∈ (0, 1] (140)

for some constant C = C(p, q, k, ℓ) > 0. The estimate holds on a larger
interval (0, T ] on the expense that C in addition depends on T .

Some comments are in order. For (136) and (137) see section I.1 in [DK92].
Concerning part (a) of remark 9.6 see chapter 13 in [Ta96]. The estimate in
part (b) follows by applying Gagliardo-Nirenberg interpolation, see e.g. [MS04,
prop. B.1.18], to (135) for X = L1 and (139) for p = 1. In case of the larger
interval (0, T ] use that e(k+s)∆ equals the composition of bounded operators
e∆ · · · e∆es∆ for k ∈ N. Part (c) follows from the fact that for an analytic
semigroup the constant ω in (137) equals the spectral bound of the infinitesimal
generator. Hence in the case at hand we obtain that ω = sup spec∆ = 0. For
part (d) and (e) see table (1.1.15) in [Ta96, ch. 15]. Alternatively to see (d)
observe that by continuity of es∆ and strong continuity (132) the operators ∂t
and es∆ commute, then use (a).

Lemma 9.7. Fix a constant T > 0 and a continuous bounded map f̃ : (0, T ] →
L1(S1). For s ∈ [0, T ] set

F (s) =

∫ s

0

e(s−σ)∆f̃(σ) dσ. (141)

Then the following is true.

(a) If p > 1, then F ∈ C0([0, T ],W 1,p(S1)) and F (0) = 0.
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(b) If q ≥ 1 and f̃ is, in addition, locally Hölder continuous as a map (0, T ] →
Lq(S1), then F ∈ C1((0, T ], Lq(S1)) and

F (s) ∈W 2,q(S1),
d

ds
F (s) = ∆F (s) + f̃(s) in Lq(S1),

for every s ∈ (0, T ].

Proof. The proof in Henry [He81, lemma 3.2.1] carries over step by step. Never-
theless, we provide full details in our situation, because the result is fundamental
for all aspects of the construction of the C1 forward semiflow (130).

ad (a) The trouble with the integral F is that the integrand has a singu-
larity at σ = s. The key idea is to define a family of maps Fδ avoiding the
singularity and for which continuity is easy to see. Then it suffices to prove
uniform convergence of Fδ to F as δ → 0.

The whole argument is based on the estimate (138) whose right hand side
is integrable over (0, T ], since the exponent of s is strictly larger than −1. Now
we choose δ ∈ (0, T ) and define Fδ : [0, T ] →W 1,p by

Fδ(s) =

{
0 , s ∈ [0, δ],∫ s−δ

0
e(s−σ)∆f̃(σ) dσ , s ∈ [δ, T ].

Set K1 := sup‖f̃‖1. By (138) the integrand of Fδ takes values in W 1,p and is
integrable. Hence Fδ is well defined and takes values inW 1,p itself. Next choose
δ ≤ s ≤ s+ h ≤ T , then the difference

Fδ(s+ h)− Fδ(s) =
(
eh∆ − 1l

)
Fδ(s) +

∫ s+h−δ

s−δ

e(s+h−σ)∆f̃(σ) dσ

converges to zero in W 1,p as h→ 0. This proves continuity of Fδ. Here we used
that {eh∆}h≥0 is a strongly continuous semigroup on W 1,p by remark 9.6 (d)
and a short calculation to see that theW 1,p norm of the second term is bounded
above by 2pCK1((h+ δ)1/2p − δ1/2p). Now another calculation shows that

‖F (s)− Fδ(s)‖1,p ≤ 2pCK1

{
s1/2p , s ∈ [0, δ],

δ1/2p , s ∈ [δ, T ],

≤ 2pCK1δ
1/2p,

and the right hand tends to zero as δ → 0, uniformly in s ∈ [0, T ]. Continuity
of each map Fδ : [0, T ] → W 1,p with Fδ(0) = 0 and uniform convergence of Fδ

to F in W 1,p show that the limit F : [0, T ] →W 1,p is continuous and F (0) = 0.
ad (b) The proof has four steps. Fix q ≥ 1.

Step 1. Fix δ ∈ (0, T ). If s ∈ [δ, T ], then Fδ(s) ∈W 2,q and

∆Fδ(s) =

∫ s−δ

0

∆e(s−σ)∆
(
f̃(σ)− f̃(s)

)
dσ +

(
es∆ − eδ∆

)
f̃(s).
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Throughout the proof of step 1 we set L := ∆. For s = δ the statement is trivial,
since Fδ(δ) = 0. Hence fix s ∈ (δ, T ]. Now recall that L generates an analytic
semigroup on Lq by remark 9.6 (a). Hence e(τ−σ)Lf̃(σ) lies in the domain W 2,q

of L for all 0 < σ < τ by (134). Therefore the Riemann sums for Fδ(s) which
we denote by ∑

σj≤s−δ

e(s−σj)Lf̃(σj)∆σj

are in Lq. Now in Lq the following limit exists and is given by

lim
∆σ→0

L
∑

σ≤s−δ

e(s−σ)Lf̃(σ)∆σ =

∫ s−δ

0

Le(s−σ)Lf̃(σ) dσ. (142)

To see this pull L through the finite sum and then observe that
∥∥∥Le(s−σ)Lf̃(σ)

∥∥∥
q
≤
∥∥∥e(s−σ)Lf̃(σ)

∥∥∥
2,q

≤
∥∥∥e(s−σ)L

∥∥∥
L(L1,W 2,q)

∥∥∥f̃(σ)
∥∥∥
1
.

Hence by (140) with constant C we obtain the bound

∥∥∥Le(s−σ)Lf̃(σ)
∥∥∥
q
≤ CK1(s− σ)−3/2−1/2q ≤ CK1δ

−3/2−1/2q

for all σ ∈ (0, s − δ). This proves (142). Now since the operator L is closed it
follows by (142) that Fδ(s) is in the domain W 2,q of L and

LFδ(s) =

∫ s−δ

0

Le(s−σ)Lf̃(σ) dσ

=

∫ s−δ

0

Le(s−σ)L
(
f̃(σ)− f̃(s)

)
dσ +

(
esL − eδL

)
f̃(s).

(143)

To obtain the last step we used the identity −Le(s−σ)L = d
dσ e

(s−σ)L and the
fundamental theorem of calculus. This proves step 1.

Step 2. If s ∈ (0, T ], then F (s) ∈W 2,q and

∆F (s) =

∫ s

0

∆e(s−σ)∆
(
f̃(σ)− f̃(s)

)
dσ +

(
es∆ − 1l

)
f̃(s).

Moreover, on each closed subinterval [a, b] ⊂ (0, T ] we have uniform convergence
in Lq of ∆Fδ to ∆F , as δ → 0.

