MAT 319 Quiz \#1 Friday 1/31/03

Determine whether each of the following 2 assertions is TRUE or FALSE. Give a brief explanation for your answer.

1. If a and b are irrationals, then so is $a+b$.

SOLUTION. FALSE. $\sqrt{2}+(-\sqrt{2})=0$.
2. Let a and b be irrationals with $a<b$. There exists a rational c and a positive integer n such that $a<c+\frac{\sqrt{2}}{n}<b$.
SOLUTION. TRUE. There certainly exists a rational c such that $a<c<b$. Since $\frac{\sqrt{2}}{n}$ is very small and positive for large n, we can choose such an n so that $c+\frac{\sqrt{2}}{n}<b$.
3. Define carefully a Dedekind cut.

SOLUTION. A Dedekind cut α is a proper nonempty subset of the rationals such that
(i) whenever $p \in \alpha$ and q is a rational $<p$, then $q \in \alpha$, and
(ii) for all $p \in \alpha$, there exists an $r \in \alpha$ with $r>p$.
4. State the least upper bound property.

SOLUTION. Every nonempty set of reals that is bounded from above has a least upper bound.
5. Let S be a nonempty set of real numbers. Assume that α and β are least upper bounds for S. Show that $\alpha=\beta$.
SOLUTION. Because α is an upper bound and β is least upper bound, $\alpha \geq \beta$. Because α and β are interchangeable, $\beta \geq \alpha$. The two inequalities say that $\beta=\alpha$.

