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Outline: Two Examples. 2.

The object of this talk will be to describe two examples of
smooth group actions on smooth manifolds.
Easier Example (Divisors on P1 ):

The group G(P1) = PGL2(C) of Möbius auto-
morphisms of the Riemann sphere P1 acts on the
space Dn of effective divisors of degree n on P1 ,
with quotient space Dn/G(P1) .

Much Harder Example (Curves in P2 ):
The group G(P2) = PGL3(C) of projective
automorphisms of the complex projective plane P2 ,
acts on the projective compactification Cn of the
space of algebraic curves of degree n in P2 ,
with quotient space Cn/G(P2) .

In both cases, some parts of the quotient space are beautiful
objects to study, but other parts are rather nasty.

Basic Problem: Which parts are which?



A Toy Example 3.

The additive group G of
real numbers acts on R2 by

gt (x , y) = (et x , e−ty) .

Most orbits are smooth curves;
but the origin is a single point
orbit.

If we remove the origin, then the quotient space(
R2r{(0,0)}

)
/G

is locally a smooth manifold.
But it is only locally Hausdorff.



Part 1. The Space Dn of Degree n Divisors on P1. 4.
Definition: An effective divisor D of degree n on the
Riemann sphere P1 = P1(C) is a formal sum

D = m1〈p1〉+ · · ·+ mk 〈pk 〉 ,
where the mj > 0 are integers with

∑
j mj = n ,

and the pj are distinct points of P1 .
Each such D can be identified with the set of zeros, counted
with multiplicity, for some non-zero homogeneous polynomial

Φ(x , y) = c0xn + c1xn−1y + · · · + cnyn .

It follows that the space Dn of all such divisors is isomorphic to
the projective space Pn(C) .

The group G = G(P1) of Möbius automorphisms of P1 acts on Dn .

Two integer invariants under the action of G :
• The number of points k = #|D| in the support

|D| = {p1, . . . , pk} ⊂ P1 .
• The maximum mmax = max{m1, . . . , mk} of the
multiplicities of the various points of |D| .



Finite Stabilizers 5.

Definition. The stabilizer GD of a divisor D is the subgroup
of G consisting of all g ∈ G with g(D) = D .

Lemma. The stabilizer GD is finite if and only if the
support |D| ⊂ P1 contains at least three elements.

Proof. For any D there is a natural homomorphism
GD → S|D| , where S|D| is the symmetric group
consisting of all permutations of the finite set |D| .
If #|D| ≥ 3 , since any Möbius transformation which fixes
three distinct points must be the identity, it follows that
GD maps isomorphically onto a subgroup of S|D| .

Now suppose that #|D| ≤ 2 . After a Möbius transformation,
we may assume that |D| ⊂ {0, ∞} . (Here I am identifying the
Riemann sphere with C ∪ {∞} .) The group GD then contains
infinitely many transformations of the form

gκ(z) = κ z with κ 6= 0 . �



The Moduli Space for Divisors. 6.

Let D fstab
n be the open subset of Dn consisting of all divisors

with finite stabilizer (⇐⇒ all divisors with #|D| ≥ 3 ).

Definition. The quotient Mn = D fstab
n /G will be called the

moduli space for divisors, under the action of G .

Proposition 1. This quotient space Mn is a
T1 -space, that is:

Every point of Mn is a closed subset,
⇐⇒ Every G -orbit ((D)) = {g(D) ; g ∈ G}

in D fstab
n is closed as a subset of D fstab

n .

In other words, every D′ ∈ Dn which belongs to the topological
boundary ((D))r((D)) must have infinite stabilizer.

To prove Proposition 1, we must study elements of G
which are “close to infinity” in G .



Distortion Lemma for Möbius Transformations. 7.
Using the spherical metric on P1 , let Nε(p) be the open
ε -neighborhood of p .

Lemma. For any ε > 0
there is a large compact set

K = Kε ⊂ G
with the following property:
For any g 6∈ K ,
there are ( not necessarily
distinct ) points p and q
such that

g(Nε(p)) ∪ Nε(q) = P1 .

g

N
ε
(p)

N
ε
(q)

Thus points outside of Nε(p) map inside Nε(q) .
(Proof Outline. The proof for the group of diagonal
transformations d(x : y) = (κ x : y) is easy. But any g ∈ G
can be written as a product g = r ◦ d ◦ r′ where r and r′ are
rotations of the Riemann sphere and d is diagonal. . . . )



Proof of Proposition 1: Points of Mn are closed. 8.

To prove: Every G -orbit ((D)) ⊂ D fstab
n is closed

as a subset of D fstab
n .