Again by (140) with constant C ′ we obtain that

∥∥∥∆e(s−σ)∆
(
f̃(σ)− f̃(s)

)∥∥∥
q
≤
∥∥∥e(s−σ)∆

(
f̃(σ)− f̃(s)

)∥∥∥
2,q

≤
∥∥∥e(s−σ)∆

∥∥∥
L(Lq,W 2,q)

∥∥∥
(
f̃(σ)− f̃(s)

)∥∥∥
q

≤ cC ′(s− σ)−1+α
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where c > 0 and α > 0 are, respectively, the Hölder constant and the Hölder
exponent for f̃ whenever σ is sufficiently close to s. This estimate shows that
the left hand side is integrable over σ ∈ (0, s). Hence by the formula in step 1
we obtain that the following limit exists in Lq, namely

∆Fδ(s) →
∫ s

0

∆e(s−σ)∆
(
f̃(σ)− f̃(s)

)
dσ +

(
es∆ − 1l

)
f̃(s), as δ → 0,

where for the last term we used (132) with Z = Lq. Recall that Fδ(s) converges
in Lq to F (s), as δ → 0, by part (a). Thus again by closedness of the operator
∆ it follows that F (s) is in the domain W 2,q of ∆ and ∆Fδ(s) → ∆F (s) in Lq,
as δ → 0. This proves the formula in step 2.
Now fix a closed subinterval [a, b] of (0, T ]. By local Hölder continuity of f̃ there
are positive constants K and β such that

∥∥∥f̃(s)− f̃(σ)
∥∥∥
q
≤ K |s− σ|β

for all s, σ ∈ [a, b]. Use the formulae in step 1 and step 2 to obtain that

‖∆Fδ(s)−∆F (s)‖q =

∥∥∥∥
∫ s

s−δ

∆e(s−σ)∆
(
f̃(σ)− f̃(s)

)
dσ +

(
eδ∆ − 1l

)
f̃(s)

∥∥∥∥
q

≤ KC ′

∫ s

s−δ

(s− σ)−1+β dσ +
∥∥∥
(
eδ∆ − 1l

)
f̃(s)

∥∥∥
q

≤ KC ′

β
δβ +

∥∥∥
(
eδ∆ − 1l

)
f̃(s)

∥∥∥
q
.

Here the first inequality follows by the calculation carried out earlier. Now the
right hand side converges to zero, as δ → 0, uniformly in s ∈ [a, b]. This follows
from the fact that the map eδ∆ − 1l : Lq → Lq is continuous by definition 9.4
and by (132) it converges pointwise to zero. Hence restricted to the compact
set f̃([a, b]) we obtain uniform convergence.

Step 3. Fix δ ∈ (0, T ), then Fδ : (δ, T ] → Lq is continuously differentiable and

d

ds
Fδ(s) = ∆Fδ(s) + eδ∆f̃(s− δ).

Fix δ < s < s+ h ≤ T . By definition of Fδ it follows that

Fδ(s+ h)− Fδ(s)

h
=

∫ s−δ

0

e(
δ
2+h)∆ − e

δ
2∆

h
e(s−

δ
2−σ)∆f̃(σ) dσ

+
1

h

∫ s−δ+h

s−δ

e(s+h−σ)∆f̃(σ) dσ.

Note that all exponents stay away from the singular value zero as they are
bounded below by δ

2 . Hence the fraction inside the first integral converges to

d

dh

∣∣∣∣
h= δ

2

eh∆ = ∆e
δ
2∆,
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as h → 0, by (134) and the second integral to eδ∆f̃(s − δ). Using the first
identity in (143) we obtain that the limit h−1 (Fδ(s+ h)− Fδ(s)) exists in L

q,
as h→ 0, and equals ∆Fδ(s) + eδ∆f̃(s− δ).

Step 4. We prove part (b) of lemma 9.7.

Fix a closed interval [a, b] ⊂ (0, T ] and suppose 0 < δ < a. Then d
dsFδ converges

to ∆F + f̃ in Lq, as δ → 0, uniformly in s ∈ [a, b]. Here we used step 3, step 2,
and the fact that the continuous map eδ∆ : Lq → Lq converges pointwise, hence
uniformly on the compact set f̃([a/2, b]), to the identity, as δ → 0.

Lemma 9.8. Fix a constant q > 1 and an integer ℓ > 0. Then the following is
true. If h ∈ (0, 1) and x ∈ L1(S1) ∪W ℓ,q(S1), then

(
eh∆ − 1l

)
es∆x =

∫ h

0

∆e(τ+s)∆x dτ

for every s ∈ (0, 1).

Proof. Assume x ∈ W ℓ,q. Then we know by remark 9.6 (d) that {es∆} is
a strongly continuous semigroup on W ℓ,q. Now fix s ∈ (0, 1). Then it fol-
lows by (140) that es∆x ∈ W ℓ+2,q = dom ∆. Hence ∆e(τ+s)∆x = d

dτ e
(τ+s)∆x

by (136). Now the assertion follows by the fundamental theorem of calculus –
provided the integral exists. To see this apply (140) with constant C ′ to get
that

∥∥∥∆e(τ+s)∆x
∥∥∥
ℓ,q

≤
∥∥∥e(τ+s)∆

∥∥∥
L(W ℓ,q,W ℓ+2,q)

‖x‖ℓ,q ≤ C ′

τ + s
‖x‖ℓ,q . (144)

Integrating the right hand side over τ ∈ (0, h) gives C ′‖x‖ℓ,q ln(1 + h
s ) < ∞.

The case x ∈ L1 follows by the same arguments using proposition 9.5 which
applies to L = ∆ and Z = L1 by remark 9.6 (a) for p = 1.

Lemma 9.9. Fix constants p ≥ q > 1 and integers k ≥ ℓ ≥ 1. Suppose
γ ∈W ℓ,q(S1). Then the map (0, 1] →W k,p(S1) : s 7→ es∆γ is continuous.

Proof. Fix 0 < s < s+ h ≤ 1, then

∥∥e(s+h)∆γ − es∆γ
∥∥
k,p

≤
∫ h

0

∥∥∆e(τ+s)∆γ
∥∥
k,p

dτ

≤
∫ h

0

∥∥e(τ+s)∆
∥∥
L(W ℓ,q,Wk+2,p)

‖γ‖ℓ,q dτ

= C ‖γ‖ℓ,q

{
s−κ−(s+h)−κ

κ , κ > 0,

ln
(
s+h
s

)
, κ = 0,

where κ ∈ [0,∞) is given by κ = 1
2 (

1
q − 1

p ) +
1
2 (k − ℓ). In step one and four we

applied lemma 9.8 and (140) with constant C, respectively. The right hand side
of the estimate tends to zero as h→ 0. This proves continuity at s.
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Lemma 9.10. Fix a perturbation V that satisfies (V0–V1). Then the map

f = φ ◦ π : X ⊃ U → Y

where φ and π are given by (125) and (127) is locally Lipschitz continuous.

Proof. Given γ ∈ U we have to show that there are constants ρ, L > 0 such that

‖f(x)− f(y)‖1 ≤ L ‖x− y‖1,2
for all x, y ∈ B := {z ∈ X : ‖z − γ‖1,2 ≤ ρ}. Fix ρ > 0 sufficiently small such
that B ⊂ U . Recall that U is a fixed compact neighborhood of M in R

N used
implicitely in the definition (127) of the projection π. Consider the constants

κ1 := max
q∈U

‖d pr(q)‖L(RN ,Tpr(q)M) , κ2 := max
q∈U

∥∥d2 pr(q)
∥∥
L(RN×N ,Tpr(q)M)

and

β1 := max
q∈M

‖P (q)‖L((TqM)×2,T⊥
q M) , β2 := max

q∈M
‖dP (q)‖L((TqM)×3,T⊥

q M) .

