## Final Exam Practice Problems

Problem 1. Let the sequence $\left(x_{n}\right)$ be defined as follows: $x_{1}=1, x_{2}=2$ and $x_{n+2}=$ $\frac{1}{2}\left(x_{n}+x_{n+1}\right)$ for any $n \in \mathbb{N}$. Prove that $1 \leq x_{n} \leq 2$ for any $n \in \mathbb{N}$.

Problem 2. Let $S$ be a nonempty subset of $\mathbb{R}$ that is bounded above. Prove that $\sup S=$ $-\inf \{-s: s \in S\}$.

Problem 3. Find the infimum of the set $A=\left\{\left.1+\frac{(\sin n)^{2}}{\sqrt{n}} \right\rvert\, n \in \mathbb{N}\right\}$.
Problem 4. Prove

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\cdots+\frac{1}{\sqrt{n^{2}+n}}\right)=1 .
$$

Problem 5. Let $\left(a_{n}\right)$ be a positive sequence such that $\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}=0$. Prove that $\left(a_{n}\right)$ is unbounded.

Problem 6. Assume that $\lim _{n \rightarrow \infty} x_{n}=+\infty$. Prove that

$$
\lim _{n \rightarrow \infty} \frac{x_{1}+x_{2}+\cdots+x_{n}}{n}=+\infty .
$$

Problem 7. Suppose $f(x)$ is a strictly increasing function on $[a, b]$ and $\left(x_{n}\right) \subset[a, b]$ is a sequence such that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(a)$. Prove that $\lim _{n \rightarrow \infty} x_{n}=a$.

Problem 8. * Let $f$ be a function defined on $(0,1)$ such that for any $c \in(0,1), \lim _{n \rightarrow \infty} f\left(\frac{c}{n}\right)=$ 0 . Can we conclude that $\lim _{x \rightarrow 0^{+}} f(x)=0$ ?

Problem 9. Assume that the function $f$ is continuous at 0 and $f(0)>0$. Prove that there exists a $\delta>0$ such that $f(x)>0$ for any $|x|<\delta$.

Problem 10. For any function $f$, we define $w_{a}(\delta)=\sup \{|f(x)-f(y)|| | x-a \mid<\delta$ and $\mid y-$ $a \mid<\delta\}$. Prove that $f$ is continuous at $a$ if and only if $\lim _{\delta \rightarrow 0^{+}} w_{a}(\delta)=0$.

Problem 11. Suppose there exists a constant $L>0$ such that for any $x, y \in[a, \infty)$ we have

$$
|f(x)-f(y)| \leq L|x-y| .
$$

If $a>0$, prove that $\frac{f(x)}{x}$ is uniformly continuous on $[a, \infty)$.
Problem 12.

Let the function $f$ be defined as

$$
f(x)= \begin{cases}x^{2} & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

Prove that $f$ is differentiable at 0 .
Problem 13. Suppose $|f(x)|$ is differentiable at $a$ and $f(a)=0$, prove that $f^{\prime}(a)=0$.
Problem 14. Assume there exist constants $M$ and $a>1$ such that for any $x, y \in \mathbb{R}$,

$$
|f(x)-f(y)| \leq M|x-y|^{a} .
$$

Prove that $f$ is a constant.
Problem 15. Let $f(x)$ and $g(x)$ be convex functions and $f$ is increasing. Prove that $f(g(x))$ is convex.

Problem 16. If $f$ defined on $[0,1]$ is a continuous and $\int_{0}^{x} f=\int_{x}^{1} f$ for all $x \in[0,1]$. Prove that $f(x)=0$ for any $x \in[0,1]$.

Problem 1
We prove by induction on $n$.
(1) Base case: $n=1, x_{1}=1$ and $1 \leqslant x_{1} \leqslant 2$

$$
n=2, \quad x_{2}=2 \quad \text { and } \quad 1 \leqslant x_{2} \leqslant 2
$$

(2) Inductive step: assume it is true for any $1 \leq k \leq n$ then $1 \leqslant x_{n-1} \leqslant 2$ and $1 \leqslant x_{n} \leqslant 2$
Hence $1 \leqslant x_{n+1}=\frac{x_{n}+x_{n-1}}{2} \leqslant 2$.
Therefore it also holds for $n+1$.

Problem 2
Denote $A=\operatorname{Sup} S$ and $B=\inf \{-s: s \in S\}$. We need to show that $A=-B$.

