Two Moduli Spaces

John Milnor

Work with Araceli Bonifant

Stony Brook University

Instituto de Matemáticas UNAM, 75 Years DECEMBER 4, 2017

Outline: Two Examples.

The object of this talk will be to describe two examples of smooth group actions on smooth manifolds.

Easier Example (Divisors on \mathbb{P}^1):

The group $G(\mathbb{P}^1) = \operatorname{PGL}_2(\mathbb{C})$ of Möbius automorphisms of the Riemann sphere \mathbb{P}^1 acts on the space \mathfrak{D}_n of effective divisors of degree n on \mathbb{P}^1 , with quotient space $\mathfrak{D}_n/G(\mathbb{P}^1)$.

Much Harder Example (Curves in \mathbb{P}^2):

The group $G(\mathbb{P}^2) = PGL_3(\mathbb{C})$ of projective automorphisms of the complex projective plane \mathbb{P}^2 , acts on the projective compactification \mathfrak{C}_n of the space of algebraic curves of degree n in \mathbb{P}^2 , with quotient space $\mathfrak{C}_n/G(\mathbb{P}^2)$.

In both cases, some parts of the quotient space are beautiful objects to study, but other parts are rather nasty.

Basic Problem: Which parts are which?

A Toy Example

The additive group *G* of real numbers acts on \mathbb{R}^2 by $\mathbf{g}_t(x, y) = (e^t x, e^{-t} y).$

Most orbits are smooth curves; but the origin is a single point orbit.

If we remove the origin, then the quotient space $\left(\mathbb{R}^2 \smallsetminus \{(0,0)\}\right)/G$

is locally a smooth manifold.

But it is only locally Hausdorff.

Part 1. The Space \mathfrak{D}_n of Degree *n* Divisors on \mathbb{P}^1 . 4. Definition: An *effective divisor* \mathcal{D} of degree *n* on the Riemann sphere $\mathbb{P}^1 = \mathbb{P}^1(\mathbb{C})$ is a formal sum $\mathcal{D} = m_1 \langle \mathbf{p}_1 \rangle + \dots + m_k \langle \mathbf{p}_k \rangle$, where the $m_j > 0$ are integers with $\sum_j m_j = n$, and the \mathbf{p}_j are distinct points of \mathbb{P}^1 . Each such \mathcal{D} can be identified with the set of zeros, counted with multiplicity, for some non-zero homogeneous polynomial $\Phi(x, y) = c_0 x^n + c_1 x^{n-1} y + \dots + c_n y^n$.

It follows that the space \mathfrak{D}_n of all such divisors is isomorphic to the projective space $\mathbb{P}^n(\mathbb{C})$.

The group $G = G(\mathbb{P}^1)$ of Möbius automorphisms of \mathbb{P}^1 acts on \mathfrak{D}_n .

Two integer invariants under the action of G:

• The number of points $k = \#|\mathcal{D}|$ in the **support**

 $|\mathcal{D}| = \{\mathbf{p}_1, \ldots, \mathbf{p}_k\} \subset \mathbb{P}^1$.

• The maximum $m_{max} = max\{m_1, ..., m_k\}$ of the multiplicities of the various points of $|\mathcal{D}|$.

Finite Stabilizers

Definition. The *stabilizer* $G_{\mathcal{D}}$ of a divisor \mathcal{D} is the subgroup of G consisting of all $g \in G$ with $g(\mathcal{D}) = \mathcal{D}$.

Lemma. The stabilizer $G_{\mathcal{D}}$ is finite if and only if the support $|\mathcal{D}| \subset \mathbb{P}^1$ contains at least three elements.

Proof. For any \mathcal{D} there is a natural homomorphism $G_{\mathcal{D}} \to \mathscr{S}_{|\mathcal{D}|}$, where $\mathscr{S}_{|\mathcal{D}|}$ is the symmetric group consisting of all permutations of the finite set $|\mathcal{D}|$. If $\#|\mathcal{D}| \ge 3$, since any Möbius transformation which fixes three distinct points must be the identity, it follows that $G_{\mathcal{D}}$ maps isomorphically onto a subgroup of $\mathscr{S}_{|\mathcal{D}|}$.

Now suppose that $\#|\mathcal{D}| \leq 2$. After a Möbius transformation, we may assume that $|\mathcal{D}| \subset \{0, \infty\}$. (Here I am identifying the Riemann sphere with $\mathbb{C} \cup \{\infty\}$.) The group $G_{\mathcal{D}}$ then contains infinitely many transformations of the form

 $\mathbf{g}_{\kappa}(z) = \kappa z \quad \text{with} \quad \kappa \neq \mathbf{0} \; . \quad \Box$

The Moduli Space for Divisors.