Choose x, y ∈ B and set v = y−x. Now the map h : U → Y , x 7→ (gradV)◦π(x)
is composed of two C2 maps. Hence there exists τ ∈ (0, 1) such that

gradV (π(x))− gradV (π(x+ v))

=
d

dτ
gradV (π(x+ τv))

= ∇τgradV (π(x+ τv)) + P |π(x+τv)

(
∂τ (π(x+ τv)), gradV (π(x+ τv))

)

pointwise at t ∈ S1. Here we used that the covariant derivative in M equals the
extrinsic derivative minus its normal component. From this we obtain that

‖gradV (π(x))− gradV (π(x+ v))‖1
≤ ‖∇τgradV (π(x+ τv))‖1 + β1 ‖∂τ (π(x+ τv))‖1 ‖gradV (π(x+ τv))‖∞
≤ 2C1 ‖∂τ (π(x+ τv)))‖1 + β1C0 ‖∂τ (π(x+ τv))‖1
= (2C1 + β1C0) ‖dπ(x+ τv) v‖1
≤ κ1(2C1 + β1C0) ‖v‖1 .

This estimate means that gradV(π·) is globally Lipschitz on U even with respect
to the L1 norm on the domain. To obtain the second inequality we used ax-
ioms (V0) and (V1) with constants C0 = C0(V) and C1 = C1(V), respectively.
Now fix t ∈ S1. By abuse of notation we denote the point x(t) by x and v(t) by
v. Moreover, we abbreviate ẋ = ∂tx. Since all maps involved are C1 and take
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values in the ambient RN , there exists τ = τ(t) ∈ (0, 1) such that

∣∣∣P |pr(x)
(
d pr|xẋ, d pr|xẋ

)
− P |pr(x+v)

(
d pr|x+v(ẋ+ v̇), d pr|x+v(ẋ+ v̇)

)∣∣∣

=

∣∣∣∣
d

dτ
P |pr(x+τv)

(
d pr|x+τv(ẋ+ τ v̇), d pr|x+τv(ẋ+ τ v̇)

)∣∣∣∣

=
∣∣∣dP |pr(x+τv)

(
d pr|x+τvv, d pr|x+τv(ẋ+ τ v̇), d pr|x+τv(ẋ+ τ v̇)

)

+ 2P |pr(x+τv)

(
d pr|x+τv(ẋ+ τ v̇), d2 pr|x+τv(v, ẋ+ τ v̇) + d pr|x+τv v̇

)∣∣∣

≤ 2(β2κ
3
1 + 2β1κ1κ2)

(
|ẋ|2 + |v̇|2

)
|v|+ 2β1κ

2
1

(
|ẋ|+ |v̇|

)
|v̇| .

Now integrate this pointwise inequality over t ∈ S1 to obtain that

‖P (πx) (∂t(πx), ∂t(πx))− P (πy) (∂t(πy), ∂t(πy))‖1
≤ 2(β2κ

3
1 + 2β1κ1κ2)

(
‖ẋ‖22 + ‖v̇‖22

)
‖v‖∞ + 2β1κ

2
1

(
‖ẋ‖2 + ‖v̇‖2

)
‖v̇‖2

≤ µ ‖x− y‖1,2 .

Here µ > 0 depends on the constants κ1, κ2, β1, β2, ρ, the Sobolev constant
associated to the embedding W 1,2(S1) →֒ L∞(S1), and on ‖γ‖1,2. Note that

‖ẋ‖2 ≤ ‖x‖1,2 ≤ ‖γ‖1,2 + ρ, ‖v̇‖2 ≤ ‖v‖1,2 = ‖x− γ + γ − y‖1,2 ≤ 2ρ. (145)

We also used Hölder’s inequality ‖fh‖1 ≤ ‖f‖2‖h‖2.

Lemma 9.11. A map u defined on the interval [0, T ] is a solution of the Cauchy
problem (128) if and only if it is a solution of the integral equation (129).

Proof. “⇒” Suppose u is a solution of the Cauchy problem (128). In particular,
this means by definition 9.1 that f̃ := f ◦ u : (0, T ] → Y is locally Hölder
continuous and bounded and u solves the linear inhomogeneous problem

d

ds
v(s)−∆v(s) = f̃(s), v(0) = γ ∈ Y.

By [He81, thm. 3.2.2] this problem has a unique solution which is given by

v(s) = es∆γ +

∫ s

0

e(s+σ)∆f̃(σ) dσ.

Now v = u by uniqueness. Moreover, the first term in the sum is a continuous
map (0, T ] → X by lemma 9.9 with r = µ = 1 and p = q = 2 and the second
term is continuous even on [0, T ] by lemma 9.7 with p = 2.

“⇐” Now suppose u is a solution of the integral equation (129). Hence
u(s) = es∆γ + F (s) where F is given by (141) with f̃ := f ◦ u : (0, T ] → Y
being continuous and bounded by assumption. Then lemma 9.7 (a) asserts
that F (0) = 0 and F ∈ C0([0, T ],W 1,2). Hence F ∈ C0([0, T ], Y ). Now ∆
generates an analytic semigroup on Y by remark 9.6 a). Therefore the map
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(0,∞) → Y : s 7→ es∆γ is continuously differentiable by (133). Furthermore
it extends continuously to zero, taking on the value γ at zero, by the strong
continuity property (132). To summarize we proved that the map u : [0, T ] → Y
is continuous and satisfies u(0) = γ. Also when restricted to (0, T ] the map u
takes values in U by assumption.
We prove the yet missing properties of u on the interval (0, T ]. As mentioned
above the map s 7→ es∆γ is continuously differentiable in Y . Moreover, this
map takes values in W 2,1 and satisfies d

dse
s∆γ = ∆es∆γ by (134). Assume we

knew that u : (0, T ] → U was locally Hölder continuous. Then the composition
f̃ = f ◦ u : (0, T ] → Y is locally Hölder continuous, since f : U → Y is locally
Lipschitz by lemma 9.10. Now lemma 9.7 (b) with q = 1 applies. Consequently
the sum u(s) = es∆γ + F (s) takes values in W 2,1, is differentiable in Y and
satisfies the differential equation (128).

It remains to prove that u is locally Hölder continuous on (0, T ] with respect
to the W 1,2 norm. Set K1 := sup(0,T ]‖f̃‖1 and fix 0 < s < s+ h ≤ T . Then by
the representation formula (129) we obtain that

u(s+ h)− u(s) =

∫ s

0

(
eh∆ − 1l

)
e(s−σ)∆f̃(σ) dσ

+

∫ s+h

s

e(h+s−σ)∆f̃(σ) dσ +
(
eh∆ − 1l

)
es∆γ.

(146)

Denote the sum of the three terms on the right hand side by T1 + T2 + T3.
By (138) with p = 2 and constant C > 0 it follows that

‖T2‖1,2 ≤
∫ s+h

s

∥∥e(h+s−σ)∆
∥∥
L(L1,W 1,2)

∥∥f̃(σ)
∥∥
1
dσ ≤ 4CK1h

1/4.

