PRACTICE FINAL

- **Problem 1.** What is the limit of $(x_n) = \frac{n^3}{n!}$?
- **Problem 2.** Use the definition of the limit to prove that $\lim \frac{n^2-1}{3n^2+1} = \frac{1}{3}$.
- Problem 3. Prove that an increasing sequence that is bounded above is necessarily converging.
- **Problem 4.** Show that if u_n is unbounded then there is a subsequence u_{n_k} of terms that are all non zero and such that $\frac{1}{u_{n_k}} \to 0$.
- **Problem 5.** Is the infinite series $\sum_{n=1}^{\infty} \frac{1}{n^2 n + 2}$ convergent?
- **Problem 6.** Evaluate the following limit, or show that it doesn't exist: $\lim_{x\to+\infty} \frac{\sqrt{x}-x^2}{\sqrt{x}+x.\sqrt{x}}$.
- **Problem 7.** Assume that $f: \mathbb{R} \to \mathbb{R}$ is such that: for any $x \in \mathbb{R}$ there is a $\delta > 0$ such that f is bounded on $[x \delta, x + \delta]$. Is the function f bounded on \mathbb{R} ? (If yes, prove it; if not give a counter-example).
- **Problem 8.** Is the function $g: \mathbb{R} \to \mathbb{R}$ defined by g(x) = 3x + |x| differentiable everywhere? (Prove your assertion!)
- **Problem 9.** If $f: \mathbb{R} \to \mathbb{R}$ is differentiable at $c \in \mathbb{R}$, then show that $\lim (n(f(c+\frac{1}{n})-f(c)))$ exists and is equal to f'(c).
- **Problem 10.** Show that if x > 0 then we have $\sqrt[3]{1+x} \le 1 + \frac{1}{3}x$

SOLUTIONS OF THE PRACTICE FINAL

Problem 1. What is the limit of $(x_n) = \frac{n^3}{n!}$?

Proof. Observe that $\frac{x_{n+1}}{x_n} = \frac{(n+1)^3}{(n+1)!} \cdot \frac{n!}{n^3} = \frac{(n+1)^2}{n^3} \to 0$ therefore the sequence is converging to zero by the comparison theorem.

Problem 2. Use the definition of the limit to prove that $\lim \frac{n^2-1}{3n^2+1} = \frac{1}{3}$.

 $\begin{aligned} \mathbf{Proof.} \ \left| \frac{n^2-1}{3n^2+1} - \frac{1}{3} \right| &= \left| \frac{3n^2-3-3n^2-1}{(3n^2+1).3} \right| = \frac{4}{9n^2+3} \leqslant \frac{1}{n^2} \text{ thus for a given } \varepsilon > 0 \text{ if we take an integer } K > \frac{1}{\sqrt{\varepsilon}} \text{ we have that for any } n \geqslant K, \ \left| x_n - 1/3 \right| \leqslant \frac{1}{n^2} < \varepsilon. \end{aligned}$

Problem 3. Prove that an increasing sequence that is bounded above is necessarily converging.

Proof. See the textbook for this one...

Problem 4. Show that if u_n is unbounded then there is a subsequence u_{n_k} of terms that are all non zero and such that $\frac{1}{u_{n_k}} \to 0$.

Proof. Since the sequence is unbounded, for any natural number k there is a term u_{n_k} of the sequence that is strictly larger than k, therefore one has $0 < \frac{1}{u_{n_k}} < \frac{1}{k} \to 0$ and this subsequence converges to zero by the squeeze theorem.

Problem 5. Is the infinite series $\sum_{n=1}^{\infty} \frac{1}{n^2 - n + 2}$ convergent?

