MAT312/AMS351 Applied Algebra – Fall 2002 Quiz #210/1/2002

Name: SB ID:

Problems 1 & 2: True or false: (Circle the correct answers.) Let a, b, c and d be positive integers.

T F (1) If there exist integers r and s such that ra + sb = d, then $d = \gcd(a, b)$. T F (2) $\operatorname{lcm}(a, b) > \gcd(a, b)$.

SOLUTION. (1) is FALSE. Counterexample: $2 \cdot 1 + 2 \cdot 1 = 2$, but (1, 1) = 1.

(2) is FALSE: If a = b, then lcm(a, b) = gcd(a, b).

Problem 3: Express 24 and 102 as products of primes and use this information to calculate gcd(12, 102) and lcm(12, 102).

SOLUTION. $24 = 2^3 3$ and $102 = 2 \cdot 3 \cdot 17$. Therefore $gcd(12, 102) = 2 \cdot 3 = 6$ and $lcm(12, 102) = 2^2 3 \cdot 17 = 204$.

Problem 4: Use the Euclidean algorithm to calculate the gcd of -24 and -102.

SOLUTION.

$$-102 = 5(-24) + 18,$$

$$-24 = (-2)18 + 12,$$

$$18 = 1 \cdot 12 + 6$$

and

 $12 = 2 \cdot 6.$

So we conclude that (-24, -102) = 6, as expected.

Problem 5: How many elements does $G_8 = \mathbb{Z}_8^*$ contain? List them. **SOLUTION.** G_8 has 4 elements, they are $[1]_8, [3]_8, [5]_8$ and $[7]_8$.