MAT312/AMS351 Applied Algebra - Fall 2002
 Quiz \#7 with solutions
 12/3/2002

Problems 1 \& 2: True or false: (Circle the correct answers.) Let G be a group and a, b two distinct elements in G with neither the identity.

$$
\begin{array}{lll}
\mathrm{T} & \mathrm{~F} & \text { (1) There exists an integer } r \text { such that } a^{r}=b . \\
\mathrm{T} & \mathrm{~F} & \text { (2) }(a b)^{-1}=b^{-1} a^{-1} .
\end{array}
$$

SOLUTION: (1) is False. Take $G=S(3), a=(1,2)$ and $b=$ $(1,2,3)$.
(2) is True.

The next three problems concern the group $G=S(4)$ and its cyclic subgroup $H=<(1,2,4,3)>$.

Problem 3: How many distinct left H cosets are there in G ?

SOLUTION: The number of distinct left H cosets in $G=\frac{o(G)}{o(H)}=$ $\frac{24}{4}=6$.

Problem 4: What are the orders of two groups G and H ?

SOLUTION: $o(G)=4!=24$ and $o(H)=o((1,2,4,3))=4$.

Problem 5: Without actually computing any orders, what theorem allows one to conclude what are the possibilities for the orders of elements of G ? What are the possible orders of the permutations in G ? Do all of these actually occur?

SOLUTION: Lagrange's theorem tells us that the orders of elements of G must divide the order of $G=24$. Thus the possible orders of elements of $S(4)$ are $1,2,3,4,6,8,12$ and 24 . The last of these certainly does not occur since $S(4)$ is not cyclic.

