MAT312/AMS351 Applied Algebra - Fall 2002
 Quiz \#2
 10/1/2002

Name:

SB ID:
Problems 1 \& 2: True or false: (Circle the correct answers.) Let a, b, c and d be positive integers.

T F (1) If there exist integers r and s such that $r a+s b=d$, then $d=\operatorname{gcd}(a, b)$.
T F (2) $\operatorname{lcm}(a, b)>\operatorname{gcd}(a, b)$.
SOLUTION. (1) is FALSE. Counterexample: $2 \cdot 1+2 \cdot 1=2$, but $(1,1)=1$.
(2) is FALSE: If $a=b$, then $\operatorname{lcm}(a, b)=\operatorname{gcd}(a, b)$.

Problem 3: Express 24 and 102 as products of primes and use this information to calculate $\operatorname{gcd}(12,102)$ and $\operatorname{lcm}(12,102)$.

SOLUTION. $24=2^{3} 3$ and $102=2 \cdot 3 \cdot 17$. Therefore $\operatorname{gcd}(12,102)=$ $2 \cdot 3=6$ and $\operatorname{lcm}(12,102)=2^{2} 3 \cdot 17=204$.

Problem 4: Use the Euclidean algorithm to calculate the gcd of -24 and -102 .

SOLUTION.

$$
\begin{gathered}
-102=5(-24)+18 \\
-24=(-2) 18+12, \\
18=1 \cdot 12+6
\end{gathered}
$$

and

$$
12=2 \cdot 6
$$

So we conclude that $(-24,-102)=6$, as expected.

Problem 5: How many elements does $G_{8}=\mathbb{Z}_{8}^{*}$ contain? List them.
SOLUTION. G_{8} has 4 elements, they are $[1]_{8},[3]_{8},[5]_{8}$ and $[7]_{8}$.

