MAT 312/AMS 351
Midterm exam \#1 with SOLUTIONS
Tuesday 10/8/02

1. Prove by induction that for all positive integers n,

$$
\sum_{i=1}^{n} i(i-1)=\frac{n\left(n^{2}-1\right)}{3}
$$

SOLUTION: The base case $n=1$ is true since both sides of the equality to be established produce 0 . So assume that $k \in \mathbb{Z}_{>1}$ and that the equality is valid for $n=k-1$. Then

$$
\begin{gathered}
\sum_{i=1}^{k} i(i-1)=\sum_{i=1}^{k-1} i(i-1)+k(k-1)=\frac{(k-1)\left((k-1)^{2}-1\right)}{3}+\frac{3 k(k-1)}{3} \\
=\frac{(k-1)\left((k-1)^{2}-1+3 k\right)}{3}=\frac{(k-1)\left(k^{2}-2 k+1-1+3 k\right)}{3}=\frac{(k-1)\left(k^{2}+k\right)}{3} \\
=\frac{k(k-1)(k+1)}{3}=\frac{k\left(k^{2}-1\right)}{3} .
\end{gathered}
$$

Hence the equality is also valid for $n=k$ and by induction for all $n \in \mathbb{Z}_{>0}$.
The next question dealt with the issue of dividing an integer b by an integer a to obtain a quotient q and a remainder r. Since the textbook calls this procedure "the division algorithm," it could have been misinterpreted to deal with the algorithm for obtaining the gcd of a and b. Both interpretation were considered legitimate. The answers under the second interpretation are marked as ALTERNATE SOLUTION.
2. (a) Let a and b be positive integers. State the Euclidean algorithm for dividing b by a. SOLUTION: Let a and $b \in \mathbb{Z}_{>0}$. There exist unique integers q and $r \in \mathbb{N}$ such that

$$
0 \leq r<a
$$

and

$$
b=q a+r .
$$

ALTERNATE SOLUTION: There exist unique integers q_{i} and $r_{i} \in \mathbb{N}, 1 \leq i \leq n$, such that

$$
\begin{gathered}
b=q_{1} a+r_{1}, 0<r_{1}<a, \\
a=q_{2} r_{1}+r_{2}, 0<r_{2}<r_{1}, \\
r_{1}=q_{3} r_{2}+r_{3}, 0<r_{3}<r_{2}, \\
\ldots, \\
r_{n-2}=q_{n} r_{n-1}+r_{n}, 0<r_{n}<r_{n-1}, \\
r_{n-1}=q_{n+1} r_{n},
\end{gathered}
$$

and hence

$$
(b, a)=r_{n} .
$$

(b) Apply the Euclidean algorithm to $a=6$ and $b=25$.

SOLUTION:

$$
25=4 \cdot 6+1
$$

ALTERNATE SOLUTION:

$$
\begin{gathered}
25=4 \cdot 6+1, \\
6=6 \cdot 1,
\end{gathered}
$$

and hence

$$
(25,6)=1 .
$$

(c) Apply the Euclidean algorithm to $a=-6$ and $b=-25$.

SOLUTION:

$$
-25=5 \cdot(-6)+5 .
$$

ALTERNATE SOLUTION:

$$
\begin{gathered}
-25=5 \cdot(-6)+5, \\
-6=-2 \cdot 5+4, \\
5=1 \cdot 4+1, \\
4=4 \cdot 1,
\end{gathered}
$$

and hence

$$
(-25,-6)=1
$$

3. This problem involves arithmetic modulo 16. All answers should only involve expressions of the form $[a]_{16}$, with a an integer and $0 \leq a<16$.
(a) Compute $[4]_{16}+[15]_{16}$.

SOLUTION:

$$
[4]_{16}+[15]_{16}=[4]_{16}+[-1]_{16}=[3]_{16} .
$$

(b) Compute $[4]_{16}[15]_{16}$.

SOLUTION:

$$
[4]_{16}[15]_{16}=[4]_{16}[-1]_{16}=[-4]_{16}=[12]_{16} .
$$

(c) Compute $[15]_{16}^{-1}$.

