The Relative Green's Function

John Milnor

work with Araceli Bonifant and Scott Sutherland

Conference in honor of Misha Lyubich

Fields Institute, May 27, 2019

An Example

 $F(z) = z^3 + .75z + .04811$

 $F(z) = z^3 + .75z + .055$

A Non-Real Approximation

 $F(z) = z^3 + .75 z + (.08 + .0089 i)$

The Green's Function: Three Versions.

(1) In the z-plane. For any polynomial function F of degree $d \geq 2$, $\mathbf{g}_F(z) = \lim_{n\to\infty} \frac{1}{d^n} \log^+ |F^{\circ n}(z)| \geq 0.$

- Then $\mathbf{g}_F(F(z)) = d \cdot \mathbf{g}_F(z)$,
 - $\mathbf{g}_F(z) = 0 \iff z \in K(F)$, and

• **q**_F is continuous everywhere and harmonic throughout $\mathbb{C} \setminus K(F)$.

- (2) In parameter space. Define $G(F) = \max_{F'(c)=0} g_F(c)$.
- (3) The relative Green's function. If G(F) > 0, set

$$\mathsf{rg}_F(z) = \mathsf{g}_F(z)/\mathsf{G}(F)$$
.

In practice we will assume that there is a *marked critical point* **c** with $\mathbf{g}_F(\mathbf{c}) = \mathbf{G}(F)$; so that $\mathbf{rg}_F(z) = \mathbf{g}_F(z)/\mathbf{g}_F(\mathbf{c})$.

External rays in the z-plane.

Now assume that *F* is *monic*, so that

$$F(z) \sim z^d$$
 as $|z| \to \infty$.

The orthogonal trajectories to the family of equipotentials $\mathbf{g}_{\mathcal{F}}(z) = \text{constant}$ are called *dynamic rays*, denoted by $\mathcal{R}_{\mathcal{F}}(\theta)$ where $\theta \in \mathbb{R}/\mathbb{Z}$ is the angle, measured at infinity.

Every such ray either *terminates* when it hits a critical or pre-critical point of F, or else accumulates on J(F). Note that

 $F(\mathcal{R}_F(\theta)) \subset \mathcal{R}_F(d \cdot \theta)$,

where d is the degree.

For example, *F* always maps the zero-ray $\mathcal{R}_F(0)$ into itself.

Theorem 1: Hypothesis.

Let $\{F_j\}$ be a sequence of monic polynomial maps of degree d, with $\mathbf{G}(F_j) \searrow 0$ as $j \to \infty$.

Suppose that each F_j has a marked critical point \mathbf{c}_j with $\mathbf{g}_j(\mathbf{c}_j) = \mathbf{G}(F_j)$.

Suppose that each marked critical value $\mathbf{v}_j = F_j(\mathbf{c}_j)$ belongs to the dynamic ray $\mathcal{R}_{F_j}(\theta)$, for some fixed angle $\theta \in \mathbb{Q}/\mathbb{Z}$.

Finally, suppose that

$$\lim F_j = F$$
 and $\lim \mathbf{c}_j = \mathbf{c}$,

where **c** belongs to a cycle of parabolic basins for *F*. Let \mathcal{B} be the **total parabolic basin** consisting of all points whose orbit under *F* enters this cycle.

Theorem 1: Conclusion.

After passing to a suitable infinite subsequence of $\{F_i\}$,

the relative Green's functions \mathbf{rg}_{F_j} converge locally uniformly throughout \mathcal{B} to a continuous function $\mathbf{rg}(z) \ge 0$ which is harmonic on the open subset \mathcal{B}^* where $\mathbf{rg}(z) > 0$.

Furthermore

$$\mathbf{rg}(F(z)) = d \cdot \mathbf{rg}(z) .$$

(In fact **rg** restricted to \mathcal{B}^* is the real part of a holomorphic function from \mathcal{B}^* to the right-half plane $\{u + iv; u > 0\}$ which satisfies the corresponding identity.)

Example: The Cauliflower Map $F(z) = z^2 + z$ 8.

Julia set for $z \mapsto z^2 + z + .004$

A limiting relative Green's function for

$$z \mapsto z^2 + z$$

Our First Example

Limiting relative Green's function for a parameter ray landing on $F(z) = x^3 + .75 z + .04811$.

Notations for the proof.

