Points on the Circle: from Pappus to Thurston

John Milnor

Work with Araceli Bonifant

Simons Center, Stony Brook University

MAY 9, 2018

With help from

Sam Grushevsky, Dusa McDuff, Dennis Sullivan

The Circle: $\widehat{\mathbb{R}} \cong \mathbb{P}^1(\mathbb{R})$

Our "circle" will be the real projective line, $\widehat{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$.

Projective (= fractional linear) transformations

3.

Geometrically: *Projecting from p , the point q on the blue line maps to the point r on the red line.*

Algebraically: A map from $\widehat{\mathbb{R}}$ to $\widehat{\mathbb{R}}$ is *fractional linear* if it has the form ax + b

$$x \mapsto \frac{dx+d}{cx+d}$$
 with $ad-bc \neq 0$.

Essential Property: The action of the group of fractional linear transformations on $\widehat{\mathbb{R}}$ is *three point simply transitive*.

Pappus of Alexandria (4th century).

Pappus defined a numerical invariant, computed from the distances between four points on a line; and proved that it is invariant under projective transformations.

Cross-Ratio: Four Points on the Projective Line. **Definition (non-standard):** For $a, b, c, d \in \mathbb{R}$, let

 $\operatorname{cr}(a, b, c, d) = \operatorname{cr} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \frac{(a-b)(c-d)}{(a-c)(b-d)} \in \widehat{\mathbb{R}}.$

5.

 $= \frac{\text{product of row differences}}{\text{product of column differences}}$

Restriction: At least 3 of the 4 variables must be distinct.

There is a unique continuous extension to the case $a, b, c, d \in \widehat{\mathbb{R}}$. Then:

 $cr(a, b, c, d) = 0 \iff a = b \text{ or } c = d,$

 $\operatorname{cr}(a,b,c,d) = \infty \iff a = c \text{ or } b = d,$

 $\operatorname{cr}(a, b, c, d) = 1 \iff a = d \text{ or } b = c,$

 $\mathbf{cr}(a, b, c, d) \in \widehat{\mathbb{R}} \setminus \{0, 1, \infty\} \iff a, b, c, d \text{ all distinct.}$ $\mathbf{cr}(1, \infty, 0, x) = x \text{ for all } x.$

Definition. The *moduli space* $\mathcal{M}_{0,n}(\mathbb{R}) = \mathcal{M}_n$ is the space of equivalence classes of ordered *n*-tuples (p_1, \dots, p_n) of distinct points of $\widehat{\mathbb{R}}$ modulo the action of the group of fractional linear transformations.

6.

Thus (p_1, \dots, p_n) and (q_1, \dots, q_n) represent the same point of \mathcal{M}_n if and only if there is a fractional linear transformation **g** such that $\mathbf{g}(p_j) = q_j$ for every j.

Embedding M_n into a product of many circles.

Easy Lemma. The *n*-tuples (p_1, \dots, p_n) and (q_1, \dots, q_n) represent the same point of \mathcal{M}_n if and only if:

 $\mathbf{cr}(p_h, p_i, p_j, p_k) = \mathbf{cr}(q_h, q_i, q_j, q_k)$

for every $1 \le h < i < j < k \le n$.

Thus we can embed \mathcal{M}_n into the $\binom{n}{4}$ -fold product of circles

$$\widehat{\mathbb{R}}^{\binom{n}{4}} = \prod_{0 \leq h < i < j < k \leq n} \widehat{\mathbb{R}} ,$$

sending the equivalence class of (p_1, \dots, p_n) into the $\binom{n}{4}$ -tuple of cross-ratios **cr** (p_h, p_i, p_j, p_k) , where

 $1 \leq h < i < j < k \leq n$

A Non-Standard Definition of $\overline{\mathcal{M}}_n$

Theorem (McDuff and Salamon). The closure $\overline{\mathcal{M}}_n$ of \mathcal{M}_n within the torus

$$\widehat{\mathbb{R}}^{\binom{n}{4}} = \prod_{0 \le h < i < j < k \le n} \widehat{\mathbb{R}}$$

is a smooth, compact, real-algebraic manifold of dimension n - 3.

Intuitive Proof that $\overline{\mathcal{M}}_n$ **is a real-algebraic set.** Since the p_j are all distinct, we can put p_1, p_2, p_3 at $1, \infty, 0$, so that

$$cr(p_1, p_2, p_3, p_k) = p_k$$
 for all k .