SOLUTION:

$$
[15]_{16}^{-1}=[-1]_{16}^{-1}=[-1]_{16}=[15]_{16} .
$$

(d) List the units in \mathbb{Z}_{16}.

SOLUTION:

$$
\left\{[1]_{16},[3]_{16},[5]_{16},[7]_{16},[9]_{16},[11]_{16},[13]_{16},[15]_{16}\right\} .
$$

(e) List the zero-divisors in \mathbb{Z}_{16}.

SOLUTION:

$$
\left\{[2]_{16},[4]_{16},[6]_{16},[8]_{16},[10]_{16},[12]_{16},[14]_{16}\right\} .
$$

4. In this problem you will use the Chinese remainder theorem (CRT) to solve for all integers x that satisfy

$$
\begin{array}{cc}
2 x \equiv 4 & \bmod 8 \\
6 x \equiv 18 & \bmod 30
\end{array}
$$

and

$$
3 x \equiv 12 \bmod 21
$$

(a) Transform each of the above equations to equivalent equations of the form

$$
x \equiv a \quad \bmod m .
$$

SOLUTION: Let $a x \equiv b \bmod n$ be a congruence equation. If $d=(a, n) \mid b$, then this equation is equivalent to $\frac{a}{d} x \equiv \frac{b}{d} \bmod \frac{n}{d}$. Thus our three equations translate to

$$
\begin{aligned}
x & \equiv 2 \quad \bmod 4, \\
x & \equiv 3 \quad \bmod 5
\end{aligned}
$$

and

$$
x \equiv 4 \quad \bmod 7
$$

(b) What conditions do the three resulting moduli m have to satisfy in order to apply CRT? SOLUTION: They must be pairwise relatively prime.
(c) Solve simultaneously the three congruences. Express your answer as a single congruence class.
SOLUTION: The solution is of the form $[a]_{M}$ and $M=4 \cdot 5 \cdot 7=140$. To find the smallest positive a, we note that the three equations have respective positive solutions given by

$$
\begin{gathered}
\{2,6,10,14,18,22,26,30,34,38,42,46 \ldots,\}, \\
\{3,8,13,18, \ldots, 48,53, \ldots,\}
\end{gathered}
$$

and

$$
\{4,11,18,25,32,39,46,53,60,67,74,81, \ldots,\} .
$$

We are looking for the smallest integer to be found in all three sets: 18. Thus our solution is

$$
x \equiv 18 \bmod 140 .
$$

We can get the the same result in a different way. We form

$$
M_{1}=\frac{M}{4}=35, M_{2}=\frac{M}{5}=28, M_{3}=\frac{M}{7}=20
$$

and then

$$
y_{1} \in[35]_{4}^{-1}=[3]_{4}^{-1}=[3]_{4}, y_{2} \in[28]_{5}^{-1}=[3]_{5}^{-1}=[2]_{5}, y_{3} \in[20]_{7}^{-1}=[6]_{7}^{-1}=[6]_{7} .
$$

Then

$$
x \equiv 2 \cdot 3 \cdot 35+3 \cdot 2 \cdot 28+4 \cdot 6 \cdot 20=858 \equiv 18 \bmod 140 .
$$

5. (a) State Euler's theorem.

SOLUTION: Let n be an integer ≥ 2 and a an integer that is relatively prime to n. Then

$$
a^{\varphi(n)} \equiv 1 \quad \bmod n .
$$

(b) Compute $\varphi(100)$.

SOLUTION:

$$
\varphi(100)=\varphi\left(2^{2} 5^{2}\right)=\varphi\left(2^{2}\right) \varphi\left(5^{2}\right)=(4-2)(25-5)=40 .
$$

(c) Use Euler's theorem to compute $7^{2962} \bmod 100$.

SOLUTION:

$$
7^{2962}=7^{40 \cdot 74+2} \equiv 7^{2}=49 \quad \bmod 100
$$

