Real Quadratic Rational Maps

John Milnor

with Araceli Bonifant and Scott Sutherland

Advancing Bridges in Complex Dynamics CIRM, Luminy September 2021 Any real rational map f can be studied in two different ways:

1.

As a piecewise monotone map from the circle $\mathbb{P}^1(\mathbb{R})$ to itself, *f* can be studied by very elementary methods.

But *f* always extends to a rational map $f_{\mathbb{C}}$ from the Riemann sphere $\mathbb{P}^1(\mathbb{C})$ to itself, so that all of the tools of holomorphic dynamics are also available.

This talk will study the very special case of

Real Quadratic Maps, with Real Critical Points.

The Moduli Space M = V/G

Let V be the smooth manifold consisting of all real quadratic maps

$$f(x) = \frac{ax^2 + bx + c}{a'x^2 + b'x + c'}$$

with real critical points. Let *G* be the group of orientation preserving fractional linear transformations

$$L(\mathbf{x}) = \frac{\alpha \mathbf{x} + \beta}{\gamma \mathbf{x} + \delta}$$
 with $\alpha \delta - \beta \gamma > \mathbf{0}$,

acting on V by conjugation $f \mapsto L \circ f \circ L^{-1}$.

Then we can form the quotient space M = V/G.

Assertion: *M* is a Topological Cylinder

This is a picture of part of the universal covering space of M.

The white regions correspond to maps such that both critical orbits converge to strongly attracting orbits of low period;

while the black points correspond to maps for which at least one critical orbit does not converge to an attracting periodic orbit.

Canonical Normal Form

Main Lemma. Every map in V is conjugate under G to a unique map which satisfies three conditions:

(1): f has the form

$$f(x) = \frac{Ax^2+B}{Cx^2+D},$$

(Proof: Put the critical points at zero and infinity.)

(2):
$$AD - BC > 0$$
,
(Conjugate by $L(x) = -1/x$ if necessary.)
(3): $A^2 + C^2 = B^2 + D^2$.
(Conjugate by $L(x) = kx$. The required
equation is satisfied for one and only one $k > 0$.)

The resulting map *f* is then uniquely determined! (But A, B, C, D are only unique up to multiplication by a common non-zero constant.) The Invariant Interval $f(\widehat{\mathbb{R}})$.

If we think of f as a map from the circle $\widehat{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$ to itself, then:

5.

The image $f(\widehat{\mathbb{R}})$ is a closed interval bounded by the two critical values.

Evidently all of the interesting dynamics is concentrated in this interval.

Theorem 1. For any closed interval \mathcal{I} contained in the circle $\hat{\mathbb{R}}$ there is one and only one map f in canonical form for which $f(\hat{\mathbb{R}}) = \mathcal{I}$.

Thus the moduli space M is homeomorphic to the set of all intervals $\mathcal{I} \subset \widehat{\mathbb{R}}$.

Proof: (Identifying $\widehat{\mathbb{R}}$ with \mathbb{R}/\mathbb{Z})

For any map $f(x) = \frac{Ax^2 + B}{Cx^2 + D}$, the two critical values are

 $v_0 = f(0) = B/D$ and $v_\infty = f(\infty) = A/C$.

If we normalize the four coefficients A, B, C, D so that $A^2 + C^2 = B^2 + D^2 = 1$, then we can set

 $A = \sin(\pi t_{\infty}), \ C = \cos(\pi t_{\infty}); \ B = \sin(\pi t_0), \ D = \cos(\pi t_0).$

Thus $v_{\infty} = \tan(\pi t_{\infty})$ and $v_0 = \tan(\pi t_0)$.

By definition, t_{∞} and t_0 are the **critical value angles**.

More generally, any angle $t \in \mathbb{R}/\mathbb{Z}$ corresponds to a unique point $tan(\pi t) \in \widehat{\mathbb{R}}$.

Theorem 2. *M* is diffeomophic to $\mathbb{R}/2\mathbb{Z} \times (0, 1)$. 7.

Proof. We have two distinct critical value angles

 $t_{\infty}, t_0 \in \mathbb{R}/\mathbb{Z},$

Lift to points \hat{t}_{∞} , $\hat{t}_0 \in \mathbb{R}$ so that $\hat{t}_0 < \hat{t}_{\infty} < \hat{t}_0 + 1$. Then the corresponding point of M is uniquely determined by the two numbers

 $\Sigma = \widehat{t}_{\infty} + \widehat{t}_0 \pmod{2\mathbb{Z}}, \text{ and } \Delta = \widehat{t}_{\infty} - \widehat{t}_0 \in (0, 1).$

Here Δ is precisely the length of the interval $f(\widehat{\mathbb{R}})$, lifted to \mathbb{R}/\mathbb{Z} .

Two Pictures of M.

Red Lines: Polynomials (with critical fixed point). Blue lines: "co-polynomials". (One critical point maps to the other.)

The Six Regions in Moduli Space

More about M.

Chebyshev curve: with $f(\text{critical value}) = \text{fixed point with } \mu > 1$.