Thus p_4, p_5, \ldots, p_n are n-3 independent variables, and determine all of the $\binom{n}{4}$ coordinate cross-ratios. Clearing denominators, we get a set of $\binom{n}{4} - 3$ defining polynomial equations. The Simplest Cases n = 3, 4.

By definition, $\mathcal{M}_3 = \overline{\mathcal{M}}_3$ is a single point.

The subset $\mathcal{M}_4 \subset \mathbb{R}^{\binom{4}{4}} = \mathbb{R}$ is clearly just

$$\widehat{\mathbb{R}} \smallsetminus \{\mathbf{0}, \, \mathbf{1}, \, \infty\} \quad = \quad \mathbb{R} \smallsetminus \{\mathbf{0}, \, \mathbf{1}\}$$
 ;

and its closure within $\widehat{\mathbb{R}}$ is the entire circle: $\overline{\mathcal{M}}_4 \cong \widehat{\mathbb{R}}$.

We should think of $\overline{\mathcal{M}}_4$ as a cell complex with three vertices and three edges:

$\overline{\mathcal{M}}_5$ is a "hyperbolic dodecahedron",

covered by twelve right angled hyperbolic pentagons.

The interiors of the twelve pentagons are the twelve connected components of \mathcal{M}_5 .

Euclidean versus Hyperbolic Dodecahedra.

Both have isometry group of order 120: $\mathfrak{A}_5 \oplus (\mathbb{Z}/2)$; \mathfrak{S}_5 In both cases, each face has an "opposite" face:

In the hyperbolic case, $A \leftrightarrow B$, $j \leftrightarrow j + 5 \pmod{10}$.

Euler Characteristic:

 $\chi = 12 - 30 + 20 = 2$, $\chi = 12 - 30 + 15 = -3$.

Hyperbolic case $\implies \overline{\mathcal{M}}_5$ is non-orientable; with no fixed point free involution.

Why Twelve Pentagons in $\overline{\mathcal{M}}_5$?

Each top dimensional cell in M_n corresponds to one of the

$$\frac{(n-1)!}{2}$$

12.

different ways of arranging the labels $1,2,3,\ldots,n$ in cyclic order (up to orientation) around the circle.

Thus $\overline{\mathcal{M}}_5$ has 4!/2 = 12 two-cells. Within $\overline{\mathcal{M}}_5$ there are five different ways that two neighboring points can cross over each other to pass to a different face; hence five edges to each 2-cell.

The Embedding $\varphi_{\mathbf{I},\mathbf{J}}: \overline{\mathcal{M}}_{r+1} \times \overline{\mathcal{M}}_{s+1} \hookrightarrow \overline{\mathcal{M}}_n$. 13.

Let

$$\{1,\,2,\,\ldots,\,n\}\ = I\cup J$$

be a partition into a set **I** with $r \ge 2$ elements, and a disjoint set **J** with $s \ge 2$ elements, where r + s = n

The image of $\varphi_{I,J}$ is a union of codimension one faces;

and every codimension one face of $\overline{\mathcal{M}}_n$ is included in the image of $\varphi_{\mathbf{I},\mathbf{J}}$ for just one partition $\{\mathbf{I},\mathbf{J}\}$ of $\{1,2,\ldots,n\}$.

Iterating this construction.

Mumford Stability Condition:

Each circle must have at least three distinguished points.

Cross-ratios and the Image of $\varphi_{I,J}$. 15.

For each $\mathbf{x} \in \overline{\mathcal{M}}_n$ and each list of distinct numbers h, i, j, k in $\{1, 2, ..., n\}$, define the *limiting cross-ratio*

$$\mathsf{cr}_{h,\,i,\,j,\,k}(x) \in \widehat{\mathbb{R}}$$

to be the limit, for any sequence of points $\mathbf{x}^{\eta} \in \mathcal{M}_n$ converging to \mathbf{x} , of the cross-ratios $\mathbf{cr}(p_h^{\eta}, p_i^{\eta}, p_j^{\eta}, p_k^{\eta})$, where each $(p_1^{\eta}, \ldots, p_n^{\eta}) \in \mathbb{R}^n$ is a representative for the class $\mathbf{x}^{\eta} \in \mathcal{M}_n$.