Let $\mathfrak{D}_n^{\text{fstab}}$ be the open subset of \mathfrak{D}_n consisting of all divisors with finite stabilizer (\iff all divisors with $\#|\mathcal{D}| \ge 3$).

Definition. The quotient $\mathfrak{M}_n = \mathfrak{D}_n^{\text{fstab}}/G$ will be called the *moduli space* for divisors, under the action of *G*.

Proposition 1. This quotient space \mathfrak{M}_n is a T_1 -space, that is: Every point of \mathfrak{M}_n is a closed subset, \iff Every G-orbit $((\mathcal{D})) = \{\mathbf{g}(\mathcal{D}) ; \mathbf{g} \in G\}$ in $\mathfrak{D}_n^{\text{fstab}}$ is closed as a subset of $\mathfrak{D}_n^{\text{fstab}}$.

In other words, every $\mathcal{D}' \in \mathfrak{D}_n$ which belongs to the topological boundary $\overline{((\mathcal{D}))} \setminus ((\mathcal{D}))$ must have infinite stabilizer.

To prove Proposition 1, we must study elements of G which are "close to infinity" in G.

Distortion Lemma for Möbius Transformations.

Using the spherical metric on \mathbb{P}^1 , let $N_{\varepsilon}(\mathbf{p})$ be the open ε -neighborhood of \mathbf{p} .

Lemma. For any $\varepsilon > 0$ there is a large compact set

$$K = K_{\varepsilon} \subset G$$

with the following property: For any $\mathbf{g} \notin K$, there are (not necessarily distinct) points \mathbf{p} and \mathbf{q} such that

 $\mathbf{g}(N_{\varepsilon}(\mathbf{p})) \cup N_{\varepsilon}(\mathbf{q}) = \mathbb{P}^1$.

7.

Thus points outside of $N\varepsilon(\mathbf{p})$ map inside $N_{\varepsilon}(\mathbf{q})$. (Proof Outline. The proof for the group of diagonal transformations $\mathbf{d}(x : y) = (\kappa x : y)$ is easy. But any $\mathbf{g} \in G$ can be written as a product $\mathbf{g} = \mathbf{r} \circ \mathbf{d} \circ \mathbf{r}'$ where \mathbf{r} and \mathbf{r}' are rotations of the Riemann sphere and \mathbf{d} is diagonal....) Proof of Proposition 1: Points of \mathfrak{M}_n are closed. **To prove:** Every *G*-orbit $((\mathcal{D})) \subset \mathfrak{D}_n^{\text{fstab}}$ is closed as a subset of $\mathfrak{D}_n^{\text{fstab}}$.

Choose ε small enough so that any two points of $|\mathcal{D}|$ have distance $> 2\varepsilon$ from each other.

⇒ No ε -ball contains more than one point of $|\mathcal{D}|$. Given any $\mathbf{g} \notin K_{\varepsilon}$, choose \mathbf{p} and \mathbf{q} as in the Distortion Lemma. It follows that:

all but possibly one of the points of $g(|\mathcal{D}|)$ lie in $N_{\varepsilon}(q)$.

Now suppose that we are given a sequence of points $\mathbf{g}_j(\mathcal{D}) \in ((\mathcal{D}))$ converging to $\mathcal{D}' \in \mathfrak{D}_n$. **Case 1.** If all $\mathbf{g}_j \in K \subset G$, then $\mathcal{D}' \in ((\mathcal{D}))$. **Case 2.** If $\mathbf{g}_j \in K_{\varepsilon_j}$ with $\varepsilon_j \to 0$, then $|\mathcal{D}'|$ has at most two points, so $\mathcal{D}' \notin \mathfrak{D}_n^{\text{fstab}}$. The Cases $n \le 4$ are very special. \mathfrak{M}_3 is a single point. $\mathfrak{M}_4 \cong \mathbb{P}^1$ is a 2-sphere.

Proof Outline: Four distinct points in \mathbb{P}^1 determine a 2-fold branched covering which is an elliptic curve; characterized by the classical invariant $j(\mathcal{C}) \in \mathbb{C}$. Thus the open subset corresponding to divisors with four distinct points is canonically isomorphic to \mathbb{C} .

But there is one other G-orbit

 $(\!(2\langle \mathbf{p} \rangle + \langle \mathbf{q} \rangle + \langle \mathbf{r} \rangle)\!) \ \subset \ \mathfrak{D}_4^{fstab}$

consisting of divisors with only three distinct points.

