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The Circle: R̂ ∼= P1(R) 2.
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Our “circle” will be the real projective line, R̂ = R ∪ {∞} .



Projective (= fractional linear) transformations 3.
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Geometrically: Projecting from p , the point q on the
blue line maps to the point r on the red line.

Algebraically: A map from R̂ to R̂ is fractional linear if it has
the form

x 7→ a x + b
c x + d

with ad − bc 6= 0 .

Essential Property: The action of the group of fractional linear
transformations on R̂ is three point simply transitive.



Pappus of Alexandria (4th century). 4.
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Pappus defined a numerical invariant, computed from the
distances between four points on a line;
and proved that it is invariant under projective transformations.



Cross-Ratio: Four Points on the Projective Line. 5.

Definition (non-standard): For a, b, c, d ∈ R , let

cr(a, b, c, d) = cr
(

a b
c d

)
=

(a− b)(c − d)
(a− c)(b − d)

∈ R̂ .

=
product of row differences

product of column differences

Restriction: At least 3 of the 4 variables must be distinct.

There is a unique continuous extension to the case
a,b, c,d ∈ R̂ . Then:

cr(a,b, c,d) = 0 ⇐⇒ a = b or c = d ,
cr(a,b, c,d) =∞ ⇐⇒ a = c or b = d ,
cr(a,b, c,d) = 1 ⇐⇒ a = d or b = c,

cr(a,b, c,d) ∈ R̂r{0,1,∞} ⇐⇒ a,b, c,d all distinct.
cr(1, ∞, 0, x) = x for all x .



Many Points on R̂ . 6.
1

2
6

3

4

7
5

Definition. The moduli space M0,n(R) =Mn is the space of
equivalence classes of ordered n -tuples (p1, · · · , pn) of
distinct points of R̂ modulo the action of the group of fractional
linear transformations.

Thus (p1, · · · , pn) and (q1, · · · , qn) represent the
same point of Mn if and only if there is a fractional
linear transformation g such that

g(pj) = qj for every j .



Embedding Mn into a product of many circles. 7.

Easy Lemma. The n -tuples (p1, · · · , pn) and
(q1, · · · , qn) represent the same point of Mn if and
only if:

cr(ph, pi , pj , pk ) = cr(qh, qi , qj , qk )

for every 1 ≤ h < i < j < k ≤ n .

Thus we can embed Mn into the
(n

4

)
-fold product of circles

R̂(
n
4) =

∏
0≤h<i<j<k≤n

R̂ ,

sending the equivalence class of (p1, · · · , pn) into the(n
4

)
-tuple of cross-ratios cr(ph, pi , pj , pk ) , where

1 ≤ h < i < j < k ≤ n .



A Non-Standard Definition of Mn 8.

Theorem (McDuff and Salamon) . The closure Mn
of Mn within the torus

R̂(
n
4) =

∏
0≤h<i<j<k≤n

R̂

is a smooth, compact, real-algebraic manifold
of dimension n − 3 .

Intuitive Proof that Mn is a real-algebraic set.
Since the pj are all distinct, we can put p1, p2, p3
at 1, ∞, 0 , so that

cr(p1, p2, p3, pk ) = pk for all k .

Thus p4, p5, . . . , pn are n − 3 independent variables,
and determine all of the

(n
4

)
coordinate cross-ratios.

Clearing denominators, we get a set of
(n

4

)
− 3 defining

polynomial equations.



The Simplest Cases n = 3, 4. 9.

By definition, M3 =M3 is a single point.

The subset M4 ⊂ R(
4
4) = R is clearly just

R̂r{0, 1, ∞} = Rr{0, 1} ;

and its closure within R̂ is the entire circle: M4
∼= R̂ .

We should think of M4 as a cell complex with three vertices
and three edges:

0

1

∞



M5 is a “hyperbolic dodecahedron”, 10.

covered by twelve right angled hyperbolic pentagons.
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The interiors of the twelve pentagons
are the twelve connected components of M5 .



Euclidean versus Hyperbolic Dodecahedra. 11.
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Both have isometry group of order 120:
A5 ⊕ (Z/2) ; S5

In both cases, each face has an “opposite” face:

In the hyperbolic case, A↔ B , j ←→ j + 5 (mod 10) .

Euler Characteristic:
χ = 12− 30 + 20 = 2 , χ = 12− 30 + 15 = −3 .

Hyperbolic case =⇒ M5 is non-orientable;
with no fixed point free involution.



Why Twelve Pentagons in M5 ? 12.
Each top dimensional cell in Mn corresponds to one of the

(n − 1)!
2

different ways of arranging the labels 1,2,3, . . . ,n in cyclic
order (up to orientation) around the circle.

Thus M5 has 4!/2 = 12 two-cells.
Within M5 there are five different ways that two neighboring
points can cross over each other to pass to a different face;
hence five edges to each 2-cell.
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The Embedding ϕ I,J :Mr+1 ×Ms+1 ↪→ Mn . 13.