By definition of sup, $s \leq A, \forall s \in S$

$$
\begin{array}{ll}
\Rightarrow & -s \geq-A, \quad \forall s \in S \\
\Rightarrow & B=\inf \{-s: s \in S\} \quad \geq-A \quad A \geq-B
\end{array}
$$

By definition of inf

$$
\begin{array}{ll} 
& -s \geq B \quad \forall s \in S \\
\Rightarrow & s \leq-B \quad \forall s \in S \\
\Rightarrow & A=\sup S \leq-B \tag{2}
\end{array}
$$

Combining (1) and (2) we get $A=-B$.

Problem 3
First we notice that $\lim _{n \rightarrow+\infty} \frac{(\sin n)^{2}}{\sqrt{n}}=0$
This is because

$$
0 \leqslant \frac{(\sin n)^{2}}{\sqrt{n}} \leqslant \frac{1}{\sqrt{n}}
$$

Since $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$, by squeeze theorem, $\lim \frac{(\sin n)^{2}}{\sqrt{n}}=0$.
$\forall n \in \mathbb{N}, \quad 1+\frac{(\sin n)^{2}}{\sqrt{n}} \geq 1$. Therefore 1 is a lower bound of the set $A$. We claim that 1 is the greatest lower bound.

Suppose there exists $\varepsilon_{0}>0$ such that

$$
1+\frac{(\sin n)^{2}}{\sqrt{n}} \geq 1+\varepsilon_{0} \quad \forall n \in \mathbb{N}
$$

By the comparison property of limits,

$$
1=\lim _{n \rightarrow \infty}\left(1+\frac{(\sin n)^{2}}{\sqrt{n}}\right) \geq 1+\varepsilon_{0}
$$

which is 2 contradiction! Therefore inf $A=1$. \#
[Alternatively, one can argue $\forall \varepsilon>0, \exists N \geq 1$ such that

$$
1 \leqslant \frac{(\sin N)^{2}}{\sqrt{N}}+1<\varepsilon+1
$$

therefore by Lemma 2.3.4, $1=$ inf $A$. (for inf)

Problem 4

Notice that for each $1 \leqslant i \leqslant n$

$$
\frac{1}{\sqrt{n^{2}+n}} \leqslant \frac{1}{\sqrt{n^{2}+i}} \leqslant \frac{1}{n}
$$

therefore $\quad \frac{n}{\sqrt{n^{2}+n}} \leqslant \frac{1}{\sqrt{n^{2}+1}}+\cdots+\frac{1}{\sqrt{n^{2}+n}} \leqslant \frac{n}{n}=1$.

Since $\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^{2}+n}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1+\frac{1}{n}}}=\frac{1}{\sqrt{1+0}}=1$, by squeeze theorem, we have

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt{n^{2}+1}}+\cdots+\frac{1}{\sqrt{n^{2}+n}}\right)=1 .
$$

Problem 5
Since $\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}=0$, for $\varepsilon=\frac{1}{2}$, there exists $N$ such that for $n>N$, we have

$$
\left|\frac{a_{n}}{a_{n+1}}\right|<\frac{1}{2} .
$$

Since $a_{n}>0$ for each $n$, we have

$$
a_{n+1}>2 a_{n} \quad \text { for } n>N
$$

Therefore $a_{n}>2^{n-N} \cdot a_{N}$ for $n>N$
We can conclucle that $a_{n}$ is unbounded because

$$
\lim _{n \rightarrow \infty} 2^{n-N} \cdot a_{N}=+\infty
$$

Problem 6 First proof
To show $\lim _{n \rightarrow \infty} \frac{a_{1}+\cdots+a_{n}}{n}=+\infty$, we need to show that for any $A>0$, there exists $N \geq 1$ such that when $n>N$,

$$
\frac{a_{1}+\cdots+a_{n}}{n}>A .
$$

For any $A>0$, because $\lim _{n \rightarrow \infty} a_{n}=+\infty$, there exists $N_{1} \geq 1$ such that $a_{n}>2 A$ for $n>N_{1}$.