It follows easily that \mathfrak{M}_4 is homeomorphic to the one point compactification $\mathbb{C}\cup\{\infty\}\cong\mathbb{P}^1$.

Higher Degrees.

Theorem. For $n \ge 5$, \mathfrak{M}_n has a unique maximal open subset $\mathfrak{M}_n^{\text{Haus}}$ which is Hausdorff.

Here $\mathfrak{M}_n^{\text{Haus}}$ is the set of all images $\pi(\mathcal{D}) \in \mathfrak{M}_n$ where \mathcal{D} is a divisor with maximum multiplicity $m_{\text{max}} < n/2$

(where $\pi : \mathfrak{D}_n^{\text{fstab}} \to \mathfrak{M}_n$ denotes the projection map).

 $\mathfrak{M}_n^{\text{Haus}}$ is compact if n is odd; but non-compact if n is even.

 $\mathfrak{M}_n^{\text{Haus}}$ is an orbifold of complex dimension n-3.

Points of \mathfrak{M}_n outside of $\mathfrak{M}_n^{\text{Haus}}$ are not even locally Hausdorff.

Definition. The action of a Lie group *G* on a space *X* is *proper* if, for every $x, y \in X$, there are neighborhoods *U* and *V* so that the set of group elements with $\mathbf{g}(U) \cap V \neq \emptyset$ has compact closure within *G*.

Standard Theorem. The quotient X/G of a Hausdorff space under a proper action is a Hausdorff space.

Using the Distortion Theorem, one can show that the action of $G(\mathbb{P}^1)$ on the space of divisors with $m_{max} < n/2$ is proper.

Non Locally Hausdorff Points for n > 4

To fix ideas, let n = 5. Consider two divisors of the form $\mathcal{D} = \mathcal{D}_2 + 3\langle \infty \rangle$ and $\mathcal{D}' = \mathcal{D}_3 + 2\langle \infty \rangle$ in \mathfrak{D}_5 , where

 $\begin{aligned} \mathcal{D}_2 &= \langle \mathbf{p} \rangle + \langle \mathbf{q} \rangle & \text{and} & \mathcal{D}_3 &= \langle \mathbf{p}' \rangle + \langle \mathbf{q}' \rangle + \langle \mathbf{r}' \rangle \ . \\ \text{Let} \quad \mathbf{g}_{\kappa}(z) &= \kappa^2 / z \ , \ \text{with} \ \kappa \gg 1 \ ; \\ \text{so that} \ |z| < \kappa & \Longleftrightarrow \quad |\mathbf{g}_{\kappa}(z)| > \kappa \ . \end{aligned}$

Then the two divisors $\mathcal{D}_2 + \mathbf{g}_{\kappa}(\mathcal{D}_3)$ and $\mathcal{D}_3 + \mathbf{g}_{\kappa}(\mathcal{D}_2)$ belong to the same *G*-orbit.

As $\kappa \to \infty$, the first converges to \mathcal{D} and the second converges to \mathcal{D}' .

Thus every neighborhood of $\pi(\mathcal{D}) \in \mathfrak{M}_5$ intersects every neighborhood of $\pi(\mathcal{D}')$.

Since \mathcal{D}' can be arbitrarily close to \mathcal{D} , this proves that \mathfrak{M}_5 is not locally Hausdorff at the point $\pi(\mathcal{D})$.

Part 2. Curves in the Projective Plane. **Definition.** An *effective 1-cycle* of degree $n \ge 1$ on the complex projective plane \mathbb{P}^2 is a formal sum

 $\mathcal{C} = m_1 \cdot \mathcal{C}_1 + \cdots + m_k \cdot \mathcal{C}_k ,$

where each C_j is an irreducible complex curve, where the $m_j \ge 1$ are integers, and where $n = \sum_j m_j \deg(C_j)$.

The space \mathfrak{C}_n of all effective 1-cycles can be given the structure of a complex projective space of dimension n(n+3)/2. (In fact each non-zero homogeneous polynomial $\Phi(x, y, z)$ of degree *n* has a zero locus consisting of irreducible curves C_j , each counted with some multiplicity $m_j \ge 1$; yielding a 1-cycle.)

The group $G = G(\mathbb{P}^2) = PGL_3(\mathbb{C})$ of all automorphisms of \mathbb{P}^2 acts on \mathbb{P}^2 and hence on the space \mathfrak{C}_n .