Now apply lemma 9.8 and (144) with ℓ = 1 and q = 2 to obtain that

‖T3‖1,2 ≤
∫ h

0

∥∥∆e(τ+s)∆γ
∥∥
1,2

dτ ≤ C ′ ‖γ‖1,2 ln
(
1 +

h

s

)
. (147)

Note that ln(1 + h/s) ≤ h/s ≤ h/T0 whenever s ∈ [T0, T1] ⊂ (0, T ). Again by
lemma 9.8 for x = f̃(σ) ∈ L1 and (140) with constant C ′′ it follows that

‖T1‖1,2 ≤
∫ s

0

∫ h

0

∥∥e(τ+s−σ)∆f̃(σ)
∥∥
3,2
dτ dσ

≤
∫ s

0

∫ h

0

∥∥e(τ+s−σ)∆)
∥∥
L(L1,W 3,2)

∥∥f̃(σ)
∥∥
1
dτ dσ

≤ C ′′K1

∫ s

0

∫ h

0

(τ + s− σ)−7/4 dτ dσ

=
16

3
C ′′K1

(
h1/4 + s1/4 − (h+ s)1/4

)
≤ 16C ′′K1

3
h1/4.
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Proof of theorem 9.3. The main idea to solve the integral equation (129) is to
construct a complete metric space Z on which the map Ψ := Ψγ defined in (129)
acts as a strict contraction. We follow the exposition in [Ta96, ch. 15, sec. 1].
The construction is based on four facts, namely

es∆ : X → X is a strongly continuous semigroup where s ≥ 0,

f : U → Y is a locally Lipschitz continuous map,

es∆ : Y → X is a bounded linear operator for each s > 0,

(148)

and ∥∥es∆
∥∥
L(Y,X)

≤ Cs−3/4, ∀s ∈ (0, 1]. (149)

For fact one see remark 9.6 (d) with k = 1 and q = 2, for fact two see lemma 9.10,
and for facts three and four see remark 9.6 (b) with p = 2.

Since f is locally Lipschitz, there are positive constants ρ and L such that

‖f(x)− f(y)‖1 ≤ L ‖x− y‖1,2 (150)

for all x, y in the closed ball Bγ ⊂ X of radius ρ and centered at γ. Choose ρ
smaller if necessary to guarantee that Bγ ⊂ U . Now pick T ∈ (0, 1] and consider
the subset of the Banach space C0([0, T ], X) given by

Z :=
{
u ∈ C0([0, T ], X) : ‖u(s)− γ‖X ≤ ρ for all s ∈ [0, T ]

}
. (151)

Observe that the elements of Z take values in the ball Bγ . Being closed Z is a
complete metric space with respect to the sup norm. By (150) it follows that

‖f ◦ u(s)‖1 ≤ ‖f ◦ u(s)− f(γ)‖1 + ‖f(γ)‖1
≤ L ‖u(s)− γ‖1,2 + ‖f(γ)‖1
≤ Lρ+ ‖f(γ)‖1 =: K1

(152)

whenever s ∈ [0, T ] and u ∈ Z. By fact one in (148) and strong continuity (132)
we can choose T1 = T1(γ) ∈ (0, 1] small enough such that

∥∥es∆γ − γ
∥∥
1,2

≤ ρ

3
, ∀s ∈ [0, T1].

Fix a positive constant T2 < max{T1, ρ4/(12CK1)
4}. We prove that Ψ acts

on Z whenever T ≤ T2. There are two conditions to be checked. To see the first
condition observe that

∥∥∥∥
∫ s

0

e(s−σ)∆f(u(σ)) dσ

∥∥∥∥
1,2

≤
∫ s

0

C(s− σ)−3/4K1 dσ = 4K1Cs
1/4 ≤ ρ

3

for every s ∈ [0, T ]. Here we used (138) with p = 2 and constant C and we also
used estimate (152). Hence ‖Ψu(s)− γ‖1,2 ≤ 2

3ρ whenever s ∈ [0, T ] by the last
two estimates. The second condition is continuity of the map Ψu : [0, T ] → X.
Recall that Ψu(s) = es∆γ+F (s) where F is given by (141) with f̃(s) := f ◦u(s).
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Now F : [0, T ] → X is continuous with F (0) = 0 by lemma 9.7 (a) with p = 2.
The map (0, T ] → X : s 7→ es∆γ is continuous by lemma 9.9 with q = p = 2
and r = µ = 1. By fact one in (148) and strong continuity (132) it extends
continuously to zero. This proves that Ψu(0) = γ and that Ψ acts on Z.

Next we prove that Ψ is a strict contraction on Z = Z(T ) whenever T ∈
(0, T2] is sufficiently small. To see this fix u, v ∈ Z and s ∈ [0, T ]. Then by
definition of Ψ in (129) and the estimates (149) and (150) it follows that

‖Ψu(s)−Ψv(s)‖1,2 =

∥∥∥∥
∫ s

0

e(s−σ)∆
(
f(u(σ))− f(v(σ))

)
dσ

∥∥∥∥
1,2

≤
∫ s

0

C(s− σ)−3/4 ‖f(u(σ))− f(v(σ))‖1 dσ

≤ 4CLT 1/4 sup
σ

‖u(σ)− v(σ)‖1,2 .

Now choose T < (8CL)−4 to obtain that ‖Ψu − Ψv‖Z ≤ 1
2‖u − v‖Z . By the

Banach contraction principle Ψ has a unique fixed point u in Z; see e.g. [He81,
section 1.2.6]. Now this fixed point of Ψ is a solution of the integral equation
in the sense of definition 9.2 which by lemma 9.11 is a solution to the Cauchy
problem (128) in the sense of definition 9.1. Uniqueness follows by uniqueness
of the fixed point.

9.1.2 Regularity

Theorem 9.12. Fix a perturbation V that satisfies (V0)–(V1) and a loop γ ∈
ΛM . Then there is a constant T = T (γ) > 0 and a unique smooth solution

u : (0, T ]× S1 →M, u(0, ·) = γ(·),
of the heat equation (125) which is continuous on [0, T ]× S1.

Proof. Set f = φ◦π where φ and π are defined by (125) and (127), respectively.
By theorem 9.3 there is a unique solution u ∈ C0([0, T ], X) taking values in U
of the integral equation (129) with u(0) = γ. The map f̃ := f ◦ u : (0, T ] → Y
is locally Hölder continuous and bounded by lemma 9.11 and definition 9.1. We
denote this bound by

K1 := sup
(0,T ]

‖f̃‖1.

For s ∈ [0, T ] define F (s) by (141). In this notation the integral equation (129)
becomes u(s) = es∆γ + F (s). From now on W k,p abbreviates W k,p(S1,RN )
whenever it is convenient.

Step 1. Fix q ≥ 2. Then u : (0, T ] →W 1,q(S1) is locally Hölder continuous.

