MAT312/AMS351 Applied Algebra - Fall 2002
 Quiz \#3 WITH SOLUTIONS
 10/17/2002

Name:

SB ID:

Problems 1 \& 2: True or false: (Circle the correct answers.) Let a, b, c and d be positive integers.
$\mathrm{T} \quad \mathrm{F}$ (1) For every positive integer n, the congruence classes \mathbb{Z}_{n} always contain nonzero zero divisors.
T F (2) Every nonempty set of positive integers contains a largest element.
SOLUTION: (1) is FALSE for primes n.
(2) is FALSE for $\{1,2,3,4, \ldots$,$\} .$

Problem 3: Let n be an integer ≥ 2. Define what it means for the nonzero congruence class $[a]_{n} \in \mathbb{Z}_{n}$ to be a zero divisor.

SOLUTION: There exists a $b \in \mathbb{Z}$ such that

$$
b \not \equiv 0 \quad \bmod n
$$

and

$$
a b \equiv 0 \quad \bmod n .
$$

Problem 4: Determine all $x \in \mathbb{Z}$ that solve the linear congruence

$$
6 x \equiv 9 \bmod 15
$$

SOLUTION: Since $(6,15)=3 \mid 9$, an equivalent equation is

$$
2 x \equiv 3 \quad \bmod 5 .
$$

Since $[2]_{5}^{-1}=[3]_{5}$, the solution is given as

$$
x=[9]_{5}=[4]_{5} .
$$

Problem 5: Let p be an odd prime, prove that $\varphi(2 p)=p-1$.
SOLUTION: $\varphi(2 p)=\varphi(2) \varphi(p)=1(p-1)$.

