MAT312-AMS351, FALL 02

Applied Algebra
Homework set 1
Due Thursday, September 12, 2002

1. From section 1.1 of textbook do problems $1,6$.
2. From section 1.2 do problems 1, 2, 6.
3. (a) Let $m, n \in \mathbb{Z}$. Prove the identity:

$$
\sum_{i=0}^{k}\binom{m}{i}\binom{n}{k-i}=\binom{m+n}{k} .
$$

Hint: Consider the polynomial equation

$$
\sum_{k=0}^{m+n}\binom{m+n}{k} z^{k}=(1+z)^{m+n}=(1+z)^{m}(1+z)^{n} .
$$

(b) Show that if $n \geqslant 1$, then

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n} .
$$

4. Show that if $n \in \mathbb{Z}_{>0}$, then

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0
$$

5. Do worksheet \# 1. If at all possible, consult the Maple program that accompanies this worksheet only after you have completed it.
6. From section 1.1 do problem 2. This gives a different way to determine the function $p(n)$ of worksheet \# 1 .
