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Two Points of View 1.

Any real rational map f can be studied in two different ways:

As a piecewise monotone map from the circle P1(R) to itself,
f can be studied by very elementary methods.

But f always extends to a rational map fC from the Riemann
sphere P1(C) to itself, so that all of the tools of holomorphic
dynamics are also available.

This talk will study the very special case of

Real Quadratic Maps, with Real Critical Points.



The Moduli Space M = V/G 2.

Let V be the smooth manifold consisting of all real quadratic
maps

f (x) =
ax2 + bx + c

a′x2 + b′x + c′

with real critical points. Let G be the group of orientation
preserving fractional linear transformations

L(x) =
αx + β

γx + δ
with αδ − βγ > 0,

acting on V by conjugation f 7→ L ◦ f ◦ L−1.

Then we can form the quotient space M = V/G.



Assertion: M is a Topological Cylinder 3.

This is a picture of part of the universal covering space of M .

The white regions correspond to maps such that both critical
orbits converge to strongly attracting orbits of low period;

while the black points correspond to maps for which at least one
critical orbit does not converge to an attracting periodic orbit.



Canonical Normal Form 4.

Main Lemma. Every map in V is conjugate under G to a
unique map which satisfies three conditions:
(1): f has the form

f (x) =
A x2 + B
C x2 + D

,

(Proof: Put the critical points at zero and infinity.)
(2): AD − BC > 0,

(Conjugate by L(x) = −1/x if necessary.)

(3): A2 + C2 = B2 + D2.
(Conjugate by L(x) = k x . The required
equation is satisfied for one and only one k > 0 .)

The resulting map f is then uniquely determined!
(But A,B,C,D are only unique up to multiplication
by a common non-zero constant.)



The Invariant Interval f (R̂). 5.
If we think of f as a map from the circle R̂ = R ∪ {∞} to itself,
then:

The image f (R̂) is a closed interval
bounded by the two critical values.

Evidently all of the interesting dynamics
is concentrated in this interval.

Theorem 1. For any closed interval I contained in the
circle R̂ there is one and only one map f in canonical
form for which f (R̂) = I .

Thus the moduli space M is homeomorphic
to the set of all intervals I ⊂ R̂.



Proof: (Identifying R̂ with R/Z ) 6.

For any map f (x) =
A x2 + B
C x2 + D

, the two critical values are

v0 = f (0) = B/D and v∞ = f (∞) = A/C .

If we normalize the four coefficients A,B,C,D so that
A2 + C2 = B2 + D2 = 1 , then we can set

A = sin(πt∞), C = cos(πt∞); B = sin(πt0), D = cos(πt0) .

Thus v∞ = tan(πt∞) and v0 = tan(πt0).

By definition, t∞ and t0 are the critical value angles.

More generally, any angle t ∈ R/Z corresponds to a
unique point tan(πt) ∈ R̂.



Theorem 2. M is diffeomophic to R/2Z× (0,1). 7.

Proof. We have two distinct critical value angles

t∞, t0 ∈ R/Z ,

Lift to points t̂∞, t̂0 ∈ R so that t̂0 < t̂∞ < t̂0 + 1 .
Then the corresponding point of M is uniquely determined by
the two numbers

Σ = t̂∞ + t̂0 (mod 2Z) , and ∆ = t̂∞ − t̂0 ∈ (0,1) .

Here ∆ is precisely the length of
the interval f (R̂), lifted to R/Z.



Two Pictures of M. 8.
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Red Lines: Polynomials (with critical fixed point).
Blue lines: “co-polynomials”. (One critical point maps to the
other.)



The Six Regions in Moduli Space 9.
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More about M . 10.

imaginary shift locus

real  shift locus
Per1(1)

Per1(-1)

connectedness locus

0-1 1

Chebyshev curve: with f (critical value) = fixed point with µ > 1 .



The Shift Locus 11.

Every complex quadratic rational map either:
(1) belongs to the connectedness locus ,

⇔ connected Julia set, or
(2) belongs to the shift locus ,

⇔ totally disconnected Julia set.
For our real maps f , there is a further distinction:

real shift locus
⇔ J(fC) ⊂ R̂,

imaginary shift locus
⇔ J(fC) ∩ R̂ = ∅.