Now if 0 < s < s+ h ≤ T and h ≤ s, then by the representation formula (129)
we obtain that

u(s+ h)− u(s) =

∫ s

0

(
eh∆ − 1l

)
e(s−σ)∆f̃(σ) dσ

+

∫ s+h

s

e(h+s−σ)∆f̃(σ) dσ +
(
eh∆ − 1l

)
es∆γ.
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Denote the sum of the three terms on the right hand side by T1 + T2 + T3.
By (140) for ℓ = 0 and q = k = 1 and with constant C it follows that

‖T2‖1,q ≤
∫ s+h

s

∥∥e(h+s−σ)∆
∥∥
L(L1,W 1,q)

∥∥f̃(σ)
∥∥
1
dσ ≤ 2qCK1h

1/2q.

To estimate T3 for q > 2 we apply lemma 9.8 for x = e
s
2∆γ ∈W 1,q to get that

‖T3‖1,q ≤
∫ h

0

∥∥∆e(τ+ s
2 )∆e

s
2∆γ

∥∥
1,q

dτ

≤
∫ h

0

∥∥e(τ+s)∆)
∥∥
L(W 1,2,W 3,q)

∥∥γ
∥∥
1,2

dτ

≤ 4qC ′

q − 2
‖γ‖1,2

(
s−

q−2
4q − (s+ h)−

q−2
4q

)

≤ 4qC ′

q − 2
‖γ‖1,2 µh.

Here step three is by (140) with constant C ′. The last step is valid for all
s ∈ [T0, T1] ⊂ (0, T ) and every sufficiently small h > 0. The constant µ depends
on T0, T1, and (q−2)/4q. In the case q = 2 we obtained by (147) that ‖T3‖1,2 ≤
c′‖γ‖1,2T0−1h for s ∈ [T0, T1]. Next use (140) with constant C ′′ to obtain that

‖T1‖1,q ≤
∫ s

0

∫ h

0

∥∥e(τ+s−σ)∆f̃(σ)
∥∥
3,q
dτ dσ

≤
∫ s

0

∫ h

0

∥∥e(τ+s−σ)∆)
∥∥
L(L1,W 3,q)

∥∥f̃(σ)
∥∥
1
dτ dσ

≤ C ′′K1

∫ s

0

∫ h

0

(τ + s− σ)−2+1/2q dτ dσ

=
4q2

2q − 1
C ′′K1

(
h1/2q + s1/2q − (h+ s)1/2q

)
≤ 4q2C ′′K1

2q − 1
h1/2q.

In the last step we used that s1/2q ≤ (s+ h)1/2q, because h > 0.

Step 2. Fix p ≥ 1. Then f ◦ u : (0, T ] → Lp(S1) is locally Hölder continuous.

The map u : (0, T ] →W 1,2p is locally Hölder continuous by step 1 with q = 2p.
Revisiting the proof of lemma 9.10 replacing W 1,2 by W 1,2p and L1 by Lp we
observe that f : W 1,2p ⊃ U ′ → Lp is locally Lipschitz. Here U ′ is a sufficiently
small neighborhood of W 1,2p(S1,M) in W 1,2p(S1,RN ) such that all elements of
U ′ take values in the neighborhood U of M in R

N which was used to define π
in (127). Hence the composition f ◦u : (0, T ] → Lp is locally Hölder continuous.

Step 3. Fix p ≥ 2. Then u ∈ C1((0, T ], Lp(S1,RN )).

Recall that u(s) = es∆γ + F (s). Now ∆ generates the analytic semigroup es∆

on Lp by remark 9.6 (a). Hence the map (0,∞) → Lp : s 7→ es∆γ is real analytic
by (133). To deal with the F part fix a constant δ ∈ (0, T ). On the other hand,
step 2 and lemma 9.7 (b) for q = p and the map f̃ := f ◦ u : (0, T ] → Lp, which
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is bounded in L1 by the constant K1, show that F : (0, T ] → Lp is continuously
differentiable.

Step 4. Fix constants p ≥ 2 and δ ∈ (0, T ). Then the map [δ, T ]× S1 → R
N :

(s, t) 7→ u(s, t) is of class W1,p.

By definition of the space W1,p we need to show that u, ∆u := ∂t∂tu, and ∂su
are in Lp([δ, T ]×S1,RN ). By step 2 and step 3 we know that f ◦u and d

dsu are
in C0((0, T ], Lp). On the other hand, by theorem 9.3 we have ∆u(s) ∈ L1 and

d

ds
u(s) = ∆u(s) + f ◦ u(s) (153)

for every s ∈ (0, T ]. Hence ∆u is in C0((0, T ], Lp) as well. Now every element
of C0((0, T ], Lp) restricts to an element of Lp([δ, T ], Lp) = Lp([δ, T ]× S1,RN ).

Step 5. The map u defined on [0, T ]× S1 takes values in M . It is continuous
on [0, T ]× S1, smooth on (0, T ]× S1, and satisfies (126).

Recall that prior to (127) we identified a compact neighborhood U of M in R
N

with a neighborhood of the zero section of the normal bundle pr : νM → M
of M in R

N . Moreover, every element of the neighborhood U of the space of
W 1,2 loops ΛM takes values in U . Since u takes values in U by theorem 9.3, we
identify u(s, t) ∈ U with the pair (v(s, t), η(s, t)) where η is the field of normal
vectors corresponding to u and v(s, t) := pr ◦ u(s, t) ∈M are the corresponding
base points. On the normal bundle fix the Riemannian metric provided by
the ambient Euclidean space R

N and the associated Levi Civita connection ∇′.
Then (153) translates into the pair of equations

(
∂sv
∇s

′η

)
=

(
∂t∂tv − P (v) (∂tv, ∂tv) + gradV(v)

∇t
′∇t

′η

)
. (154)

Now the section η of the normal bundle satisfies η(0, ·) = 0, since u(0) = γ ∈
ΛM . Moreover, by (154) and integration by parts we obtain that

d

ds
‖η(s)‖22 = 2

〈
∇s

′η(s), η(s)
〉
= 2

〈
∇t

′∇t
′η(s), η(s)

〉
= −2

∥∥∇t
′η(s)

∥∥2
2
≤ 0

for every s ∈ (0, T ]. Here we used that the section η(s), its s derivative, and
the first two t derivatives are Lp integrable over S1 whenever p ≥ 2; see proof of
step 4. Of course, the inequality above proves that η = 0. But this means that
u = v. Hence u satisfies the heat equation by the first component in (154) and
by step 4 it is in W1,p([δ, T ]×S1,M) for p ≥ 2. Thus u is smooth on (δ, T ]×S1

by theorem 4.2 and this is true for all δ ∈ (0, T ).

9.1.3 Global existence and asymptotic behavior

Theorem 9.13 (Global forward existence). Fix a perturbation V that satis-
fies (V0)–(V3), a time T > 0, and an initial loop γ ∈ ΛM . Then the following
is true. Every solution u of the Cauchy problem (126) on [0, T ) with u(0) = γ
extends to a smooth solution on (0,∞).
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Proof. Assume by contradiction and without loss of generality (rename if nec-
essary) that [0, T ) is the maximal interval of existence. This means u does not
extend to a solution on [0, T ′) for T ′ > T . By theorem 9.12 we may assume that
u ∈ C0([0, T ),ΛM) ∩C∞((0, T ),LM). The idea is to prove in two steps that u
extends to time T continuously in ΛM . Then by theorem 9.3 we solve the inte-
gral equation (129) for the initial value u(T ) to get a solution on [T, T ′] for some
T ′ > T . Concatenation then provides a solution on [0, T ′] and by lemma 9.11
every solution of the integral equation solves the heat equation (125). This
contradicts maximality of [0, T ).