For any monic f(z) of degree $d \ge 2$, and any constant $g \ge \mathbf{G}(f)$, let $\Omega_{a}(f) \subset \mathbb{C}$

be the neighborhood of infinity consisting of all z with $\mathbf{g}_f(z) > g$.

Since there are no critical points in $\Omega_g(f)$, there is a Böttcher isomorphism $\mathfrak{b}_f : \Omega_g(f) \xrightarrow{\cong} \mathbb{C} \setminus \overline{\mathbb{D}}_{\exp(g)}$. The universal covering space $\widetilde{\Omega}_g(f)$ can be identified with the right half-plane $\mathbb{H}_g = \{u + iv ; u > g\}$, with projection map $\mathfrak{p} : \mathbb{H}_g \to \Omega_g(f)$ given by

$$\mathbb{H}_g \stackrel{ ext{exp}}{\longrightarrow} \mathbb{C} \smallsetminus \overline{\mathbb{D}}_{ ext{exp}(g)} \stackrel{\mathfrak{b}_f^{-1}}{\longrightarrow} \Omega_g(f) \ .$$

Note that $\mathfrak p$ sends the real axis in $\,\mathbb H_g\,$ onto the zero dynamic ray in $\,\Omega_g$.

Note also that $f: \Omega_g(f) \xrightarrow{\cong} \Omega_{d \cdot g}$ lifts to the linear map $w \mapsto d \cdot w$ from \mathbb{H}_g to $\mathbb{H}_{d \cdot g}$.

Understanding $(f^{-1})^{\circ n}$.

Let f be monic of degree d and let $g_0 \ge \mathbf{G}(f)$.

Main Lemma.

For any $n \ge 1$ there is a commutative diagram of holomorphic maps

where $\psi(d \cdot w) = f(\psi(w))$, and

 $\mathbf{g}_f(\psi(w)) = \Re(w)/d^n.$

11.

The Special Case $d^k \cdot \theta = 0$. 12.

Remember that each $\mathbf{v}_j = F_j(\mathbf{c}_j)$ belongs to the θ -ray $\mathcal{R}_{F_j}(\theta)$. Since θ eventually maps to zero under multiplication by d, for each F_i , **most** points of the critical orbit

$$F_j: \mathbf{c}_j = \mathbf{c}_{0,j} \mapsto \mathbf{c}_{1,j} \mapsto \mathbf{c}_{2,j} \mapsto \cdots$$

must belong to the zero ray $\mathcal{R}_{F_i}(0)$.

Let $\mathbf{c}_{n(j),j}$ be the last orbit point with $\mathbf{g}_{F_j}(\mathbf{c}_{n(j),j}) < 1$. Then $\psi_j : \mathbb{H}_1 \to \Omega_{1/d^{n(j)}}$ maps $\mathbb{R} \cap \mathbb{H}_1$ to the zero ray, with $F_j(\psi_j(u)) = \psi_j(d \cdot u)$ and $\mathbf{g}_{F_j}(\psi_j(u)) = u/d^{n(j)}$.

Montel's Theorem

Let *K* be any compact subset of \mathbb{H}_1 .

The successive images $\psi_j(K) \subset \mathbb{C}$ have uniformly bounded Green's function, hence are uniformly bounded.

Thus by Montel's Theorem, we can choose a locally convergent subsequence of $\{\psi_j|_{interior(\kappa)}\}$.

Repeating this for larger and larger K, we can find a subsequence which converges locally uniformly to a holomorphic map $\Psi : \mathbb{H}_1 \to \mathbb{C}$.

Lemma. The image $\Psi(\mathbb{H}_1)$ is an open subset of $K(f) \setminus J(f)$ which contains all but finitely many points of the orbit of **c**.

Proof Outline. The map Ψ is not constant since the images of points on the critical orbit are distinct. Hence it is univalent by a theorem of Hurwitz. The image $U_0 = \Psi(\mathbb{H}_1)$ is open, *F*-invariant, and bounded.

Hence it can't intersect the Julia set.

A Holomorphic Relative Green's Function

Thus we have a conformal isomorphism

$$\Psi:\mathbb{H}_1\stackrel{\cong}{\longrightarrow} U_0\subset U\subset \mathcal{B}^*$$

with $\Psi(d \cdot w) = F(\Psi(w))$. Hence the inverse isomorphism

$$\Psi^{-1}: U_0 \stackrel{\cong}{\longrightarrow} \mathbb{H}_1$$
.

satisfies $\Psi^{-1}(F(z)) = d \cdot \Psi^{-1}(z)$.