Choose ε small enough so that any two points of |D| have
distance > 2 ε from each other.

=⇒ No ε -ball contains more than one point of |D| .
Given any g 6∈ Kε , choose p and q as in
the Distortion Lemma. It follows that:
all but possibly one of the points of g

(
|D|
)

lie in Nε(q) .

g

N
ε
(p)

N
ε
(q)

Now suppose that we are given a
sequence of points gj(D) ∈ ((D))
converging to D′ ∈ Dn .
Case 1. If all gj ∈ K ⊂ G , then

D′ ∈ ((D)) .
Case 2. If gj ∈ Kεj with εj → 0 ,
then |D′| has at most two points,
so D′ 6∈ D fstab

n .



The Cases n ≤ 4 are very special. 9.

M3 is a single point.

M4
∼= P1 is a 2-sphere.

Proof Outline: Four distinct points in P1 determine a 2-fold
branched covering which is an elliptic curve; characterized by
the classical invariant j(C) ∈ C . Thus the open subset
corresponding to divisors with four distinct points is canonically
isomorphic to C .
But there is one other G -orbit

((2〈p〉+ 〈q〉+ 〈r〉)) ⊂ D fstab
4

consisting of divisors with only three distinct points.

It follows easily that M4 is homeomorphic
to the one point compactification C ∪ {∞} ∼= P1 .



Higher Degrees. 10.

Theorem. For n ≥ 5 , Mn has a unique maximal
open subset MHaus

n which is Hausdorff.

Here MHaus
n is the set of all images π(D) ∈Mn

where D is a divisor with maximum multiplicity
mmax < n/2
(where π : D fstab

n →Mn denotes the projection map).

MHaus
n is compact if n is odd;

but non-compact if n is even.

MHaus
n is an orbifold of complex dimension n − 3 .

Points of Mn outside of MHaus
n

are not even locally Hausdorff.



Partial Proof Outline. 11.

Definition. The action of a Lie group G on a space X is
proper if, for every x , y ∈ X , there are neighborhoods U and
V so that the set of group elements with g(U) ∩ V 6= ∅ has
compact closure within G .

Standard Theorem. The quotient X/G of a Hausdorff space
under a proper action is a Hausdorff space.

Using the Distortion Theorem, one can show that the action of
G(P1) on the space of divisors with mmax < n/2 is proper.



Non Locally Hausdorff Points for n > 4 12.

To fix ideas, let n = 5 . Consider two divisors of the form
D = D2 + 3〈∞〉 and D′ = D3 + 2〈∞〉

in D5 , where
D2 = 〈p〉+ 〈q〉 and D3 = 〈p′〉+ 〈q′〉+ 〈r′〉 .

Let gκ(z) = κ2/z , with κ� 1 ;
so that |z| < κ ⇐⇒ |gκ(z)| > κ .

Then the two divisors D2 + gκ(D3) and D3 + gκ(D2)
belong to the same G -orbit.

As κ→∞ , the first converges to D
and the second converges to D′ .

Thus every neighborhood of π(D) ∈M5
intersects every neighborhood of π(D′) .

Since D′ can be arbitrarily close to D , this proves that
M5 is not locally Hausdorff at the point π(D) .



Part 2. Curves in the Projective Plane. 13.
Definition. An effective 1-cycle of degree n ≥ 1 on the
complex projective plane P2 is a formal sum

C = m1 · C1 + · · · + mk · Ck ,

where each Cj is an irreducible complex curve, where the
mj ≥ 1 are integers, and where n =

∑
j mj deg(Cj) .

The space Cn of all effective 1-cycles can be given the
structure of a complex projective space of dimension
n(n + 3)/2 . (In fact each non-zero homogeneous polynomial
Φ(x , y , z) of degree n has a zero locus consisting of irreducible
curves Cj , each counted with some multiplicity mj ≥ 1 ;
yielding a 1-cycle.)
The group G = G(P2) = PGL3(C) of all automorphisms of P2

acts on P2 and hence on the space Cn .
The stabilizer GC of C ∈ Cn is just the group consisting of
all projective automorphisms which map C to itself.

This stabilizer GC may be either finite or infinite.



W-curves (and cycles). 14.
Curves with infinite stabilizer were first studied by Felix Klein
and Sophus Lie, who called them W-curves.

Some examples:

Let Wn ⊂ Cn be the algebraic set consisting of all cycles with
infinite stabilizer. (Wn is a union of finitely many maximal
irreducible subvarieties of Cn , of varying dimension.)

Note: C has finite stabilizer if and only if
the G -orbit ((C)) ⊂ Cn has dimension 8.

