MAT 319, Spring 2012 Solutions to Midterm 2

- 1. Prove that the function f(x) = 4x 5 is continuous at every point.
 - (a) using the sequential definition.

Let $x_0 \in \mathbb{R}$ be arbitrary. To show that f is continuous at x_0 , let (x_n) be a sequence in \mathbb{R} converging to x_0 . We must show that $(f(x_n))$ converges to $f(x_0)$. But since $\lim (x_n) = x_0$, our limit laws for sequences tell us that $\lim (4x_n) = 4x_0$, and thus $\lim (4x_n - 5) = 4x_0 - 5$. But this is exactly the statement that $\lim (f(x_n)) = f(x_0)$.

(b) using the $\epsilon - \delta$ definition. Let $x_0 \in \mathbb{R}$ be arbitrary. Let $\epsilon > 0$, and set $\delta = \frac{\epsilon}{4}$. Suppose that $|x - x_0| < \delta$. Then

$$|f(x) - f(x_0)| = |4x - 5 - 4x_0 + 5|$$

= |4 (x - x_0)|
= 4 |x - x_0|
< 4\delta = \epsilon.

Thus, f is continuous at x_0 .

2.

(a) Let $f : [0, +\infty) \to \mathbb{R}$ be a continuous function such that $\lim_{x\to +\infty} f(x) = 5$. Prove that f is bounded.

First, since $\lim_{x\to+\infty} f(x) = 5$, we know that given any $\epsilon > 0$, there exists $\alpha > 0$ such that if $x > \alpha$, then $|f(x) - 5| < \epsilon$. In particular, take $\epsilon = 1$: there exists α such that 4 < f(x) < 6 whenever $x > \alpha$.

Now, since f is continuous on the closed, bounded interval, $[0, \alpha]$, it achieves a maximum value M and a minimum value m on this interval. $m \leq f(x) \leq M$ for all $x \in [0, \alpha]$.

Set $\bar{m} = \min\{m, 4\}$ and $\bar{M} = \max\{M, 6\}$. Take $x \in [0, +\infty)$. If $x \leq \alpha$, then $\bar{m} \leq m \leq f(x) \leq M \leq \bar{M}$. If $x > \alpha$, then $\bar{m} \leq 4 < f(x) < 6 < \bar{M}$. Thus, in general, f is bounded below by \bar{m} and bounded above by \bar{M} .

(b) What happens if we drop the condition lim_{x→+∞} f(x) = 5? Is it true that an arbitrary continuous function f : [0, +∞) → ℝ is bounded? Explain your answer. If f is an arbitrary continuous function, there is no guarantee that it will be bounded on [0, +∞).

As a counterexample, take the function f(x) = x, which is continuous, and obviously satisfies the limit

$$\lim_{x \to +\infty} f(x) = +\infty$$

Thus, this continuous function is necessarily unbounded.

3.

- (a) Let (x_n) be a bounded sequence. Show that $(\sin x_n)$ has a convergent subsequence. For all $x \in \mathbb{R}$, $|\sin x| \leq 1$. Therefore, $(\sin x_n)$ is a bounded sequence, bounded by 1. Thus, by Bolzano-Weierstrass, $(\sin x_n)$ has a convergent subsequence.
- (b) What if the sequence (x_n) is not bounded? Is it true that (sin x_n) has a convergent subsequence for an arbitrary sequence (x_n)? Explain your answer.
 Yes, one can still show the existence of a convergent subsequence. The proof given for part (a) still holds, as we never used the fact that (x_n) was bounded.

4.

(a) Prove that a function $f : \mathbb{R} \to \mathbb{R}$ can have at most 1 limit at $+\infty$.

different limits, f has no limit as $x \to +\infty$.

- The easiest way to prove this is using the sequential definition of limits. That way, it does not matter if the limits are finite or infinite. Suppose that f has two distinct limits at $+\infty$, denoted by A and B. Then, given any sequence (x_n) tending to $+\infty$, we must have $\lim (f(x_n)) = A$ and $\lim (f(x_n)) = B$. Since we know that limits of sequences are unique, it must be true that A = B.
- (b) Give an example of a function f : ℝ → ℝ that has no (finite or infinite) limit at +∞ whatsoever. Prove that the limit does not exist. An example of such a function is f(x) = sin x. To prove that this has no limit at +∞, let r_n = 2πn and s_n = 2πn + π/2. Both r_n and s_n are sequences that diverge to +∞. However, f(r_n) = sin(2πn) = 0 while f(s_n) = sin(2πn + π/2) = 1. Since f(r_n) and f(s_n) converge to

 $\mathbf{2}$