MAT 319, Spring 2012
Solutions to Midterm 2

1. Prove that the function $f(x)=4 x-5$ is continuous at every point.
(a) using the sequential definition.

Let $x_{0} \in \mathbb{R}$ be arbitrary. To show that f is continuous at x_{0}, let $\left(x_{n}\right)$ be a sequence in \mathbb{R} converging to x_{0}. We must show that $\left(f\left(x_{n}\right)\right)$ converges to $f\left(x_{0}\right)$. But since $\lim \left(x_{n}\right)=x_{0}$, our limit laws for sequences tell us that $\lim \left(4 x_{n}\right)=4 x_{0}$, and thus $\lim \left(4 x_{n}-5\right)=4 x_{0}-5$. But this is exactly the statement that $\lim \left(f\left(x_{n}\right)\right)=f\left(x_{0}\right)$.
(b) using the $\epsilon-\delta$ definition.

Let $x_{0} \in \mathbb{R}$ be arbitrary. Let $\epsilon>0$, and set $\delta=\frac{\epsilon}{4}$. Suppose that $\left|x-x_{0}\right|<\delta$. Then

$$
\begin{aligned}
\left|f(x)-f\left(x_{0}\right)\right| & =\left|4 x-5-4 x_{0}+5\right| \\
& =\left|4\left(x-x_{0}\right)\right| \\
& =4\left|x-x_{0}\right| \\
& <4 \delta=\epsilon .
\end{aligned}
$$

Thus, f is continuous at x_{0}.
2.
(a) Let $f:[0,+\infty) \rightarrow \mathbb{R}$ be a continuous function such that $\lim _{x \rightarrow+\infty} f(x)=5$. Prove that f is bounded.
First, since $\lim _{x \rightarrow+\infty} f(x)=5$, we know that given any $\epsilon>0$, there exists $\alpha>0$ such that if $x>\alpha$, then $|f(x)-5|<\epsilon$. In particular, take $\epsilon=1$: there exists α such that $4<f(x)<6$ whenever $x>\alpha$.
Now, since f is continuous on the closed, bounded interval, $[0, \alpha]$, it achieves a maximum value M and a minimum value m on this interval. $m \leq f(x) \leq M$ for all $x \in[0, \alpha]$.
Set $\bar{m}=\min \{m, 4\}$ and $\bar{M}=\max \{M, 6\}$. Take $x \in[0,+\infty)$. If $x \leq \alpha$, then $\bar{m} \leq m \leq f(x) \leq$ $M \leq \bar{M}$. If $x>\alpha$, then $\bar{m} \leq 4<f(x)<6<\bar{M}$. Thus, in general, f is bounded below by \bar{m} and bounded above by \bar{M}.
(b) What happens if we drop the condition $\lim _{x \rightarrow+\infty} f(x)=5$? Is it true that an arbitrary continuous function $f:[0,+\infty) \rightarrow \mathbb{R}$ is bounded? Explain your answer.
If f is an arbitrary continuous function, there is no guarantee that it will be bounded on $[0,+\infty)$. As a counterexample, take the function $f(x)=x$, which is continuous, and obviously satisfies the limit

$$
\lim _{x \rightarrow+\infty} f(x)=+\infty
$$

Thus, this continuous function is necessarily unbounded.
3.
(a) Let $\left(x_{n}\right)$ be a bounded sequence. Show that $\left(\sin x_{n}\right)$ has a convergent subsequence.

For all $x \in \mathbb{R},|\sin x| \leq 1$. Therefore, $\left(\sin x_{n}\right)$ is a bounded sequence, bounded by 1 . Thus, by Bolzano-Weierstrass, $\left(\sin x_{n}\right)$ has a convergent subsequence.
(b) What if the sequence $\left(x_{n}\right)$ is not bounded? Is it true that $\left(\sin x_{n}\right)$ has a convergent subsequence for an arbitrary sequence $\left(x_{n}\right)$? Explain your answer.
Yes, one can still show the existence of a convergent subsequence. The proof given for part (a) still holds, as we never used the fact that $\left(x_{n}\right)$ was bounded.
4.
(a) Prove that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ can have at most 1 limit at $+\infty$.

The easiest way to prove this is using the sequential definition of limits. That way, it does not matter if the limits are finite or infinite. Suppose that f has two distinct limits at $+\infty$, denoted by A and B. Then, given any sequence $\left(x_{n}\right)$ tending to $+\infty$, we must have $\lim \left(f\left(x_{n}\right)\right)=A$ and $\lim \left(f\left(x_{n}\right)\right)=B$. Since we know that limits of sequences are unique, it must be true that $A=B$.
(b) Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that has no (finite or infinite) limit at $+\infty$ whatsoever. Prove that the limit does not exist.
An example of such a function is $f(x)=\sin x$. To prove that this has no limit at $+\infty$, let $r_{n}=2 \pi n$ and $s_{n}=2 \pi n+\frac{\pi}{2}$. Both r_{n} and s_{n} are sequences that diverge to $+\infty$. However, $f\left(r_{n}\right)=\sin (2 \pi n)=0$ while $f\left(s_{n}\right)=\sin \left(2 \pi n+\frac{\pi}{2}\right)=1$. Since $f\left(r_{n}\right)$ and $f\left(s_{n}\right)$ converge to different limits, f has no limit as $x \rightarrow+\infty$.