The Shift Locus

Every complex quadratic rational map either: (1) belongs to the connectedness locus, \Leftrightarrow connected Julia set, or (2) belongs to the shift locus, \Leftrightarrow totally disconnected Julia set. For our real maps *f*, there is a further distinction:

real shift locus $\Leftrightarrow J(f_{\mathbb{C}}) \subset \widehat{\mathbb{R}},$

imaginary shift locus $\Leftrightarrow J(f_{\mathbb{C}}) \cap \widehat{\mathbb{R}} = \emptyset.$

Critically Finite Maps and Hyperbolic Components 12.

Critically finite maps fall into three types:

Hyperbolic.

(A quadratic map is **hyperbolic** if both critical orbits converge to attracting periodic orbits.)

Half-Hyperbolic *if only one critical orbit converges to an attracting periodic orbit.*

Totally Non-Hyperbolic *if no critical orbit converges to an attracting periodic orbit.*

Every hyperbolic and critically finite f is the center point of a **hyperbolic component** in the connectedness locus.

But if f is totally non-hyberbolic then $J(f_{\mathbb{C}})$ is the entire Riemann sphere.

Theorem: Any critically finite point in *M* is uniquely determined by its combinatorics.

[movie]

Bones

By definition, a **bone** in *M* is a maximal smooth curve on which one of the two critical points is periodic. In the unimodal region:

Theorem of Filom + Yan Gao: Each bone in the unimodal region is a smooth curve from polynomial to co-polynomial;

and each locus of constant topological entropy is connected.

Maps with Constant |Slope|. 15. Misiurewicz showed that a map with constant |slope| = s > 1 has topological entropy h = log(s).

Here
$$s = (\sqrt{5} + 1)/2$$
.

Theorem. To every critically finite co-polynomial there corresponds a critically finite polynomial.

(Conversely to <u>almost</u> every critically finite polynomial there corresponds a critically finite co-polynomial.)

The Filom-Pilgrim family of maps.

Given 0 < p/q < 1 consider the combinatorics $(m_0, m_1, \dots, m_{q-1})$ with $m_k \equiv k + p \pmod{q}$. Here is the PL model for p/q = 2/5.

Thus the topological entropy $\log(s_q)$ depends only on q.

16.

Theorem (Filom and Pilgrim). 17.

In the +-+ region, loci of constant topological entropy can have arbitrarily many connected components.

Step 1: Each hyperbolic component H(p/q) contains a curve leading from the center point to the ideal point

 $(\Sigma,\ \Delta)=(-.5,\ 1).$

Furthermore these curves depend monitonically on p/q.

From Ideal Point to Ideal Point: 18.

For each $q \ge 3$ there is a curve C_q of constant entropy $\log(s_q)$ which extends from the left ideal point (-.5, 1) through $f_{1/q}$ to the right and ideal point (+.5, 1). (Compare Slide 14.)

The curves C_q divide the square region $-.5 \le \Sigma \le .5$ into disjoint connected open sets U_3 , U_4 , U_5 , \cdots . If q > n(n-1) is prime, there is a p so that $f_{p/q} \in U_n$.

The Complex Julia Sets

Key Lemma. As *f* tends to the ideal point (-.5, 1) within the hyperbolic component H(p/q), the multiplier of the fixed point of f_c in the upper half plane tends to $e^{2\pi i p/q}$.

Proof that $|\mu_1| \rightarrow 1$.

If we are given two of the fixed point multipliers for a quadratic rational map, then the third is given by

$$\mu_3 = \frac{2 - \mu_1 - \mu_2}{1 - \mu_1 \mu_2}$$

Now suppose that $\mu_1 = r e^{i\theta}$ and $\mu_2 = r e^{-i\theta}$. Then

$$\mu_3 = \frac{2-2r\cos(\theta)}{1-r^2} \, .$$

If the map has real critical points then we must have $r \ge 1$.

If $\mu_3 \to -\infty$, it follows easily that $r \to 1$. \Box

Blowing Up the Ideal Point

This is a hypothetical picture of what we would get if we replace the ideal point (-.5, 1) by an entire vertical interval of angles $0 \le \theta \le 1/2$.

This completes the outlined proof of non-monotonicity.

For further details see Filom and Pilgrim's paper.

Examples of the Thurston Pullback Map. 22. Wittner ((5, 6, 1, 0, 2, 3)) Filom-Pilgrim 3/7 : ((3, 4, 5, 6, 0, 1, 2))

Weakly Obstructed ((3, 4, 3, 2, 1, 0)) Str. Obstructed ((3, 5, 4, 0, 1, 2))

Str. Obstructed ((2, 3, 4, 6, 4, 0, 1))

Exceptional ((1,3,4,3,1,0))

References

- Milnor, Geometry and Dynamics of Quadratic Rational Maps, WITH AN APPENDIX BY THE AUTHOR AND TAN LEI. Experiment. Math. 2 (1) 37 - 83, 1993. (Also in: "Collected Papers of John Milnor VI: Dynamical Systems (1953-2000), Amer. Math. Soc. (2012) 371 – 438 ".)
- Filom and Pilgrim, On the Non-Monotonicity of Entropy for a Class of Real Quadratic Rational Maps. Journal of Modern Dynamics 16, 225–254, 2020.
- Yan Gao, Monotonicity of entropy for unimodal real quadratic rational maps. arXiv:2009.03797
- Bonifant, Milnor and Sutherland, The W. Thurston Algorithm for Real Quadratic Rational Maps arXiv:2009.10147 [math.DS] In preparation:

A more detailed manuscript, plus an interactive web site.