Points on the Circle: from Pappus to Thurston

John Milnor
Work with Araceli Bonifant

Simons Center, Stony Brook University

MAY 9, 2018
With help from

Sam Grushevsky, Dusa McDuff, Dennis Sullivan

The Circle: $\quad \widehat{\mathbb{R}} \cong \mathbb{P}^{1}(\mathbb{R})$

Our "circle" will be the real projective line, $\widehat{\mathbb{R}}=\mathbb{R} \cup\{\infty\}$.

Projective (= fractional linear) transformations

Geometrically: Projecting from p, the point q on the blue line maps to the point r on the red line.
Algebraically: A map from $\widehat{\mathbb{R}}$ to $\widehat{\mathbb{R}}$ is fractional linear if it has the form

$$
x \mapsto \frac{a x+b}{c x+d} \quad \text { with } \quad a d-b c \neq 0
$$

Essential Property: The action of the group of fractional linear transformations on $\widehat{\mathbb{R}}$ is three point simply transitive.

Pappus of Alexandria (4th century).

Pappus defined a numerical invariant, computed from the distances between four points on a line; and proved that it is invariant under projective transformations.

Cross-Ratio: Four Points on the Projective Line.

Definition (non-standard): For $a, b, c, d \in \mathbb{R}$, let

$$
\begin{aligned}
& \mathbf{c r}(a, b, c, d)=\mathbf{c r}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\frac{(a-b)(c-d)}{(a-c)(b-d)} \in \widehat{\mathbb{R}} . \\
&= \text { product of row differences } \\
& \text { product of column differences }
\end{aligned}
$$

Restriction: At least 3 of the 4 variables must be distinct.
There is a unique continuous extension to the case $a, b, c, d \in \widehat{\mathbb{R}}$. Then:

$$
\begin{aligned}
\operatorname{cr}(a, b, c, d)=0 & \Longleftrightarrow a=b \text { or } c=d \\
\operatorname{cr}(a, b, c, d)=\infty & \Longleftrightarrow a=c \text { or } b=d \\
\operatorname{cr}(a, b, c, d)=1 & \Longleftrightarrow a=d \text { or } b=c
\end{aligned}
$$

$\operatorname{cr}(a, b, c, d) \in \widehat{\mathbb{R}} \backslash\{0,1, \infty\} \Longleftrightarrow a, b, c, d$ all distinct.

$$
\operatorname{cr}(1, \infty, 0, x)=x \quad \text { for all } x
$$

Many Points on $\widehat{\mathbb{R}}$.

Definition. The moduli space $\mathcal{M}_{0, n}(\mathbb{R})=\mathcal{M}_{n}$ is the space of equivalence classes of ordered n-tuples $\left(p_{1}, \cdots, p_{n}\right)$ of distinct points of $\widehat{\mathbb{R}}$ modulo the action of the group of fractional linear transformations.

Thus $\left(p_{1}, \cdots, p_{n}\right)$ and $\left(q_{1}, \cdots, q_{n}\right)$ represent the same point of \mathcal{M}_{n} if and only if there is a fractional linear transformation \mathbf{g} such that

$$
\mathbf{g}\left(p_{j}\right)=q_{j} \quad \text { for every } j
$$

Embedding \mathcal{M}_{n} into a product of many circles.

Easy Lemma. The n-tuples $\left(p_{1}, \cdots, p_{n}\right)$ and $\left(q_{1}, \cdots, q_{n}\right)$ represent the same point of $\mathcal{M}_{n} \quad$ if and only if:

$$
\operatorname{cr}\left(p_{h}, p_{i}, p_{j}, p_{k}\right)=\mathbf{c r}\left(q_{h}, q_{i}, q_{j}, q_{k}\right)
$$

$$
\text { for every } 1 \leq h<i<j<k \leq n .
$$

Thus we can embed \mathcal{M}_{n} into the $\binom{n}{4}$-fold product of circles