The stabilizer $G_{\mathcal{C}}$ of $\mathcal{C} \in \mathfrak{C}_n$ is just the group consisting of all projective automorphisms which map \mathcal{C} to itself.

This stabilizer $G_{\mathcal{C}}$ may be either finite or infinite.

W-curves (and cycles). Curves with infinite stabilizer were first studied by Felix Klein and Sophus Lie, who called them *W-curves*.

Some examples:

Let $\mathfrak{W}_n \subset \mathfrak{C}_n$ be the algebraic set consisting of all cycles with infinite stabilizer. $(\mathfrak{M}_n \text{ is a union of finitely many maximal})$ irreducible subvarieties of \mathfrak{C}_n , of varying dimension.)

> **Note:** C has finite stabilizer if and only if the *G*-orbit $((\mathcal{C})) \subset \mathfrak{C}_n$ has dimension 8.

In fact $\dim ((\mathcal{C})) + \dim (\mathcal{G}_{\mathcal{C}}) = \dim (\mathcal{G}) = 8$, where dim(G_{C}) = 0 \iff G_{C} is finite.

14.

The Moduli Space \mathbb{M}_n .

The complement $\mathfrak{C}_n^{\text{fstab}} = \mathfrak{C}_n \setminus \mathfrak{W}_n$ is the open set consisting of all cycles with *finite stabilizer*.

Definition. The quotient space $\mathbb{M}_n = \mathfrak{C}_n^{\text{fstab}}/G$, will be called the *moduli space* for plane cycles of degree *n*.

Examples. $\mathbb{M}_1 = \mathbb{M}_2 = \emptyset$.

The moduli space \mathbb{M}_3 for cubic curves in \mathbb{P}^2 is canonically isomorphic to the moduli space \mathfrak{M}_4 for divisors in \mathbb{P}^1 . Each has two "ramified points" corresponding to points with extra symmetry (= larger stabilizer). Each also has one "improper point" where the group action is not proper.

Cartoon of \mathfrak{C}_n , showing a typical *G*-orbit in red:

Theorem. The topological boundary of any *G*-orbit in \mathfrak{C}_n is contained in the closed subset \mathfrak{W}_n .

[Ghizzetti 1936; Aluffi and Faber 2010.]

- \implies Every *G*-orbit of cycles with finite stabilizer is closed as a subset of $\mathfrak{C}_n^{\text{fstab}}$.
- \implies Every point in \mathbb{M}_n is a closed set.

The Distortion Lemma for \mathbb{P}^2 .

Lemma. Given $\varepsilon > 0$ there exists a compact set $K_{\varepsilon} \subset G(\mathbb{P}^2)$ with the following property.

For any $\mathbf{g} \notin K_{\varepsilon}$ there exists either:

(1) a point $\mathbf{p} \in \mathbb{P}^2$ and or (2) a line $L' \subset \mathbb{P}^2$ and a line $L \subset \mathbb{P}^2$ such that $g(N_{\varepsilon}(\mathbf{p})) \cup N_{\varepsilon}(L) = \mathbb{P}^2$

a point $\mathbf{q} \in \mathbb{P}^2$ such that $\mathbf{g}(N_{\varepsilon}(L)) \cup N_{\varepsilon}(\mathbf{q}) = \mathbb{P}^2$

(so that **g** maps every point outside of $N_{\varepsilon}(\mathbf{p})$ into $N_{\varepsilon}(L)$),

(so that **g** maps every point outside of $N_{\varepsilon}(L')$ into $N_{\varepsilon}(\mathbf{q})$).

The Genus Invariant of a Singularity.

Let **p** be a singular point of a complex curve $C \subset \mathbb{P}^2$. Let N_{ε} be a small round ball centered at **p**. If C' is a smooth curve which closely approximates C, then

$$\mathcal{S}_{p} = \mathcal{C}' \cap \overline{N}_{\varepsilon}$$

is a compact connected Riemannsurface-with-boundary.

Its genus $\mathfrak{g}(\mathcal{S}_p)$ will be called *the genus of the singularity* $\mathbf{p} \in C$.

Examples: For a cusp singularity $x^p = y^q$ the genus is (p-1)(q-1)/2.

If C is locally the union of k smooth branches \mathcal{B}_j , then the genus is $-1 + \sum_{i < j} \mathcal{B}_i \cdot \mathcal{B}_j$.