Proof. As usual factor by the leading term: $x_n = \frac{1}{n^2 - n + 2} = \frac{1}{n^2} \cdot \frac{1}{1 - \frac{1}{n} + \frac{2}{n^2}}$. But now if you write $y_n = 1/n^2$, we know that

 $x_n/y_n = \frac{1}{1 - \frac{1}{n} + \frac{2}{n^2}} \to 1$, therefore by the comparison theorem for infinite series, we know that our series converges if and only if $\sum y_n$ converges, but this is the case (p-series with p=2>1).

Problem 6. Evaluate the following limit, or show that it doesn't exist: $\lim_{x\to +\infty} \frac{\sqrt{x}-x^2}{\sqrt{x}+x\sqrt{x}}$.

Proof. Factor again by the leading term:

 $f(x) = \frac{\sqrt{x} - x^2}{\sqrt{x} + x \cdot \sqrt{x}} = \frac{-x^2}{x \cdot \sqrt{x}} \cdot \frac{-\sqrt{x}/x^2 + 1}{1/x + 1}$ so if we call $g(x) = \frac{-x}{\sqrt{x}} = -\sqrt{x}$, we have that $f(x)/g(x) \to 1$, so by the comparison theorem, the limit of f(x) is the same as the limit of f(x) which is $-\infty$.

Problem 7. Assume that $f: \mathbb{R} \to \mathbb{R}$ is such that: for any $x \in \mathbb{R}$ there is a $\delta > 0$ such that f is bounded on $[x - \delta, x + \delta]$. Is the function f bounded on \mathbb{R} ? (If yes, prove it; if not give a counter-example).

Proof. Of course not! Take f(x) = x, it is locally bounded: on $[x - \delta, x + \delta]$, the function is bounded by $x + \delta$, but it is unbounded on the entire line.

Problem 8. Is the function $g: \mathbb{R} \to \mathbb{R}$ defined by g(x) = 3x + |x| differentiable everywhere? (Prove your assertion!)

Proof. On $(-\infty,0)$ the function is equal to 3x-x=2x, which is differentiable (derivative is the constant function equal to 2), and similarly on $(0, +\infty)$, the function is equal to 4x which is differentiable.

Now it remains to study the differentiability at zero:

But $\frac{g(x)-g(0)}{x-0}=2$ to the left of zero, and is equal to 4 to the right of zero, therefore the function is not differentiable at zero.

Problem 9. If $f: \mathbb{R} \to \mathbb{R}$ is differentiable at $c \in \mathbb{R}$, then show that $\lim (n(f(c+\frac{1}{r})-f(c)))$ exists and is equal to f'(c).

Proof. For a given $\varepsilon > 0$, we know the existence of $\delta > 0$ such that for any $h \in (-\delta, \delta)$ we have $\frac{f(c+h)-f(c)}{h} \in (f'(c)-\varepsilon, f'(c)+\varepsilon)$. Now pick any natural number $K > 1/\delta$. Then for any $n \geqslant K$ one has that 1/n is less than δ and there-

 $\frac{f(c+\frac{1}{n})-f(c)}{1/n}\in (f'(c)-\varepsilon,f'(c)+\varepsilon), \text{ which exactly expresses the convergence of the sequence to } f'(c).$

Problem 10. Show that if x > 0 then we have $\sqrt[3]{1+x} \leqslant 1 + \frac{1}{3}x$

Proof. Apply Taylor's theorem at the order 2 to $f(x) = \sqrt[3]{1+x}$ between the points 0 and x. It says that $f(x) = f(0) + x f'(0) + \frac{x^2}{2} f''(c)$ for some particular $c \in (0, x)$.

Notice now that $f'(x) = \frac{1}{3}(1+x)^{-\frac{2}{3}}$, so f'(0) = 1/3, and also that $f''(x) = \frac{1}{3} \cdot \frac{-2}{3}(1+x)^{-\frac{5}{3}}$, so that $f''(c) = \frac{-2}{9}$. Therefore the remainder is $\frac{-2}{9} \cdot \frac{x^2}{2}$ which is less than zero, and this gives the inequality we want.