Critically Finite Maps and Hyperbolic Components 12.

Critically finite maps fall into three types:
Hyperbolic.
(A quadratic map is hyperbolic if both critical orbits
converge to attracting periodic orbits.)

Half-Hyperbolic if only one critical orbit converges to
an attracting periodic orbit.

Totally Non-Hyperbolic if no critical orbit converges
to an attracting periodic orbit.

Every hyperbolic and critically finite f is the center point of a
hyperbolic component in the connectedness locus.

But if f is totally non-hyberbolic then J(fC) is the
entire Riemann sphere.



Combinatorics by Example: The Wittner Map 13.

With combinatorics: (5, 6, 4, 1, 0 2, 3).

Theorem: Any critically finite point in M
is uniquely determined by its combinatorics.

[movie]



Bones 14.

By definition, a bone in M is a maximal smooth curve on
which one of the two critical points is periodic.
In the unimodal region:

Theorem of Filom + Yan Gao:
Each bone in the unimodal
region is a smooth curve from
polynomial to co-polynomial;

and each locus of constant
topological entropy is con-
nected.



Maps with Constant |Slope|. 15.
Misiurewicz showed that a map with constant
|slope| = s > 1 has topological entropy h = log(s).

Here s = (
√

5 + 1)/2.
Theorem. To every critically finite co-polynomial there
corresponds a critically finite polynomial.
(Conversely to almost every critically finite polynomial there
corresponds a critically finite co-polynomial.)



The Filom-Pilgrim family of maps. 16.

Given 0 < p/q < 1 consider the combinatorics
(m0,m1, · · · ,mq−1) with mk ≡ k + p (mod q) .
Here is the PL model
for p/q = 2/5.
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Since the longest edge maps onto the entire interval, we get

s4 − s3 − s2 − s − 1 = 0 .
Thus the topological entropy log(sq) depends only on q.



Theorem (Filom and Pilgrim). 17.

In the +−+ region, loci of constant topological entropy
can have arbitrarily many connected components.
Step 1: Each hyperbolic component H(p/q) contains a curve
leading from the center point to the ideal point
(Σ, ∆) = (−.5, 1).
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3/7 shift locus

Furthermore these curves depend monitonically on p/q.



From Ideal Point to Ideal Point: 18.

For each q ≥ 3 there is a curve Cq of constant entropy log(sq)
which extends from the left ideal point (−.5,1) through f1/q to
the right and ideal point (+.5,1) . (Compare Slide 14.)

U3
U4

U5

+ − + − +
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The curves Cq divide the square region −.5 ≤ Σ ≤ .5 into
disjoint connected open sets U3, U4, U5, · · · .

If q > n(n − 1) is prime, there is a p so that fp/q ∈ Un.



The Complex Julia Sets 19.
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Key Lemma. As f tends to the ideal point (−.5, 1) within the
hyperbolic component H(p/q) , the multiplier of the fixed
point of fC in the upper half plane tends to e2πi p/q.



Proof that |µ1| → 1. 20.

If we are given two of the fixed point multipliers for a quadratic
rational map, then the third is given by

µ3 =
2− µ1 − µ2

1− µ1µ2
.

Now suppose that µ1 = r ei θ and µ2 = r e−i θ . Then

µ3 =
2− 2 r cos(θ)

1− r2 .

If the map has real critical points then we must have r ≥ 1 .

If µ3 → −∞ , it follows easily that r → 1. �



Blowing Up the Ideal Point 21.
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This is a hypothetical picture of what we would get if we replace
the ideal point (−.5, 1) by an entire vertical interval of angles
0 ≤ θ ≤ 1/2.

This completes the outlined proof of non-monotonicity.

For further details see Filom and Pilgrim’s paper.



Examples of the Thurston Pullback Map. 22.
Wittner ((5,6,1,0,2,3)) Filom-Pilgrim 3/7 : ((3,4,5,6,0,1,2))

Weakly Obstructed ((3,4,3,2,1,0)) Str. Obstructed ((3,5,4,0,1,2))

Str. Obstructed ((2,3,4,6,4,0,1)) Exceptional ((1,3,4,3,1,0))
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