Lemma. Ψ^{-1} extends uniquely to a holomorphic map \mathcal{G} from \mathcal{B}^* to the right half-plane \mathbb{H}_0 satisfying the corresponding identity $\mathcal{G}(F(z)) = d \cdot \mathcal{G}(z)$. Furthermore the real part $\Re(\mathcal{G}(z))$ coincides with the limiting relative Green's function $\mathbf{rg}(z) = \lim_{j \to \infty} \mathbf{rg}_j(z)$ up to a multiplicative constant.

(The precise formula is $\mathbf{rg}(z) = \Re(\mathcal{G}(z))/g_c$ where $g_c = \lim_{j \to \infty} \mathbf{g}_j(\mathbf{c}_j) d^{n(j)}$.)

The Relative Green's Function in Fatou Coordinates 15.

The Fatou coordinate on \mathcal{B} is the unique holomorphic map

 $\Phi: \mathcal{B} \to \mathbb{C} \qquad \text{such that} \qquad$

(1) $\Phi(F(z)) = \Phi(z) + 1$, and (2) $\Phi(c) = 0$.

Two points of \mathcal{B} are **eventually equal** under F, that is $F^{\circ n}(z) = F^{\circ n}(z')$ for some n, if and only if $\Phi(z) = \Phi(z')$. It follows easily that $\mathbf{rg}(z)$ is uniquely determined by $\Phi(z)$.

Plot of $\log_2(\mathbf{rg}(z))$ in the $\Phi(z)$ plane for

 $F(z)=z^2+z\;.$

Theorem 2. The quotient of $\Phi(\mathcal{B}^*)$ under unit translation is an annulus of modulus $\pi/\log(d^q)$.

The Limiting θ -Ray.

Recall that each dynamic ray $\mathcal{R}_{F_j}(\theta)$ passes through the marked critical value $F_j(\mathbf{c}_j)$. Since θ is rational, it is eventually periodic.

Theorem 3. For each $k \ge 0$, the sequence of rays $\mathcal{R}_{F_j}(d^k\theta)$ converges locally uniformly as $j \to \infty$ to a *limit ray* $\mathbf{R}(d^k\theta)$, which is smooth except at a single point where it crosses the Julia set J(F), passing from the basin of infinity to the Fatou component containing $F^{\circ k+1}(\mathbf{c})$. Within \mathcal{B} , this limit ray is an orthogonal trajectory to the family of equipotentials $\mathbf{rg}(z) = \text{constant}$. This limit ray extends until it either terminates at a critical or pre-critical point of F, or until it accumulates on the boundary of the locus $\mathbf{rg}(z) = 0$.

An Example: The Fat Rabbit

A limit of maps where the critical orbit escapes along the $1/7\,$ ray.

Another Example

18.

 $F(z) \simeq z^3 + i z^2 + z$

With an Extra Hypothesis.

Theorem 4.

Now suppose that **c** is the only critical point in \mathcal{B}^* . Then:

(1) The angle θ is strictly periodic, say of period q.

(2) Each limit ray $\mathbf{R}(d^k\theta)$ terminates at the unique critical point of $F^{\circ q}$ in the basin of $F^{\circ k+1}(\mathbf{c})$

(3) The intersection of each component of \mathcal{B} with \mathcal{B}^* is connected and simply-connected.

QUESTION: Are these statements true without the extra hypothesis?

Conjecture. If our maps F_j belong to a parameter ray in a one complex dimensional space of polynomials, then there is a

circle of possible limits **rg**. The limit is uniquely determined by the *phase parameter*

$$\log_d(g_{\mathbf{c}}) \ = \lim_{j \to \infty} \left(\log_d \left(\mathbf{g}_j(\mathbf{c}_j) \right) \ (ext{modulo } \mathbb{Z})
ight) \ \in \mathbb{R}/\mathbb{Z} \ .$$

REFERENCES

- A. BONIFANT, J. MILNOR AND S. SUTHERLAND, Parabolic Implosion and the Relative Green's Function, manuscript in progress.
- R. OUDKERK, The Parabolic Implosion: Lavaurs Maps and Strong Convergence for Rational Maps, Contemporary Mathematics 303 (2002) 79–105.
- C. PETERSEN AND G. RYD, Convergence of rational rays in parameter spaces, "The Mandelbrot Set, Theme and Variations," 161–172, London Math. Soc. Lecture Note Ser. 274, Cambridge Univ. Press, 2000.