MAT312/AMS351 Applied Algebra - Fall 2002 Quiz \#5 with solutions.
 11/5/2002

Name:

SB ID:

Problems 1 \& 2: True or false: (Circle the correct answers.) Let n be an integer ≥ 2.

T $\quad \mathrm{F} \quad$ (1) If π and $\tau \in S(n)$ are odd permutations, then so is $\pi \tau$.
T F (2) For all $\tau \in S(n)$, both τ and τ^{2} have the same fixed points.
SOLUTION: (1) is false, since $\operatorname{sgn}(\pi \tau)=\operatorname{sgn}(\pi) \operatorname{sgn}(\tau)$.
(2) is false for every transposition.

Problem 3: Give an example of a permutation $\pi \in S(10)$ that is not a transposition and has order 2.
SOLUTION: $(1,2)(3,4)$.
Problem 4: Define what it means for a group $(G, *)$ to be abelian. SOLUTION: For all x and $y \in G, x * y=y * x$.
Problem 5: Give an example of a group $(G, *)$ with precisely 3 elements. Is this group abelian?
SOLUTION: The abelian group $\left(\mathbb{Z}_{3},+\right)$ is such an example.

