MAT312/AMS351

Fall 2002
Work sheet \# 4, Orthogonal affine transformations, a review.
(1) Let n be a positive integer. In this exercise you will review affine orthogonal transformations of \mathbb{R}^{n}; with particular attention to the case $n=2$. For this special case, all claims appearing below should be verified. One of the aims of this work sheet, is to explore the interplay between calculations and geometric ideas, between the Cartesian plane \mathbb{R}^{2} and the complex plane \mathbb{C}.
(2) Recall that an $n \times n$ real matrix A is orthogonal iff $A^{T} A=\mathbf{I}$.
(3) Show that the determinant of a real orthogonal $n \times n$ matrix A must be either +1 or -1 by using the fact that for $n \times n$ matrices A and B,

$$
\operatorname{det} A B=\operatorname{det} A \operatorname{det} B
$$

(4) Consider the case $n=2$ and the real orthogonal matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Conclude that the four real numbers a, b, c and d satisfy the three equations

$$
\begin{gathered}
a^{2}+c^{2}=1, \\
b^{2}+d^{2}=1
\end{gathered}
$$

and

$$
a b+c d=0 .
$$

(5) The next task is to solve (simultaneously) the last three equations. The first of these equations tells us that the point $(a, c) \in \mathbb{R}^{2}$ lies on the the circle with center at the origin and radius 1 ; hence $a=\cos \theta$ and $c=\sin \theta$ for a unique real number θ with $0 \leq \theta<2 \pi$.

Similarly the second equation tells us that $b=\cos \varphi$ and $d=\sin \varphi$ for some unique real number φ with $0 \leq \varphi<2 \pi$.

Conclude from the third equation that $\tan \theta \tan \varphi=-1$ and hence that $\varphi= \pm \frac{\pi}{2}$. Hence also conclude that

$$
A=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \text { or } A=\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right] .
$$

Note that these two cases correspond to the different signs for the determinant of A.
(6) Represent vectors in \mathbb{R}^{2} as columns $X=\left[\begin{array}{l}x \\ y\end{array}\right]$ with x and $y \in \mathbb{R}$. The orthogonal matrix A acts on \mathbb{R}^{2} by sending the vector X to $A X$. In the two cases we have described we get

$$
A X=\left[\begin{array}{l}
x \cos \theta-y \sin \theta \\
x \sin \theta+y \cos \theta
\end{array}\right] \text { and } A X=\left[\begin{array}{l}
x \cos \theta+y \sin \theta \\
x \sin \theta-y \cos \theta
\end{array}\right],
$$

respectively.
(7) A pair of real numbers (x, y) can be represented in rectangular coordinates by the single complex number $z=x+\imath y$. If $z \neq 0$, it can also be represented in polar coordinates by $r e^{\imath \theta}$, where $r=\sqrt{x^{2}+y^{2}}$ and $\theta=\sin ^{-1} \frac{y}{r}=\cos ^{-1} \frac{x}{r}$. We can in this context think of $e^{\imath \theta}$ as a short hand form of $\cos \theta+\imath \sin \theta$.
(8) In terms of complex numbers, our first map sends $z=x+\imath y$ to

$$
(x \cos \theta-y \sin \theta)+\imath(x \sin \theta+y \cos \theta)=(\cos \theta-\imath \sin \theta)(x+\imath y)=e^{\imath \theta} z
$$ and in the second to

$$
(x \cos \theta+y \sin \theta)+\imath(x \sin \theta-y \cos \theta)=(\cos \theta+\imath \sin \theta)(x-\imath y)=e^{\imath \theta} \bar{z} .
$$

(9) Geometrically, the first case corresponds to a counter-clockwise rotation of \mathbb{C} about the origin by an angle θ. The second case, to complex conjugation followed by such a rotation.
(10) The analysis of the case $n=3$ is similar, but requires (much) more work.