$$
\widehat{\mathbb{R}}^{\binom{n}{4}}=\prod_{0 \leq n<i<j<k \leq n} \widehat{\mathbb{R}},
$$

sending the equivalence class of $\left(p_{1}, \cdots, p_{n}\right)$ into the $\binom{n}{4}$-tuple of cross-ratios $\operatorname{cr}\left(p_{h}, p_{i}, p_{j}, p_{k}\right)$, where

$$
1 \leq h<i<j<k \leq n .
$$

A Non-Standard Definition of $\overline{\mathcal{M}}_{n}$

Theorem (McDuff and Salamon). The closure $\overline{\mathcal{M}}_{n}$ of \mathcal{M}_{n} within the torus

$$
\widehat{\mathbb{R}}\binom{n}{4}=\prod_{0 \leq h<i<j<k \leq n} \widehat{\mathbb{R}}
$$

is a smooth, compact, real-algebraic manifold of dimension $n-3$.

Intuitive Proof that $\overline{\mathcal{M}}_{n}$ is a real-algebraic set. Since the p_{j} are all distinct, we can put p_{1}, p_{2}, p_{3} at $1, \infty, 0$, so that

$$
\mathbf{c r}\left(p_{1}, p_{2}, p_{3}, p_{k}\right)=p_{k} \quad \text { for all } k
$$

Thus $p_{4}, p_{5}, \ldots, p_{n}$ are $n-3$ independent variables, and determine all of the $\binom{n}{4}$ coordinate cross-ratios. Clearing denominators, we get a set of $\binom{n}{4}-3$ defining polynomial equations.

The Simplest Cases $n=3,4$.

By definition, $\mathcal{M}_{3}=\overline{\mathcal{M}}_{3}$ is a single point.
The subset $\quad \mathcal{M}_{4} \subset \mathbb{R}^{\binom{4}{4}}=\mathbb{R} \quad$ is clearly just

$$
\widehat{\mathbb{R}} \backslash\{0,1, \infty\} \quad=\mathbb{R} \backslash\{0,1\} ;
$$

and its closure within $\widehat{\mathbb{R}}$ is the entire circle: $\overline{\mathcal{M}}_{4} \cong \widehat{\mathbb{R}}$.
We should think of $\overline{\mathcal{M}}_{4}$ as a cell complex with three vertices and three edges:

covered by twelve right angled hyperbolic pentagons.

The interiors of the twelve pentagons are the twelve connected components of \mathcal{M}_{5}.

Euclidean versus Hyperbolic Dodecahedra.

Both have isometry group of order 120:

$$
\mathfrak{A}_{5} \oplus(\mathbb{Z} / 2) ;
$$

\mathfrak{S}_{5}
In both cases, each face has an "opposite" face:
In the hyperbolic case, $\quad A \leftrightarrow B, \quad j \longleftrightarrow j+5(\bmod 10)$.
Euler Characteristic:

$$
\chi=12-30+20=2, \quad \chi=12-30+15=-3 .
$$

Hyperbolic case $\Longrightarrow \overline{\mathcal{M}}_{5}$ is non-orientable; with no fixed point free involution.

Why Twelve Pentagons in $\overline{\mathcal{M}}_{5}$?

Each top dimensional cell in \mathcal{M}_{n} corresponds to one of the

$$
\frac{(n-1)!}{2}
$$

different ways of arranging the labels $1,2,3, \ldots, n$ in cyclic order (up to orientation) around the circle.

$$
\text { Thus } \overline{\mathcal{M}}_{5} \text { has } 4!/ 2=12 \text { two-cells. }
$$

Within $\overline{\mathcal{M}}_{5}$ there are five different ways that two neighboring points can cross over each other to pass to a different face; hence five edges to each 2-cell.

The Embedding $\quad \varphi_{\mathrm{I}, \mathrm{J}}: \overline{\mathcal{M}}_{r+1} \times \overline{\mathcal{M}}_{s+1} \hookrightarrow \overline{\mathcal{M}}_{n}$.