Assertion. The point $\mathbf{x} \in \overline{\mathcal{M}}_n$ belongs to the image,

$$\mathbf{X} \in \varphi_{\mathbf{I},\mathbf{J}}(\overline{\mathcal{M}}_{r+1} \times \overline{\mathcal{M}}_{s+1}) \subset \overline{\mathcal{M}}_n,$$

if and only if

$$cr_{i,\,i',\,j,\,j'}(x) = 0$$

for every $i, i' \in I$ and every $j, j' \in J$.

Example: $\overline{\mathcal{M}}_5$.

The are $\binom{5}{2} = 10$ partitions of $\{1, 2, 3, 4, 5\}$ into subsets of order two and three. Hence there are ten embeddings

$$\overline{\mathcal{M}}_3 imes \overline{\mathcal{M}}_4 \cong \widehat{\mathbb{R}} \hookrightarrow \overline{\mathcal{M}}_5.$$

These correspond to ten closed geodesics, each made up of three edges.

Thus there are $10 \times 3 = 30$ edges in $\overline{\mathcal{M}}_5$.

Each of these geodesics also contains three vertices, Here each vertex is counted twice since it belongs to two different geodesics, so there are $10 \times 3/2 = 15$ vertices.

Thus verifying that $\chi = 12 - 30 + 15 = -3$.

Example: $\overline{\mathcal{M}}_6$

The are $\binom{6}{2} = 15$ partitions of $\{1, 2, 3, 4, 5, 6\}$ into subsets I, J of order two and four. Hence there are fifteen embeddings

$$\overline{\mathcal{M}}_3 imes \overline{\mathcal{M}}_5 \;\;\cong\;\; \overline{\mathcal{M}}_5 \;\;\hookrightarrow\;\; \overline{\mathcal{M}}_6$$
;

where each copy of $\overline{\mathcal{M}}_5$ is made up of twelve pentagons.

Similarly there are $\binom{6}{3}/2 = 10$ partitions into two subsets of order three, yielding ten embeddings of the torus

$$\overline{\mathcal{M}}_4\times\overline{\mathcal{M}}_4\quad\hookrightarrow\quad\overline{\mathcal{M}}_6\;.$$

Each copy of the torus is made up of $3 \times 3 = 9$ squares.

(Thus the 2-skeleton of $\overline{\mathcal{M}}_6$ consists of $15 \times 12 = 180$ pentagons, plus $10 \times 9 = 90$ squares.)

According to Thurston, every smooth closed 3-manifold can be cut along embedded 2-spheres, tori, and/or Klein bottles into pieces, each of which has a locally homogeneous geometry. Jaco-Shalen-Johannson Decomposition of $\overline{\mathcal{M}}_6$. 18.

Theorem. If we cut $\overline{\mathcal{M}}_6$ open along its ten embedded tori, then the remainder can be given the structure of a complete hyperbolic manifold of finite volume with twenty infinite cusps.

Corollary: The fundamental group $\pi_1(\overline{\mathcal{M}}_6)$ maps onto a free group on ten generators.

But $\pi_1(\overline{\mathcal{M}}_6)$ also contains free abelian groups $\mathbb{Z} \oplus \mathbb{Z}$.

(Take the union of two tetrahedra with a face in common, and chop off three of the corners.) We want 60 copies of this 3-cell to fit together to form a smooth manifold.

Thus we need all dihedral angles to be 90° !

Constructing a Model 3-Cell.

In Hyperbolic 3-Space, choose three orthogonal lines of length ℓ starting at the point A. Then their convex closure is a tetrahedron with dihedral angle 90° along three of the edges.

We need the dihedral angles along edges between B, C and D to be 45° . For ℓ finite, these angles are always $>~45^\circ$.

But as $\ell \to \infty$ these dihedral angles will tend to 45° . Two copies yield a model 3-cell; but only by collapsing the three squares to points, and pushing them out to the sphere at infinity.

Thus $\overline{\mathcal{M}}_6$ with the 10 tori (or 90 squares) removed is a hyperbolic manifold tiled by 120 ideal tetrahedra.

Concluding Remark: The Associahedron.

55 years ago Stasheff, while studying associativity for spaces with a continuous product operation, invented a sequence of objects A_n which we call **associahedra**.

The vertices of A_n correspond to the many ways of making sense of an *n*-fold non-associative product.

Theorem. Each top-dimensional cell of $\overline{\mathcal{M}}_n$ is isomorphic as a cell complex to A_{n-1} .

The top cells of $\overline{\mathcal{M}}_n$ are Associahedra: Proof Idea. 22.

Some References

1963.
1982.
1983.
1992.
2006.
2010.
2012.
2015.
1