MAT 319 Quiz \#2 with solutions Friday 2/14/03

Determine whether each of the following 2 assertions is TRUE or FALSE. Give a brief explanation for your answer.

1. If f and g are functions defined on $(-1,1)$ and $\lim _{x \rightarrow 0} f(x) g(x)=3$, then $\lim _{x \rightarrow 0} f(x)$ exists. SOLUTION: FALSE. Let $f(x)=\left\{\begin{array}{l}\frac{1}{x} \text { for } x \neq 0 \\ 0 \text { for } x=0\end{array}\right.$ and $g(x)=3 x$.
2. If f and g are functions defined on $(-1,1)$ and $\lim _{x \rightarrow 0} g(x)=0$, then $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}$ can not exist. SOLUTION: FALSE. Let $f(x)=x=g(x)$.
3. Define carefully what $\lim _{x \rightarrow a} f(x)=L$ means. SOLUTION: For all $\epsilon>0$, there exists a $\delta>0$ such that $|f(x)-L|<\epsilon$ for $0<|x-a|<\delta$.
4. State the Heine-Borel theorem. SOLUTION: Every cover of a bounded closed interval by open intervals has a finite subcover.
5. For the positive integer n, let $I_{n}=\left(0, \frac{1}{n}\right)$. What real numbers belong to the intersection $\cap_{n=1}^{\infty} I_{n}$? Prove that your answer is correct. SOLUTION: $\cap_{n=1}^{\infty}\left(0, \frac{1}{n}\right)=\emptyset$. For if $\epsilon>0$, there exists a positive integer N such that $\frac{1}{N}<\epsilon$. Thus $\epsilon \notin I_{n}$ for any (some is all that we need) $n \geq N$.
