MAT312/AMS351 Applied Algebra - Fall 2002 Quiz \#1
 9/19/2002

Name:

SB ID:
Problems 1 \& 2: True or false: (Circle the correct answers.) Let a, b, c and d be positive integers.

T F (1) If $a \mid c$ and $b \mid c$, then $a b \mid c$.
$\mathrm{T} \quad \mathrm{F} \quad(2)$ If $(a, b)=1$ and $(c, d)=1$, then $(a c, b d)=1$.
SOLUTION (1) is False. Counterexample: $4 \mid 12$ and $6 \mid 12$; but 24×12.
(2) is False. Counterexample: $(3,4)=1$ and $(4,5)=1$, but $(12,20)=$ 4.

Problem 3: State the well ordering principle.
SOLUTION A nonempty set of integers that is bounded from below contains a least element.

Problem 4: Define (a, b), the greatest common divisor of the two positive integers a and b.

SOLUTION The gcd of a and b is the unique positive integer d that divides both a and b and has the additional property that whenever an integer c divides both a and b, it also divides d.

Problem 5: Find $[3]_{7}^{-1}$.
SOLUTION By inspection,

$$
\begin{aligned}
{[3]_{7}[2]_{7} } & =[6]_{7}, \\
{[3]_{7}[3]_{7} } & =[2]_{7}, \\
{[3]_{7}[4]_{7} } & =[5]_{7},
\end{aligned}
$$

and

$$
[3]_{7}[5]_{7}=[1]_{7} .
$$

Thus $[3]_{7}^{-1}=[5]_{7}$.