Therefore $\quad \frac{a_{1}+\cdots+a_{n}}{n}=\frac{a_{1}+\cdots+a_{N_{1}}+a_{N_{1}+1}+\cdots+a_{n}}{n}$

$$
>\frac{a_{1}+\cdots+a_{N_{1}}+\left(n-N_{1}\right) \cdot 2 A}{n} \text { if } n>N_{1} .
$$

$$
\begin{aligned}
\text { Notice that } & \lim _{n \rightarrow \infty} \frac{a_{1}+\cdots+a_{N_{1}}+\left(n-N_{1}\right) \cdot 2 A}{n} \\
& =\lim _{n \rightarrow \infty} 2 A+\frac{a_{1}+\cdots+a_{N_{1}}-2 N_{1} A}{n} \\
& =2 A>A
\end{aligned}
$$

Therefore by the property of limit, there exists $N_{2} \geq 1$
such that when $n>N_{2}$,

$$
\frac{a_{1}+\cdots+a_{N_{1}}+\left(n-N_{1}\right) 2 A}{n}>A
$$

Hence if we choose $N=\max \left\{N_{1}, N_{2}\right\}$, for $n>N$ we have

$$
\frac{a_{1}+\cdots+a_{n}}{n}>\frac{a_{1}+\cdots+a_{N_{1}}+\left(n-N_{1}\right) 2 A}{n}>N_{1}>N_{2}
$$

Problem 6 Second proof
$\forall A>0$, we need to choose $N$ such that when $n>N, \quad \frac{x_{1}+x_{2}+\cdots+x_{n}}{n}>A$
(1) Since $\lim x_{n}=+\infty$, there exists $N_{1}$ such that when $n>N_{1}, \quad x_{n}>2 A$.
(2) Choose $N_{2}$ such that $N_{2}>\frac{2 N_{1} A-\left(x_{1}+\cdots+x_{N_{1}}\right)}{A}$ Then we choose $N=\max \left\{N_{1}, N_{2}\right\}$.

If $n>N$, then $\frac{x_{1}+\cdots+x_{n}}{n}=\frac{\left(x_{1}+\cdots+x_{N_{1}}\right)+\left(x_{N_{1}+1}+\cdots+x_{n}\right)}{n}$

$$
\begin{aligned}
& >\quad \frac{x_{1}+\cdots+x_{N_{1}}+\left(n-N_{1}\right) 2 A}{n} \\
& =A+\frac{n A-\left(2 N_{1} A-\left(x_{1}+\cdots+x_{N_{1}}\right)\right)}{n} \\
& >\quad A+\frac{N_{2} A-\left(2 N_{1} A-\left(x_{1}+\cdots+x_{N_{1}}\right)\right)}{n}>A+0=A
\end{aligned}
$$

[less informal proof: $\frac{x_{1}+\cdots+x_{N_{1}}+\left(n-N_{1}\right)_{2} A}{n}>A$

$$
\begin{array}{ll}
\Leftrightarrow & x_{1}+\cdots+x_{N_{1}}+\left(n-N_{1}\right) 2 A>n A \\
\Leftrightarrow & n A>2 N_{1} A-\left(x_{1}+\cdots+x_{N_{1}}\right) \\
\Leftrightarrow & \left.n>\frac{2 N_{1} A-\left(x_{1}+\cdots+x_{N_{1}}\right)}{A}\right]
\end{array}
$$

Problem 7
We will prove by contradiction.
Suppose $\lim _{n \rightarrow \infty} x_{n} \neq a$, then there exists $\varepsilon_{0}>0$
and a subsequence $\left(x_{n_{k}}\right) \subset[a, b]$ Such that $\left|x_{n_{k}}-a\right|>\varepsilon_{0}$, in particular $\quad x_{n_{k}}>a+\varepsilon_{0}$.

Since $f$ is a strictly increasing function,
(*) $\quad f\left(x_{n_{k}}\right)>f\left(a+\varepsilon_{0}\right) \quad \forall k \geq 1$.
Because $\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ exists,

$$
\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(a) .
$$

From (*) we know that

$$
\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right) \geq f\left(a+\varepsilon_{0}\right)
$$

In particular this implies that

$$
f(a) \geq f\left(a+\varepsilon_{0}\right)
$$

But this contradicts with the fact that $f$ is strictly increasing. Therefore our assumption is wrong and we must have $\quad \lim _{n \rightarrow \infty} x_{n}=a$.

Problem 8
We cannot conclucle that $\lim _{x \rightarrow 0^{+}} f(x)=0$.
Here is the construction of a counter-example.

