1. Suppose $q(x)$ is a rational function such that $q(-1)=-1$ and $q(1)=1$. Does the intermediate value theorem imply that q has a zero on the open interval $(-1,1)$? Why? SOLUTION: NO. The function may not be defined (hence not continuous) on the closed interval $[-1,1]$. For example, the function $q(x)=\frac{(x-1)(x+1)}{x}$ does vanish at -1 and 1 , but its derivative $q^{\prime}(x)=\frac{x^{2}+1}{x^{2}}$ does not vanish anywhere.
2. Let f be a function which is defined and differentiable everywhere. Is $\frac{f(x)}{f(x)^{2}+1}$ differentiable everywhere? Why?
SOLUTION: YES because a ratio of two differentiable functions is differentiable at those points where the denominator does not vanish. The derivative is easily computed to be:

$$
\frac{f^{\prime}(x)\left(3 f(x)^{2}+1\right)}{\left(f(x)^{2}+1\right)^{2}}
$$

but is not needed to answer the question.
3. Give an example of a function that is continuous on the half-open interval $(0,1]$, but is not uniformly continuous.
SOLUTION: $f(x)=\frac{1}{x}$ is such a function. It is not uniformly continuous because it is not even bounded on the interval $(0,1]$.
4. Carefully state the Chain Rule.

SOLUTION: If g is differentiable at a and f is differentiable at $g(a)$, then $f \circ g$ is differentiable at a and

$$
(f \circ g)^{\prime}(a)=f^{\prime}(g(a)) g^{\prime}(a)
$$

5. Let $f(x)=\frac{1}{x}$. Prove from the definition of the derivative that $f^{\prime}(x)=\frac{-1}{x^{2}}$.

SOLUTION:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{h}}{h}=\lim _{h \rightarrow 0} \frac{-h}{h x(x+h)}=\lim _{h \rightarrow 0} \frac{-1}{x(x+h)}=\frac{-1}{x^{2}}
$$

