MAT312/AMS351 Applied Algebra – Fall 2002 Quiz #6 with solutions 11/26/2002

Name: SB ID:

Problems 1 & 2: True or false: (Circle the correct answers.)

T F (1) There exists a positive integer r such that $3^r \equiv 1 \mod 6$.

T F (2) All groups containing 6 elements are abelian.

SOLUTION: (1) is False because $[3]_6$ is a zero divisor.

(2) is False because S(3) is not commutative and |S(3)| = 6.

Problem 3: Let G be a group and g, one of its members. Define the order of g.

SOLUTION: The element g has *finite* order if there exists a positive integer n such that $g^n = e$; the smallest such n is then the *order* of g. If g does not have finite order, then its order is said to be *infinite*. **Problem 4:** What are all the proper subgroups of \mathbb{Z}_6 ?

SOLUTION: The proper subgroups of \mathbb{Z}_6 contain 1, 2 or 3 elements. The subgroup containing one element is $\{[0]_6\}$. The subgroup containing two elements is $\{[0]_6, [3]_6\}$. The subgroup containing three elements is $\{[0]_6, [2]_6, [4]_6\}$. These are all the proper subgroups of \mathbb{Z}_6 .

Problem 5: Label the four vertices of the square in the counterclockwise order as 1, 2, 3 and 4. What permutation in S(4) corresponds to reflection the the diagonal joining vertex 1 to vertex 3?

SOLUTION: The transposition (2, 4) corresponds to this reflection.