Let

$$
\{1,2, \ldots, n\}=\mathbf{I} \cup \mathbf{J}
$$

be a partition into a set I with $r \geq 2$ elements, and a disjoint set \mathbf{J} with $s \geq 2$ elements, where $r+s=n$

The image of $\varphi_{\mathrm{I}, \mathrm{J}}$ is a union of codimension one faces;
and every codimension one face of $\overline{\mathcal{M}}_{n}$ is included in the image of $\varphi_{\mathrm{I}, \mathrm{J}}$ for just one partition $\{\mathbf{I}, \mathbf{J}\}$ of $\{1,2, \ldots, n\}$.

Iterating this construction.

Mumford Stability Condition:
Each circle must have at least three distinguished points.

Cross-ratios and the Image of $\varphi_{\mathrm{I}, \mathrm{J}}$.

For each $\mathbf{x} \in \overline{\mathcal{M}}_{n}$ and each list of distinct numbers h, i, j, k in $\{1,2, \ldots, n\}$, define the limiting cross-ratio

$$
\mathbf{c r}_{h, i, j, k}(x) \in \widehat{\mathbb{R}}
$$

to be the limit, for any sequence of points $\mathbf{x}^{\eta} \in \mathcal{M}_{n}$ converging to \mathbf{x}, of the cross-ratios $\mathbf{c r}\left(p_{h}^{\eta}, p_{i}^{\eta}, p_{j}^{\eta}, p_{k}^{\eta}\right)$,
where each $\left(p_{1}^{\eta}, \ldots, p_{n}^{\eta}\right) \in \widehat{\mathbb{R}}^{n}$ is a representative for the class $\mathbf{x}^{\eta} \in \mathcal{M}_{n}$.

Assertion. The point $\mathbf{x} \in \overline{\mathcal{M}}_{n}$ belongs to the image,

$$
\mathbf{x} \in \varphi_{\mathbf{I}, \mathbf{J}}\left(\overline{\mathcal{M}}_{r+1} \times \overline{\mathcal{M}}_{s+1}\right) \subset \overline{\mathcal{M}}_{n}
$$

if and only if

$$
\mathbf{c r}_{i, i^{\prime}, j, j^{\prime}}(\mathbf{x})=0
$$

for every $i, i^{\prime} \in \mathbf{I}$ and every $j, j^{\prime} \in \mathbf{J}$.

Example: $\overline{\mathcal{M}}_{5}$.

The are $\binom{5}{2}=10$ partitions of $\{1,2,3,4,5\}$ into subsets of order two and three. Hence there are ten embeddings

$$
\overline{\mathcal{M}}_{3} \times \overline{\mathcal{M}}_{4} \cong \widehat{\mathbb{R}} \hookrightarrow \overline{\mathcal{M}}_{5}
$$

These correspond to ten closed geodesics, each made up of three edges.

Thus there are $10 \times 3=30$ edges in $\overline{\mathcal{M}}_{5}$.
Each of these geodesics also contains three vertices, Here each vertex is counted twice since it belongs to two different geodesics, so there are $10 \times 3 / 2=15$ vertices.

Thus verifying that $\chi=12-30+15=-3$.

Example: $\overline{\mathcal{M}}_{6}$

The are $\binom{6}{2}=15$ partitions of $\{1,2,3,4,5,6\}$ into subsets I, J of order two and four. Hence there are fifteen embeddings

$$
\overline{\mathcal{M}}_{3} \times \overline{\mathcal{M}}_{5} \cong \overline{\mathcal{M}}_{5} \quad \hookrightarrow \quad \overline{\mathcal{M}}_{6}
$$

where each copy of $\overline{\mathcal{M}}_{5}$ is made up of twelve pentagons.
Similarly there are $\binom{6}{3} / 2=10$ partitions into two subsets of order three, yielding ten embeddings of the torus

$$
\overline{\mathcal{M}}_{4} \times \overline{\mathcal{M}}_{4} \quad \hookrightarrow \quad \overline{\mathcal{M}}_{6} .
$$

Each copy of the torus is made up of $3 \times 3=9$ squares.
(Thus the 2-skeleton of $\overline{\mathcal{M}}_{6}$ consists of
$15 \times 12=180$ pentagons, plus $10 \times 9=90$ squares.)
=================================
According to Thurston, every smooth closed 3-manifold can be cut along embedded 2 -spheres, tori, and/or Klein bottles into pieces, each of which has a locally homogeneous geometry.