Two Properties of the Genus. Monotonicity. Suppose that

$$\mathcal{S} = \mathcal{S}_1 \cup \cdots \cup \mathcal{S}_k \subset \mathcal{S}',$$

where the S_j are disjoint compact Riemann-surfaces-withboundary, and S' is another compact Riemann surface, possibly with boundary. Then

$$\mathfrak{g}(\mathcal{S}) \ := \ \sum \mathfrak{g}(\mathcal{S}_j) \ \le \ \mathfrak{g}(\mathcal{S}) \ .$$

Scissors and Paste. Suppose that *k* disjoint embedded curves cut the closed Riemann surface S into ℓ subspaces with boundary S_i . Then

$$\mathfrak{g}(\mathcal{S}) = k + 1 - \ell + \sum \mathfrak{g}(\mathcal{S}_j).$$

(This follows from the Euler characteristic identity

$$oldsymbol{\chi}(\mathcal{S}) = \sum oldsymbol{\chi}(\mathcal{S}_j)$$
 .)

A Hypothesis which implies Proper Action. 20.

For any line $L \subset \mathbb{P}^2$ and any specified curve C we can form the intersection $\mathcal{S}_L = \mathcal{C}' \cap \overline{N}_{\varepsilon}(L)$, where ε is small and \mathcal{C}' is a very close generic approximation to C.

Lemma. If

 $\mathfrak{g}(\overline{\mathcal{C}' \smallsetminus \mathcal{S}_{\mathbf{p}}}) > \mathfrak{g}(\mathcal{S}_L)$

for every $\mathbf{p} \in |\mathcal{C}|$ and every $L \subset \mathbb{P}^2$, then the action of *G* is locally proper at *C*.

Scissors and Paste.

Let
$$S_{\mathbf{p}}^* = \overline{C' \setminus S_{p}}$$
. Then
 $S_{\mathbf{p}} \cup S_{p}^* = C'$, $S_{p} \cap S_{p}^* = (\text{union of } k \text{ circles})$.

Therefore

$$\mathbf{g}(\mathcal{S}_{\mathbf{p}}) + \mathbf{g}(\mathcal{S}_{\mathbf{p}}^{*}) + k - \ell + 1 = \mathfrak{g}(\mathcal{C}') = \binom{n-1}{2}$$

Here $\ell \ge 2$ is the number of components of S_p plus the number of components of S_p^* . Define the *augmented genus* of S_p to be $\mathfrak{g}^+(S_p) = \mathfrak{g}(S_p) + k - 1$. Together the the Lemma, this formula yields: **Theorem** If $\mathfrak{g}^+(S_p) + \mathfrak{g}(S_l) < \mathfrak{g}(C')$ for every

Theorem. If $\mathfrak{g}^+(\mathcal{S}_p) + \mathfrak{g}(\mathcal{S}_L) < \mathfrak{g}(\mathcal{C}')$ for every $\mathbf{p} \in \mathcal{C}$ and every $L \subset \mathbb{P}^2$, then the action of *G* is locally proper at \mathcal{C} .

Sample Corollary.

Let $\mathfrak{U}_n \subset \mathfrak{C}_n$ be the open set consisting of curves with no singularities other than simple double points and cubic cusps.

Corollary. If $n \ge 4$ then the action of $G(\mathbb{P}^2)$ is locally proper throughout \mathfrak{U}_n .

In fact the action is proper throughout \mathfrak{U}_N , so the quotient space $\mathfrak{U}_n/G(\mathbb{P}^2) \subset \mathbb{M}_n$ is a Hausdorff space.

- P. Aluffi and C. Faber, Limits of PGL(3)-translates of plane curves, J. Pure Appl. Algebra 214 (2010) 526–547 and 548–564.
- A. Bonifant and J. Milnor, On Real and Complex Cubic Curves, arXiv:1603.09018v2 [math.AG]. To appear, L'Enseign. Math. 63.
- A. Bonifant and J. Milnor, *Improper Group Actions, Orbifolds, and Plane Curves,* Manuscript in Preparation.
- A. Ghizzetti, Determinazione delle curve limiti di un sistema continuo ∞¹ di curve piane omografiche, Rendiconti Reale accademia dei Lincei. 23 (1936) 261–264.
- F. Klein and S. Lie, Ueber diejenigen ebenen Curven, welche durch ein geschlossenes System von einfach unendlich vielen vertauschbaren linearen Transformationen in sich übergehen, Math. Ann. 4 (1871), 50–84.
- J. Milnor, "Singular Points of Complex Hypersurfaces". Princeton U. Press, 1968.
- D. Mumford et al., "Geometric Invariant Theory", Chapter 4, Section 2, Springer-Verlag-Berlin 1965, 1994.