Step 1. There is a constant K1 such that ‖φ(u(s))‖1 ≤ K1 for every s ∈ [0, T ).

Since the action functional SV is decreasing along solutions, it follows that

‖∂tu(s)‖22 = 2SV(u(s)) + 2V(u(s)) ≤ 2SV(u(0)) + 2C0 ≤ ‖∂tγ‖22 + 4C0

for every s ∈ [0, T ). The first and the last step are by definition of SV . We used
axiom (V0) with constant C0 = C0(V) > 0 in the second and the last step. Now
we obtain for φ defined by (125) the estimate

‖φ(u(s))‖1 ≤ ‖P‖∞ ‖∂tu(s)‖22 + ‖gradV(u(s))‖∞
≤ ‖P‖∞

(
‖∂tγ‖22 + 4C0

)
+ C0 =: K1

for every s ∈ [0, T ). Here we used the second estimate of axiom (V0).

Step 2. The limit lims→T u(s) exists in W 1,2(S1).

Recall that f := φ ◦π where π is defined by (127). Note that π ◦u = u, because
u takes values in ΛM . Hence by step 1 the map f̃ := f ◦u = φ ◦u : [0, T ) → L1

is bounded from above by the constant K1. Now fix a constant p > 2, choose
max{0, T −1} < s < σ < T , and set h := σ− s. By lemma 9.11 each solution of
the Cauchy problem solves the integral equation (129). Recall that the difference
u(σ) − u(s) = u(s + h) − u(s) = T1 + T2 + T3 is given by (146) and that we
already have W 1,2 estimates for the terms Tj , namely

‖T1‖1,2 ≤ 16C ′′K1

3
(σ − s)

1
4 , ‖T2‖1,2 ≤ 4CK1(σ − s)

1
4 ,

and
‖T3‖1,2 ≤ C ′ ‖γ‖1,2 ln

(σ
s

)
.

This shows that ‖u(σ) − u(s)‖1,2 converges to zero as s < σ both converge to
T . Hence the sequence is Cauchy and therefore the desired limit exists.

Theorem 9.14 (Asymptotic forward limit). Fix γ ∈ ΛM . If all critical points
of SV of action less than SV(γ) are nondegenerate, then the solution u in theo-
rem 9.13 converges to one of them in C2(S1) as s→ ∞.

Proof. Observe that the solution u provided by theorem 9.13 is smooth on [δ,∞)
for each δ > 0. Now apply theorem 1.8 (F) to the shifted solution ũ(·) = u(·+δ)
which is smooth on [0,∞).
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9.1.4 Differentiable dependence on initial value

Theorem 9.15. Fix a perturbation V that satisfies (V0)–(V1). For any initial
loop γ ∈ ΛM consider the solution uγ : [0, T ] → U ⊂ X with uγ(0) = γ of the
Cauchy problem (128) provided by theorem 9.3. Then

ϕs : U ⊃ ΛM → U ⊂ X : γ 7→ uγ(s)

is a continuously differentiable map for each time s ∈ [0, T ].

Proof. It is known that the degree of smoothness of the map ϕs coincides
with the degree of smoothness of the perturbation f in (128); see e.g. [He81,
thm. 3.4.4]. Hence it remains to prove that f is of class C1 on U and this is the
content of lemma 9.16 below.

However, since [He81, thm. 3.4.4] is stated in a slightly different situation,
we briefly recall the main steps of the proof in our setting. Fix γ ∈ ΛM and
positive constants ρ and L such that the Lipschitz estimate (150) for f holds
on the closed ball Bρ(γ) ⊂ U ⊂ X of radius ρ about γ. Suppose T ∈ (0, 1] and
recall that the complete metric space Z is given by

Z = Zγ(T, ρ) :=
{
u ∈ C0([0, T ], X) : ‖u(s)− γ‖1,2 ≤ ρ for all s ∈ [0, T ]

}
.

By µ we denote the constant in (139) for p = 2 and set δ := ρ/6µ. Then

∥∥es∆(x− γ)
∥∥
1,2

≤
∥∥es∆(x− γ)

∥∥
2
+
∥∥es∆∂t(x− γ)

∥∥
2
≤ 2µ ‖x− γ‖1,2 ≤ ρ

3

for all s > 0 and x ∈ Bδ(γ) =: B. For x ∈ B and u ∈ Z define Ψxu by (129).
Then for every sufficiently small T > 0 the map

Ψ : B × Z → Z, (x, u) 7→ Ψxu

is a uniform contraction on Z, namely

‖Ψxu−Ψxv‖Z ≤ 1

2
‖u− v‖Z

for all x ∈ B and u, v ∈ Z. To see this choose x ∈ B and u ∈ Z. The main
point is to prove that Ψxu lies in Z. It follows as in the proof of theorem 9.3
that Ψxu = e·∆x+ F ∈ C0([0, T ], X) and (Ψxu) (0) = x. Now

‖(Ψxu) (s)− γ‖1,2 =

∥∥∥∥es∆x− γ +

∫ s

0

e(s−σ)∆f(u(σ)) dσ

∥∥∥∥
1,2

≤
∥∥es∆(x− γ)

∥∥
1,2

+
∥∥es∆γ − γ

∥∥
1,2

+ 4K1Cs
1/4

≤ ρ

3
+
ρ

3
+
ρ

3

for every s ∈ (0, T2]. See the proof of theorem 9.3 for the constants T2, K1, and
C and the last two of the three terms estimated in the final step. The estimate
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‖Ψxu−Ψxv‖Z ≤ 1
2 ‖u− v‖Z is independent of x and follows exactly as in the

proof of theorem 9.3 whenever T < (8CL)−4.
Next we prove that the uniform contraction Ψ of the ball Z ⊂ C0([0, T ], X)

of radius ρ about the constant in s map γ is continuously differentiable. To see
this observe first (see [He81, lemma 3.4.3]) that the map Z → C0([0, T ], Y ) :
u 7→ f ◦ u =: f̃ is of class C1, because f : U → Y = L1(S1,RN ) is of class C1

by lemma 9.16. Secondly, being linear and by (138) for p = 2 the map

C0([0, T ], Y ) → C0([0, T ], X), f̃ 7→
∫ ·

0

e(·−σ)∆f̃(σ) dσ

is smooth. Thirdly, again by linearity and by remark 9.6 (d) for k = 1 and q = 2
the map B → C0([0, T ], X) : x 7→ e·∆x is smooth. Since Ψ is equal to the sum
of map three with the composition of maps one and two, it follows that Ψ(x, u)
is smooth in x and of class C1 in u. Hence by [He81, sec. 1.2.6, second theorem]
the map B → Z which assigns to x the unique fixed point ux of Ψx : Z → Z is
of class C1. Observe that ux solves the Cauchy problem (128) with ux(0) = x
by lemma 9.11 and it is C∞ smooth on (0, T ] actually taking values in LM
and solving the heat equation (125) by theorem 9.12. Hence for s ∈ [0, T ] the
composition B → Z → U ⊂ X : x 7→ ux 7→ ux(s) is of class C1. For σ > T
compose this map with the smooth map ux(s) 7→ ux(σ) using that ux actually
extends smoothly to (0,∞) by theorem 9.13.