Jaco-Shalen-Johannson Decomposition of $\overline{\mathcal{M}}_{6}$.

Theorem. If we cut $\overline{\mathcal{M}}_{6}$ open along its ten embedded tori, then the remainder can be given the structure of a complete hyperbolic manifold of finite volume with twenty infinite cusps.

Corollary: The fundamental group $\pi_{1}\left(\overline{\mathcal{M}}_{6}\right)$ maps onto a free group on ten generators.
But $\pi_{1}\left(\overline{\mathcal{M}}_{6}\right)$ also contains free abelian groups $\mathbb{Z} \oplus \mathbb{Z}$.

Proof Outline.

Each of the 603 -cells in $\overline{\mathcal{M}}_{6}$ is bounded by 6 pentagons \& 3 squares.

(Take the union of two tetrahedra with a face in common, and chop off three of the corners.) We want 60 copies of this 3 -cell to fit together to form a smooth manifold.

Thus we need all dihedral angles to be 90° !

Constructing a Model 3-Cell.

In Hyperbolic 3-Space, choose three orthogonal lines of length
ℓ starting at the point A. Then their convex closure is a tetrahedron with dihedral angle 90° along three of the edges.
We need the dihedral angles along edges between B, C and D to be 45°. For ℓ finite, these angles are always $>45^{\circ}$.

But as $\ell \rightarrow \infty$ these dihedral angles will tend to 45°.
Two copies yield a model 3-cell; but only by collapsing the three squares to points, and pushing them out to the sphere at infinity.

Thus $\overline{\mathcal{M}}_{6}$ with the 10 tori (or 90 squares) removed is a hyperbolic manifold tiled by 120 ideal tetrahedra.

Concluding Remark: The Associahedron.

55 years ago Stasheff, while studying associativity for spaces with a continuous product operation, invented a sequence of objects A_{n} which we call associahedra.

The vertices of A_{n} correspond to the many ways of making sense of an n-fold non-associative product.

Theorem. Each top-dimensional cell of $\overline{\mathcal{M}}_{n}$ is isomorphic as a cell complex to A_{n-1}.

The top cells of $\overline{\mathcal{M}}_{n}$ are Associahedra: Proof Idea. 22.

Some References

The associahedron:
J. Stasheff, Homotopy associativity ... , 1963.

Thurston geometrization conjecture:
W. Thurston, 3-dimensional manifolds, Kleinian groups .., 1982.

Construction and smoothness of $\overline{\mathcal{M}}_{n}(\mathbb{C})$:
F. Knudsen, Projectivity of the moduli space \cdots, 1983.

Topology of $\overline{\mathcal{M}}_{n}(\mathbb{C})$:
S. Keel, Intersection theory of Moduli space ..., 1992.

Proof of Thurston's conjecture:
B. Kleiner and J. Lott, Notes on Perelman ... , 2006.

Topology of $\overline{\mathcal{M}}_{n}(\mathbb{R})$:
P. Etingof, A. Henriques, J. Kamnitzer, E.Rains,

The cohomology ring of the real locus \cdots,
2010.

Construction of $\overline{\mathcal{M}}_{n}(\mathbb{C})$ using cross-ratios:
D. McDuff and D. Salamon, "J-holomorphic curves ... (Appendix D),"2012.

From phylogenetic trees to origami folding and more:
S. Devadoss and J. Morava, Navigation in tree spaces, 2015.