Let
{1, 2, . . . , n} = I ∪ J

be a partition into a set I with r ≥ 2 elements,
and a disjoint set J with s ≥ 2 elements, where r + s = n

labeled by points of  I

labeled by
points of  J

The image of ϕ I,J is a union
of codimension one faces;

and every codimension
one face of Mn is included

in the image of ϕ I,J
for just one partition {I, J}

of {1,2, . . . ,n} .



Iterating this construction. 14.

Mumford Stability Condition:

Each circle must have at least three distinguished points.



Cross-ratios and the Image of ϕI,J . 15.

For each x ∈Mn and each list of distinct numbers h, i , j , k in
{1,2, . . . ,n} , define the limiting cross-ratio

crh, i, j, k (x) ∈ R̂

to be the limit, for any sequence of points xη ∈Mn converging
to x , of the cross-ratios cr(pηh, pηi , pηj , pηk ) ,

where each (pη1, . . . , pηn) ∈ R̂n is a representative for the class
xη ∈Mn .

Assertion. The point x ∈Mn belongs to the image,

x ∈ ϕI,J(Mr+1 ×Ms+1) ⊂ Mn ,

if and only if
cri, i ′, j, j ′(x) = 0

for every i , i ′ ∈ I and every j , j ′ ∈ J .



Example: M5 . 16.

The are
(5

2

)
= 10 partitions of {1,2,3,4,5} into subsets of

order two and three. Hence there are ten embeddings

M3 ×M4
∼= R̂ ↪→ M5 .

These correspond to ten closed geodesics, each made up of
three edges.

Thus there are 10× 3 = 30 edges in M5 .

Each of these geodesics also contains three vertices, Here
each vertex is counted twice since it belongs to two different
geodesics, so there are 10× 3/2 = 15 vertices.

Thus verifying that χ = 12− 30 + 15 = −3 .



Example: M6 17.

The are
(6

2

)
= 15 partitions of {1,2,3,4,5,6} into subsets I, J

of order two and four. Hence there are fifteen embeddings

M3 ×M5 ∼= M5 ↪→ M6 ;

where each copy of M5 is made up of twelve pentagons.

Similarly there are
(6

3

)
/2 = 10 partitions into two subsets of

order three, yielding ten embeddings of the torus

M4 ×M4 ↪→ M6 .

Each copy of the torus is made up of 3× 3 = 9 squares.

(Thus the 2-skeleton of M6 consists of
15× 12 = 180 pentagons, plus 10× 9 = 90 squares.)

=================================
According to Thurston, every smooth closed 3-manifold can be
cut along embedded 2-spheres, tori, and/or Klein bottles into
pieces, each of which has a locally homogeneous geometry.



Jaco-Shalen-Johannson Decomposition of M6 . 18.

Theorem. If we cut M6 open along its ten embedded tori, then
the remainder can be given the structure of a complete
hyperbolic manifold of finite volume with twenty infinite cusps.

Corollary: The
fundamental group π1(M6)
maps onto a free group on
ten generators.
But π1(M6) also contains
free abelian groups Z⊕ Z .



Proof Outline. 19.
Each of the 60 3-cells
in M6 is bounded by 6
pentagons & 3 squares.

(Take the union of two tetrahedra with a face
in common, and chop off three of the corners.)

We want 60 copies of this 3-cell to fit
together to form a smooth manifold.

Thus we need all dihedral angles to be 90◦ !



Constructing a Model 3-Cell. 20.
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In Hyperbolic 3-Space, choose three orthogonal lines of length
` starting at the point A. Then their convex closure is a
tetrahedron with dihedral angle 90◦ along three of the edges.

We need the dihedral angles along edges between B, C and D
to be 45◦ . For ` finite, these angles are always > 45◦ .

But as `→∞ these dihedral angles will tend to 45◦ .
Two copies yield a model 3-cell; but only by collapsing the three
squares to points, and pushing them out to the sphere at infinity.

Thus M6 with the 10 tori (or 90 squares ) removed is
a hyperbolic manifold tiled by 120 ideal tetrahedra.



Concluding Remark: The Associahedron. 21.

55 years ago Stasheff, while studying associativity for spaces
with a continuous product operation, invented a sequence of
objects An which we call associahedra.

(ab)c a(bc)
a b c

(ab)(cd)

((ab)c)d

(a(bc))da((bc)d)

a(b(cd))
(ab)cd

(abc)d

a(bc)d

a(bcd)

ab(cd)

a b c d

A3 A4

The vertices of An correspond to the many ways of making
sense of an n -fold non-associative product.

Theorem. Each top-dimensional cell of Mn is
isomorphic as a cell complex to An−1 .



The top cells of Mn are Associahedra: Proof Idea. 22.
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