The following lemma is used in the proof of theorem 9.15.

Lemma 9.16. Fix a perturbation V that satisfies (V0)–(V1). Then the map

df = d(φ ◦ π) : X ⊃ U → L(X,Y )

is continuous. Here φ and π are given by (125) and (127), respectively.

Proof. Fix γ ∈ U and a sufficiently small constant ρ > 0 such that the ball
B := {z ∈ X : ‖z − γ‖1,2 ≤ ρ} is contained in U . Given x ∈ B we need to show
that

‖df(x)− df(y)‖L(X,Y ) := sup
‖ξ‖1,2≤1

‖df(x)ξ − df(y)ξ‖1 −→ 0

whenever y ∈ B converges to x in the W 1,2 topology. To prove this we will use
the constants κj and βj defined in the proof of lemma 9.10 for j = 1, 2 and set

κ3 := max
q∈U

∥∥d3 pr(q)
∥∥
L((RN )×3,Tpr(q)M)

, β3 := max
q∈M

∥∥d2P (q)
∥∥
L((TqM)×3,T⊥

q M)
.

Now choose x, y ∈ B, set v = y − x, and pick ξ ∈ TxX = W 1,2(S1,RN ). Fix
t ∈ S1 and set

h(v(t)) = P |pr(x(t)+v(t))

(
d pr|x(t)+v(t)(ẋ(t) + v̇(t)), d pr|x(t)+v(t)(ẋ(t) + v̇(t))

)

where ẋ = ∂tx. By abuse of notation, but for simplicity, we abbreviate from
now on the projection pr by π and the point x(t) by x and similarly for v and
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ξ. In addition, we set qτ = x(t) + τv(t). Since all maps involved are C1 and
take values in the ambient RN , there exists τ = τ(t) > 0 such that

|dh(0)ξ − dh(v)ξ| =
∣∣∣∣
d

dτ
dh(τv)ξ

∣∣∣∣

=

∣∣∣∣
d

dτ

d

dρ

∣∣∣
0
h(τv + ρξ)

∣∣∣∣

=

∣∣∣∣
d

dτ

d

dρ

∣∣∣
0
P |π(qτ+ρξ)

(
dπ|qτ+ρξ(ẋ+ τ v̇ + ρξ̇), dπ|qτ+ρξ(ẋ+ τ v̇ + ρξ̇)

)∣∣∣∣

=

∣∣∣∣
d

dτ
dP |π(qτ )

(
dπ|qτ ξ, dπ|qτ (ẋ+ τ v̇), dπ|qτ (ẋ+ τ v̇)

)

+ 2
d

dτ
P |π(qτ )

(
d2π|qτ (ξ, ẋ+ τ v̇) + dπ|qτ ξ̇, dπ|qτ (ẋ+ τ v̇)

)∣∣∣∣

=

∣∣∣∣d2P |π(qτ )
(
dπ|qτ v, dπ|qτ ξ, dπ|qτ (ẋ+ τ v̇), dπ|qτ (ẋ+ τ v̇)

)

+ dP |π(qτ )
(
d2π|qτ (v, ξ), dπ|qτ (ẋ+ τ v̇), dπ|qτ (ẋ+ τ v̇)

)

+ 2dP |π(qτ )
(
dπ|qτ ξ, d2π|qτ (v, ẋ+ τ v̇) + dπ|qτ v̇, dπ|qτ (ẋ+ τ v̇)

)

+ 2dP |π(qτ )
(
dπ|qτ v, d2π|qτ (ξ, ẋ+ τ v̇) + dπ|qτ ξ̇, dπ|qτ (ẋ+ τ v̇)

)

+ 2P |π(qτ )
(
d3π|qτ (v, ξ, ẋ+ τ v̇) + d2π|qτ (ξ, v̇) + d2π|qτ (v, ξ̇), dπ|qτ (ẋ+ τ v̇)

)

+ 2P |π(qτ )
(
d2π|qτ (ξ, ẋ+ τ v̇) + dπ|qτ ξ̇, d2π|qτ (v, ẋ+ τ v̇) + dπ|qτ v̇

)∣∣∣∣

≤ 2
(
κ31β3 + 5κ21κ2β2 + 2κ1κ3β1 + 2κ21β1

) (
|ẋ|2 + |v̇|2

)
|v| · |ξ|

+ 2κ31β2 (|ẋ|+ |v̇|) |v| · |ξ|+ 2κ21β1 |v̇| ·
∣∣∣ξ̇
∣∣∣

+ 2κ1
(
κ21β2 + 2κ2β1

)
(|ẋ|+ |v̇|) |v̇| · |ξ|

+ 4κ1κ2β1 (|ẋ|+ |v̇|) |v| ·
∣∣∣ξ̇
∣∣∣ .

Now integrate this pointwise inequality over t ∈ S1 to obtain that

‖dh(0)ξ − dh(v)ξ‖1 ≤ µ ‖v‖1,2 ‖ξ‖1,2 .

Here µ > 0 depends on the constants ρ, κj , βj , j = 1, 2, 3, the Sobolev con-
stant associated to the embedding W 1,2(S1) →֒ L∞(S1), and on ‖γ‖1,2. Recall
from (145) that

‖ẋ‖2 ≤ ‖γ‖1,2 + ρ, ‖v̇‖2 ≤ 2ρ.

We also used Hölder’s inequality ‖fg‖1 ≤ ‖f‖2‖g‖2. The estimate for the V
part follows similarly using axioms (V0)–(V3).
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9.2 Morse homology and singular homology

Let V : LM → R be a perturbation that satisfies (V0)–(V3). Assume a is a
regular value of SV : LM → R and SV is Morse–Smale below level a. Fix a
choice ν of orientations of the unstable manifolds of all x ∈ Pa(V). Our goal
in this section is to propose a strategy of how to prove theorem 1.14. In other
words, we aim to calculate singular homology of the sublevel set LaM in terms
of the Morse complex

CM(LaM,SV , ν) := (CMa
∗(V, ν), ∂(V, ν))

defined in section 8.2. Recall that its chain groups are generated by the critical
points x of SV : LaM → R, together with the information about the chosen
orientations, and the Morse boundary operator counts heat flow trajectories
between critical points of Morse index difference one with appropriate signs.
These signs are determined by the chosen orientations of the unstable manifolds.

A standard idea is to consider an intermediate chain complex which, on one
hand, is isomorphic to the Morse complex and, on the other hand, whose ho-
mology is known to represent singular homology. A well known candidate is the
cellular complex associated to a suitable filtration; see [M65] in the case of a
finite dimensional manifold. For a Banach manifold with a flow generated by
a C1 tangent vector field a suitable filtration has been constructed by Abbon-
dandolo and Majer in [AM06] where they also provide full details of the natural
isomorphism between Morse and singular homology. While our heat flow situa-
tion does not quite match the assumptions in [AM06] the structure of all proofs
still carries over. Concerning details it remains to replace some of their tools
with those provided in the present text.