Because $(0,1)$ is uncountable, we can choose $a$ number $b \in(0,1)$ such that $\forall k \geq 1, \quad b^{k} \notin Q$.
(For example $b$ can be chosen to be any transcendental number like $\frac{1}{e}$ or $\frac{1}{\pi}$ ).

Let $f(x)=\int 1$ if $x=b^{k}$ for some $k \geq 1$

We will show that $f(x)$ satisfies
(1) $\quad \forall c \in(0,1), \quad \lim _{n \rightarrow \infty} f\left(\frac{c}{n}\right)=0$
(2) $\quad \lim _{x \rightarrow 0^{+}} f(x) \neq 0$
(1) Let $c \in(0,1)$ be any real number, then there is at most one integer $n$ such that $\frac{c}{n}=b^{k}$ for some $k \geq 1$.

Suppose this is not true and there exists $n_{1}, n_{2}$ such that

$$
\begin{aligned}
& \frac{c}{n_{1}}=b^{k_{1}}, \frac{c}{n_{2}}=b^{k_{2}} \quad \text { and } \quad k_{2}>k_{1} . \\
& \Rightarrow \quad b^{k_{1}} \cdot n_{1}=b^{k_{2}} \cdot n_{2} \quad \Rightarrow \quad b^{k_{2}-k_{1}}=\frac{n_{1}}{n_{2}} \in Q
\end{aligned}
$$

This contradicts the choice of $b$.

Therefore for $n$ large enough, $\frac{c}{n}$ is not equal to any $b^{k}$.
By the definition of $f$, we have $f\left(\frac{c}{n}\right)=0$.
Thus $\lim _{n \rightarrow \infty} f\left(\frac{c}{n}\right)=0$.
(2) We will prove $\lim _{x \rightarrow 0^{+}} f(x) \neq 0$ by contradiction.

Suppose $\lim _{x \rightarrow 0^{+}} f(x)=0$, then for any sequence $x_{n}$ such that $\lim _{n \rightarrow \infty} x_{n}=0$, we must hove $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=0$.

Let $\quad x_{n}=b^{n}$, since $b<1, \lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} b^{n}=0$.
But $\quad \lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} f\left(b^{n}\right)=\lim _{n \rightarrow \infty} 1=1 \neq 0$
Therefore $\lim _{x \rightarrow 0^{+}} f(x) \neq 0$.

The conclusion is that $f$ is a counterexample.
9) $f$ continuous at $0, f(0)>0$. Want $\delta$ s.t. $f(x)>0$ $\forall \quad|x|<\delta$
Say $F(0)=a>0$. Note that $\varepsilon:=\frac{a}{2}>0$. Since $f$ is continuous at $0, \exists \delta>0$ s.t. $\forall|x-0|<\delta$, we have $|F(x)-a|<\varepsilon$. That is, $\forall|x|<\delta,|F(x)-a|<\frac{a}{2}$ $\Rightarrow \quad-\frac{a}{2}<f(x)-a<\frac{a}{2} \quad$ so $\quad 0<\frac{a}{2}<f(x)<\frac{3 a}{2}$.
So $f(x)>0 \quad \forall|x|<\delta$ as desived
(we will reference this argument later in a more general setting. The content is the some, just with of"replaced by "c")
10. $w_{a}(\delta):=\sup \{|f(x)-f(y)|!|x-a| \leq \delta,|y-a|<\delta\}$, wat $f$ cts at $a \Leftrightarrow \lim _{\delta \rightarrow 0^{+}} w_{a}(\delta)=0$.
$\Leftrightarrow)$ : suppose $f$ is cts at a. Want to show that $\forall \varepsilon>0, \exists \gamma>0$ sid. $\forall 0<\delta-0<\gamma$, we have $w_{a}(\delta)<\varepsilon$. Since $w_{a}(\delta)$ is the sup of a set, that moms ne want $r$ sit. $\forall 0<\delta<\gamma, \varepsilon$ is an upper bound for $\left\{(f(x)-f(y)|:|x-a| \leq \delta| y-,a k \delta\}=: S_{a} \mid \delta\right.$
since $f$ is cts at $a, \exists j>0$ sot. $\forall z$ sit.
$|z-a|<\gamma$, we have $|f(z)-f(a)|<\frac{\varepsilon}{2}$. Now, for $\delta<\gamma$, $x, y$ J.t. $|x-a| \leq \delta, \quad|y-a|<\delta$. Then $|x-a| \leq \delta<\gamma$ So $|f(x)-f(a)|<\varepsilon / 2$ and $|f(y)-f(a)|<\varepsilon / 2$.

$$
\Rightarrow|f(x)-f(y)|=|f(x)-f(a)+f(a)-f(y)| \leq|f(x)-f(a)|+|f(y)-f(a)|
$$ $<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$. So $\varepsilon$ is a strict upper bond for $S_{q}(\delta)$ and so $w_{a}(\delta)<\varepsilon$.

