MAT 319, Spring 2003 Pretest with solutions Thursday 1/30/03
1 (a). What are the converse and the contrapositive of the proposition, "The sum of any three consecutive positive integers is divisible by 6 ."
SOLUTION. CONVERSE "Every positive integer that is divisible by 6 is the sum of three consecutive positive integers."
CONTRAPOSITIVE "If a positive integer is not divisible by 6 , then it is not the sum of three consecutive positive integers."
(b). Which of the three statements are true?

SOLUTION. The PROPOSITION is false. Let x be a positive integer. Then

$$
x+(x+1)+(x+2)=3(x+1)
$$

is odd (hence not dfivisible by 6) for even x.
The CONVERSE is true. Write

$$
3(x+1)=6 N
$$

and conclude that $x=2 N-1$.
The CONTRAPOSITIVE is false since a proposition and its contrapositive always have the same truth value.
2. Let S be the set consisting of all nonnegative integers that are divisible by 6 and not divisible by 3 . Is S empty (that is, has no elements in it), finite or infinite? If the empty set, explain why. If S is not empty, give an alternate description (formula) for the elements in S and list its first three elements?
SOLUTION. Any integer divisible by 6 is also divisible by 3 . Hence $S=\emptyset$.
3. Let $[0,2],[0,4]$ and $[1,3]$ be three closed intervals in \mathbb{R}. Express their union and intersection as closed intervals.
SOLUTION.

$$
[0,2] \cup[0,4] \cup[1,3]=[0,4]
$$

and

$$
[0,2] \cap[0,4] \cap[1,3]=[1,2] .
$$

4. Consider a set $P(1), P(2), P(3), \ldots, P(n), \ldots$ of statements. You are told that for each positive integer $n, P(n+1)$ is true whenever $P(n)$ is. Is $P(3)$ true?
SOLUTION. $P(3)$ need not be true. Let $P(n)$ be the statement " n is a negative integer."
5. Let a and b be nonnegative integers. If $(a+b)^{2}=a^{2}+b^{2}$, what, if anything, can you conclude about a and b ?
SOLUTION. Since $(a+b)^{2}=a^{2}+2 a b+b^{2}$, the hypothesis tells us that $a b=0$; thus either
$a=0$ or $b=0$.
6. True or False?

Let a, b and c be arbitrary real numbers.
(a). There always exists an $x \in \mathbb{R}$ such that $x^{2}+a x+b=0$.

SOLUTION. False. Take $a=0$ and $b=1$.
(b). There always exists an $x \in \mathbb{R}$ such that $x^{3}+a x^{2}+b x+c=0$.

SOLUTION. True. The polynomial is negative for $x \ll 0$ and positive for $x \gg 0$. It must hence be zero somewhere (in between).
7. Compute and if possible simplify in terms of sines and cosines of $2 x$:
(a). $\frac{d}{d x}\left(\cos ^{2}(x)+\sin ^{2}(x)\right)$.

SOLUTION. $\frac{d}{d x}\left(\cos ^{2}(x)+\sin ^{2}(x)\right)=2 \cos x(-\sin x)+2 \sin x \cos x=0$.
(b). $\frac{d}{d x}\left(\cos ^{2}(x)-\sin ^{2}(x)\right)$.

SOLUTION. $\frac{d}{d x}\left(\cos ^{2}(x)-\sin ^{2}(x)\right)=2 \cos x(-\sin x)-2 \sin x \cos x=-4 \sin x \cos x=$ $-2 \sin (2 x)$.
(c). Do you find either answer to be surprising? Why?

SOLUTION. Neither answer is surprising since $\cos ^{2}(x)+\sin ^{2}(x)=1$ and $\cos ^{2}(x)-\sin ^{2}(x)=$ $\cos (2 x)$.
8. Compute $\int x \ln x d x$.

SOLUTION. $\int x \ln x d x=\frac{1}{2} \int \ln x d\left(x^{2}\right)=\frac{1}{2}\left(x^{2} \ln x-\int x^{2} \frac{1}{x} d x\right)=\frac{1}{2}\left(x^{2} \ln x-\frac{x^{2}}{2}\right)$.
9. Use logarithms to estimate from below and from above $\sum_{i=1}^{n} \frac{1}{i}$.

SOLUTION. Comparing areas under the curve $y=\frac{1}{x}$ to areas of appropriate rectangles one sees that for all integers $n>1$, that

$$
\int_{1}^{n+1} \frac{1}{x} d x<\sum_{i=1}^{n} \frac{1}{i}
$$

and

$$
1+\sum_{i=2}^{n} \frac{1}{i}<1+\int_{1}^{n} \frac{1}{x} d x
$$

or

$$
\ln (n+1)<\sum_{i=1}^{n} \frac{1}{i}<1+\ln n .
$$

10. Which of the following series converge? Which diverge?
(a). $\sum_{n=1}^{\infty} \frac{1}{n}$.

SOLUTION. Diverges by the integral test.
(b). $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.

SOLUTION. Converges by the integral test.
(c). $\sum_{n=1}^{\infty} e^{-n}$.

SOLUTION. Converges because it is a geometric series.
(d). $\sum_{n=1}^{\infty} e^{n}$.

SOLUTION. Diverges because it is a geometric series.

