MAT312/AMS351 Applied Algebra – Fall 2002 Quiz #8 with solutions 12/10/2002

Problems 1 & 2: True or false: (Circle the correct answers.) Let G be a group.

- T F (1) If a and $b \in G$ and $r \in \mathbb{Z}$, then the equation $a^r x = b$ has a unique solution $x \in G$.
- T F (2) If $(ab)^r = a^r b^r$ for all a and $b \in G$ and all $r \in \mathbf{Z}$, then G is abelian.

SOLUTION: (1) is TRUE, $x = a^{-r}b$.

(2) is also TRUE. The equation for r = 2 reads abab = aabb. Multiplying both sides on the left by a^{-1} and on the right by b^{-1} yields ba = ab.

Problem 3: The set K consisting of the four complex numbers $\{\pm 1, \pm i\}$ is a group under multiplication. It is isomorphic to $(\mathbb{Z}_4, +)$. Describe such an isomorphism $\theta : K \to \mathbb{Z}_4$ by specifying $\theta(1), \theta(-1), \theta(i)$ and $\theta(-i)$.

SOLUTION: We must map a generator (for example) i of K to a generator (for example) $[1]_4$ of \mathbb{Z}_4 . Hence $\theta(1) = [0]_4$, $\theta(-1) = [2]_4$, $\theta(i) = [1]_4$ and $\theta(-i) = [3]_4$.

Problem 4: Describe two non-isomorphic groups of order 6.

SOLUTION: The groups \mathbb{Z}_6 and S(3) have order 6 and are not isomorphic since \mathbb{Z}_6 is abelian while S(3) is not.

Problem 5: State (carefully) Lagrange's theorem.

SOLUTION: Let *H* be a subgroup of a finite group *G*. Then o(H) divides o(G).