$(<)$ : Suppose $\lim _{\delta \rightarrow 0^{+}} w_{n}(\delta)=0$. wat; $\forall \varepsilon>0 \quad \exists \gamma>0 \mathrm{~s}, \mathrm{~d}$. whenever $|z-a|<\gamma$, have $|f(z)-f(a)|<\varepsilon$. $F: x \in>0$. we know (hypothesis)' $\} \gg 0$ st. whenever $0<\delta<\gamma$ we have
$\varepsilon$ is a strict upper bound for $S_{a}(S)$. Nan for any $z$ s.t. $\delta=|z-a|<\gamma$, we hare (sauce $|a-a|=0<\delta$ ) that $|f(z)-f(a)| \in S_{a}(\delta)$, so $|f(z)-f(a)|<\varepsilon$.
11) $\exists L_{0} s, t . \forall x, y \in[q, \infty)$, we have

$$
|f(x)-f(y)| \leq L|x-y| \quad, \quad \text { w/ } a>0
$$

wat: $\forall \varepsilon>0 \exists \delta>0 \quad$ s. $:$. whenever $\left.|x-y|<\delta, \left\lvert\, \frac{f(x)}{x}-\frac{f(y)}{3}\right.\right) \mid<\varepsilon$.
Fix $\varepsilon>0$. Let $S=\frac{\varepsilon_{a}^{2}}{2 L_{a}+|f(a)|}$ (Noteithis is $>0$ ).
Nor,

$$
\begin{aligned}
& \left.\left|\frac{f(x)}{x}-\frac{f(y)}{y}\right|=\left|\frac{y f(x)-x f(y)}{x y}\right|=\frac{\mid y f(x)}{}-\frac{y f(y)+y f(y)-x f(y) \mid}{|x y|} \right\rvert\, \\
\leqslant & \frac{|y| f(x) f(y))|+|f(y)(x-y)|}{|x y|}=\frac{|y||f(x)-f(y)|+|f(y)||x-y|}{|x y|} \\
\leqslant & \frac{|y| L|x-y|+|f(y)||x-y|}{|x y|}=|x-y|\left(\frac{L|x|}{|x y|}+\frac{|f(y)|}{|x y|}\right)
\end{aligned}
$$

Need to do something about $f(y)$ : See hor for $f$ con mae $|f(y)|=|f(y)-f(i a)+f(a)| \leq|f(y)-f(a)|+|f(a)| \leq$

$$
\begin{aligned}
& \text { (yea) } L(y-a)+|f(a)| \leq L y+|f(a)| \\
& \text { so }\left|\frac{f(x)}{x}-\frac{f(y)}{y}\right| \leq|x-y|\left(\frac{L}{x}+\frac{L y}{x y}+\frac{|f(a)|}{x y}\right) \\
& =|x-y|\left(\frac{2 L}{x}+\frac{|f(a)|}{x y}\right) \leq|x-y|\left(\frac{2 L}{a}+\frac{|f(a)|}{a^{2}}\right) \geq|f(a)| \leq L|y-a|+(f(a) \mid \\
& <\delta\left(\frac{2 L_{a}+|f(a)|}{a^{2}}\right)=|x-y|\left(\frac{2 L a+|f(a)|}{a^{2}}\right) \\
& <\varepsilon .
\end{aligned}
$$

12) $\quad f(x)= \begin{cases}x^{2} & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{cases}$

Need to examine $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f(x)-0}{x}=\lim _{x \rightarrow 0} \frac{f(x)}{x}$

$$
\frac{f(x)}{x}=\underset{\substack{w \\ \text { for } x \neq 0}}{ } \begin{cases}x & x \in \mathbb{Q} \\ 0 & x \in \mathbb{Q}\end{cases}
$$