In fact dim ((C)) + dim(GC) = dim(G) = 8 ,
where dim(GC) = 0 ⇐⇒ GC is finite.



The Moduli Space Mn . 15.

The complement C fstab
n = CnrWn is the open set consisting

of all cycles with finite stabilizer.

Definition. The quotient space Mn = C fstab
n /G , will be called

the moduli space for plane cycles of degree n .

Examples. M1 = M2 = ∅ .
The moduli space M3 for cubic curves in P2 is canonically
isomorphic to the moduli space M4 for divisors in P1 .
Each has two “ramified points” corresponding to points with
extra symmetry (= larger stabilizer). Each also has one
“improper point” where the group action is not proper.

Thus M3
∼= C ∪ {∞} ∼= P1 .



Mn is a T1 -space. 16.

Cartoon of Cn , showing
a typical G -orbit in red: Wn

((C))

Cn

Theorem. The topological boundary of any G -orbit in Cn is
contained in the closed subset Wn .

[Ghizzetti 1936; Aluffi and Faber 2010.]
=⇒ Every G -orbit of cycles with finite stabilizer is closed

as a subset of C fstab
n .

=⇒ Every point in Mn is a closed set.



The Distortion Lemma for P2 . 17.
Lemma. Given ε > 0 there exists a compact set
Kε ⊂ G(P2) with the following property.

For any g 6∈ Kε there exists either:

L

p

g

(1) a point p ∈ P2 and
a line L ⊂ P2 such that

g
(
Nε(p)

)
∪ Nε(L) = P2

(so that g maps every point
outside of Nε(p) into Nε(L) ),

Ĺ

q
g

or (2) a line L′ ⊂ P2 and
a point q ∈ P2 such that

g
(
Nε(L)

)
∪ Nε(q) = P2

(so that g maps every point
outside of Nε(L′) into Nε(q) ).



The Genus Invariant of a Singularity. 18.
Let p be a singular point of a
complex curve C ⊂ P2 . Let Nε be
a small round ball centered at p .
If C′ is a smooth curve which
closely approximates C , then

Sp = C′ ∩ Nε

is a compact connected Riemann-
surface-with-boundary.
Its genus g(Sp) will be called the
genus of the singularity p ∈ C .

C

p
Sp

Examples: For a cusp singularity xp = yq the genus is
(p − 1)(q − 1)/2 .

If C is locally the union of k smooth
branches Bj , then the genus is
−1 +

∑
i<j Bi · Bj .



Two Properties of the Genus. 19.
Monotonicity. Suppose that

S = S1 ∪ · · · ∪ Sk ⊂ S ′ ,

where the Sj are disjoint compact Riemann-surfaces-with-
boundary, and S ′ is another compact Riemann surface,
possibly with boundary. Then

g(S) :=
∑

g(Sj) ≤ g(S) .

Scissors and Paste. Suppose that k disjoint embedded
curves cut the closed Riemann surface S into ` subspaces
with boundary Sj . Then

g(S) = k + 1− ` +
∑

g(Sj) .

(This follows from the Euler characteristic identity

χ(S) =
∑

χ(Sj) .)



A Hypothesis which implies Proper Action. 20.

For any line L ⊂ P2 and any specified curve C we can form the
intersection SL = C′ ∩ Nε(L) , where ε is small and C′ is a very
close generic approximation to C .

Lemma. If
g
(
C′rSp

)
> g(SL)

for every p ∈ |C| and every L ⊂ P2 ,
then the action of G is locally proper at C .

L

p

g



Scissors and Paste. 21.

Let S∗p = C′rSp . Then

Sp ∪ S∗p = C′ , Sp ∩ S∗p =
(
union of k circles

)
.

Therefore

g(Sp) + g(S∗p) + k − `+ 1 = g(C′) =

(
n − 1

2

)
.

Here ` ≥ 2 is the number of components of Sp plus the
number of components of S∗p .
Define the augmented genus of Sp to be

g+(Sp) = g(Sp) + k − 1 .
Together the the Lemma, this formula yields:

Theorem. If g+(Sp) + g(SL) < g(C′) for every
p ∈ C and every L ⊂ P2 ,
then the action of G is locally proper at C .



Sample Corollary. 22.

Let Un ⊂ Cn be the open set consisting of curves with no
singularities other than simple double points and cubic cusps.

Corollary. If n ≥ 4 then the action of G(P2) is
locally proper throughout Un .

In fact the action is proper throughout UN , so the quotient
space Un/G(P2) ⊂Mn is a Hausdorff space.
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