To meet the assumptions in [AM06] we choose the Hilbert manifold ΛaM
of W 1,2 loops in M of action less or equal to a. Note that the L2 gradient
∇t∂t + gradV of SV is surely not a tangent vector field of ΛM as it is not even
defined everywhere. Increasing regularity of the loops by choosing W k,2 loops,
k ≥ 2, does not help either, because the L2 gradient looses regularity. (When
evaluated on any W k,2 loop the resulting vector field along that loop is only of
class W k−2,2, whereas W k,2 is required for tangent vector fields.) On the other
hand, the L2 gradient is a tangent vector field of LM , the set of smooth loops,
but LM is not a Banach manifold. However, we proved in section 9.1 that the
negative L2 gradient generates at least a C1 semiflow

ϕ : (0,∞)× ΛM → ΛM

which extends continuously to zero. In this case, while the large scale structure
of proof still carries over from the case of a genuine flow (see [AM06] and [M69,
S90] in finite dimensions) the arguments to prove major steps do not. In what
follows we recall the major steps to construct the desired natural isomorphism
and comment on how to prove them in our semiflow situation. From now on all
statements are with respect to the manifold ΛaM .
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Cellular filtration

The construction of a suitable cellular filtration requires a different idea than
the one in [AM06] to choose open neighborhoods of the critical points and let
them flow in forward time. In our case the union of these sets over positive time
would not be an open set. The problem is that the heat flow ϕt in general does
not map open sets to open sets. (Each W 1,2 loop becomes smooth after any
positive time.) However, the heat flow is continuous and therefore preimages of
open sets are open.

The idea is to generalize the notion of Conley index pair associated to a flow
invariant set S. Here S is simply a critical point. Assume for each critical point
x ∈ Pa(V) we have a pair of open subsets L ⊂ N of ΛaM such that x ∈ N \clL,
no other critical point is contained in the closure of N , and

γ ∈ L, ϕ[0,t](γ) ⊂ N ⇒ ϕt(γ) ∈ L,

γ ∈ N \ L ⇒ ∃t > 0 : ϕ[0,t](γ) ⊂ N.

The first condition says that L is positively invariant in N and the second
says that every flow line which leaves N goes through L first. Hence L is called
the exit set of N . Below we denote (N,L) by (Nx, Lx). We say a set is
positively invariant if it is invariant under the forward semiflow ϕ. Assume
further that

clNx ∩ (ϕt)
−1

(clNy) = ∅, ∀t > 0, (155)

for all pairs of critical points x 6= y with indV(x) ≤ indV(y). This condition
guarantees that the Morse index strictly decreases whenever there is a trajectory
fromNx toNy. The proof of the corresponding construction in [AM06, prop. 2.6]
uses the Morse–Smale and the Palais–Smale condition which are both satisfied
in our case.

If the Morse index of x is zero, it is natural to take a (strict) sublevel set
with respect to a value c + ε slightly larger than c = SV(x). Since x is a
nondegenerate local minimum, one can choose ε > 0 sufficiently small such that
the connected component containing x is positively invariant and contains no
other critical points. This connected component is Nx and we set Lx := ∅. For
T > 1 sufficiently large consider the open positively invariant set given by

F0 :=
⋃

x∈Pa(V )
indV (x)=0

(ϕT )
−1
Nx.

We tacitly intersect all sets with ΛaM .
Assume further that all points in the exit sets of the critical points of Morse

index one enter F0 in uniform time. By choosing T larger, if necessary, we
assume this time is T . Note that each individual such point enters F0 in finite
time by theorem 9.14. Now define

F1 := F0 ∪
⋃

x∈Pa(V )
indV (x)=1

(ϕT )
−1
Nx.
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This set is open by continuity of the forward flow and it is positively invariant,
because each point enters in finite time either the positively invariant set F0

or one of the sets Nx. Now the only way to leave Nx is through the exit set
Lx. But all these points end up after time T in F0. Let N = N(a) be the
maximal Morse index among the critical points below action level a. Then for
k = 1, . . . , N and by choosing T > 1 again larger if necessary define

Fk := Fk−1 ∪
⋃

x∈Pa(V )
indV (x)=k

(ϕT )
−1
Nx.

Set Fk = ∅ whenever k < 0 or k > N . Singular homology H∗ is understood to
have integer coefficients. The next steps are then to prove that

H∗(Λ
aM) ≃ H∗(FN )

and that
F := (Fk)k∈Z

is a cellular filtration of FN . By definition this means that F is a sequence
of subsets of the topological space FN such that

(i) Fk ⊂ Fk+1 for every k ∈ Z;

(ii) every singular simplex in FN is a simplex in Fk for some k;

(iii) relative singular homology Hℓ(Fk, Fk−1) vanishes whenever ℓ 6= k.

Whereas (i) is by construction of the Fk, condition (ii) follows since each Fk is
open. The main idea to prove (iii) is to write Fk as union of Fk−1 and a set

Uk :=
⋃

x∈Pa(V )
indV (x)=k

U(x)

where the open sets U(x) have the property that they are pairwise disjoint as a
consequence of (155) and the pair (U(x), U(x) ∩ Fk−1) is homotopy equivalent
to a k-dimensional disk modulo its boundary. Think of U(x) as the unstable
manifold of x suitably thickened. Then use excision to conclude that

H∗(Fk, Fk−1) ≃ H∗(Uk, Uk ∩ Fk−1)

≃
⊕

x∈Pa(V )
indV (x)=k

H∗(U(x), U(x) ∩ Fk−1).

This implies (iii). More precisely, it follows that

Hk(Fk, Fk−1) ≃
⊕

x∈Pa(V )
indV (x)=k

Zx.
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Cellular filtration and singular homology

The cellular complex CF :=
(
C∗F , ∂triple∗

)
consists of the chain groups

CkF :=

{
Hk(Fk, Fk−1) , k ∈ {0, 1, . . . , N},
{0} , otherwise,

and the boundary operator

∂triplek : CkF → Ck−1F

associated to the triple (Fk, Fk−1, Fk−2). More precisely, it is the composition

Hk(Fk, Fk−1) → Hk−1(Fk−1) → Hk−1(Fk−1, Fk−2)

of the boundary homomorphism of the pair (Fk, Fk−1) and the homomorphism
induced by inclusion. It is well known that the homology of the cellular complex
associated to a filtration of a topological space is naturally isomorphic to singular
homology of the space itself; see e.g. [D80, sec. V.1] or [M65]. This means that
the homology of the cellular complex CF is isomorphic to singular homology of
FN . Hence we obtain that

Hk

(
(C∗F , ∂triple∗ )

)
≃ Hk(FN ) ≃ Hk(Λ

aM), k ∈ Z.

Cellular filtration and Morse homology

The final step is to construct an isomorphism

Θk = Θk(V, v, a) : CMa
k(V, v) → CkF := Hk(Fk, Fk−1)

as in [AM06, thm. 2.8] which is induced by orientation preserving embeddings of
the canonically oriented closed unit ball Dk ⊂ R

k into the unstable manifolds of
the critical points of index k and prove that Θ commutes with the two boundary
operators. This concludes our sketch of proof of theorem 1.14. Full details will
be provided in a forthcoming paper.
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