MAT312/AMS351 Applied Algebra - Fall 2002
 Quiz \#6 with solutions
 11/26/2002

Name:

SB ID:
Problems 1 \& 2: True or false: (Circle the correct answers.)
T F (1) There exists a positive integer r such that $3^{r} \equiv 1 \bmod 6$.
T F (2) All groups containing 6 elements are abelian.
SOLUTION: (1) is False because $[3]_{6}$ is a zero divisor.
(2) is False because $S(3)$ is not commutative and $|S(3)|=6$.

Problem 3: Let G be a group and g, one of its members. Define the order of g.
SOLUTION: The element g has finite order if there exists a positive integer n such that $g^{n}=e$; the smallest such n is then the order of g. If g does not have finite order, then its order is said to be infinite. Problem 4: What are all the proper subgroups of \mathbb{Z}_{6} ?
SOLUTION: The proper subgroups of \mathbb{Z}_{6} contain 1,2 or 3 elements. The subgroup containing one element is $\left\{[0]_{6}\right\}$. The subgroup containing two elements is $\left\{[0]_{6},[3]_{6}\right\}$. The subgroup containing three elements is $\left\{[0]_{6},[2]_{6},[4]_{6}\right\}$. These are all the proper subgroups of \mathbb{Z}_{6}.
Problem 5: Label the four vertices of the square in the counterclockwise order as $1,2,3$ and 4 . What permutation in $S(4)$ corresponds to reflection the the diagonal joining vertex 1 to vertex 3 ?
SOLUTION: The transposition $(2,4)$ corresponds to this reflection.