This is a preconize function whose pieces have the same limit, (0), at 0 ,

$$
\text { so } \quad \lim _{x \rightarrow 0} \frac{f(x)}{x}=0
$$

13) Suppose $|f(x)|$ is differentiable at $a$ with $f(a)=0$. Show that $f^{\prime}(a)=0$,
suppose $f^{\prime}(a) \neq 0$, then $\left|f^{\prime}(a)\right|=L \geq 0$. $f(a)=0 \quad \mid \cdot 1$ cts
Since $1 \cdot 1$ is cts, $\left|f^{\prime}(a)\right|=\backslash\left|\lim _{x \rightarrow a} \frac{f(x)}{x-a}\right|=\lim _{x \rightarrow 4}\left|\frac{f(x)}{x-a}\right|$
we will shan that $|f|$ is not disfible at $a$, well,

$$
\lim _{x \rightarrow a} \frac{|f(x)|-|f(a)|}{x-a}=\lim _{x \rightarrow a} \frac{|f(x)|}{x-a} \quad \begin{gathered}
\text { Consider } \\
\left(y_{n}\right):=\left(a-\frac{1}{a}\right)^{\text {sequences }}(x):=\left(a+\frac{1}{n}\right)
\end{gathered}
$$

If the above limit exists, both sequences mast give the sine result.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\left|f\left(x_{n}\right)\right|}{x_{n}-a}=\lim _{n \rightarrow \infty} \frac{\left|F\left(x_{n}\right)\right|}{1 / n}=\left|\lim _{n \rightarrow \infty} \frac{f\left(x_{n}\right)}{1 / n}\right|=\left|f^{\prime}(a)\right|=L>0 \\
& \lim _{n \rightarrow \infty} \frac{\left|f\left(y_{n}\right)\right| \mid}{y_{n}-a}=\lim _{n \rightarrow \infty} \frac{\left|f\left(y_{n}\right)\right|}{-\frac{1}{n}}=-\left|\lim _{n \rightarrow \infty} \frac{f\left(y_{n}\right)}{\frac{1}{n}}\right|=-\left|f^{\prime}(a)\right|=-L<0 .
\end{aligned}
$$

so $|f|$ is not differentiable at a.
14) $\exists \quad$ M, $a>1$. $\quad \forall \quad x, y \in \mathbb{R}$

$$
|F(x)-f(y)| \leq m|x-y|^{a}
$$

Shon $F$ is const.
we will shav thut $F$ is dift'ble at every $c \in \mathbb{R}$ and that $f^{\prime}(c)=0$. Let $c \in \mathbb{R}$.

$$
\begin{aligned}
& f^{\prime}(c)=0 \\
& \left|\lim _{x \rightarrow c} \frac{f(x)-F(c)}{x-c}\right|=\lim _{x \rightarrow c}\left|\frac{f(x)-F(c)}{x-c}\right| \leq \lim _{x \rightarrow c} \frac{M|x-c|^{a}}{|x-c|}=\min \lim _{x \rightarrow c} \frac{|x-c|^{a}}{|x-c|}
\end{aligned}
$$

Since $\quad a>1, \lim _{x \rightarrow c} \frac{|x-c|^{4}}{|x-c|}=0$ so $\quad\left|\lim _{x \rightarrow c} \frac{F(x)-f(c)}{x-c}\right| \leq M \cdot 0=0$
so $f$ is ditierentiable at $c$ and $f^{\prime}(c)=0$. This holds $\forall C \in \mathbb{R}$, so f 13 constint.
15) Let $f(x)$, $g(x)$ cancer, Fincreasing. Prae $f(g(x))$ is caver
let $x_{1}, x_{2} \in \mathbb{R}, \quad \in \in[0,1]$

$$
f\left(g\left((1-t) x_{1}+t x_{2}\right)\right) \leq(-t):\left(g\left(x_{1}\right)\right)+f\left(y\left(x_{2}\right)\right)
$$

well, $g_{-}$is convex, se $\left.g\left((1-t) x_{1}+t x_{2}\right)\right) \leq(1-t) g\left(x_{1}\right)+t g\left(x_{2}\right)$
$f 13$ incrasing so $f\left(g\left((1-t) x_{1}+t x_{2}\right)\right) \leq f\left((1-t)_{g}\left(x_{1}\right)+\operatorname{tg}\left(x_{2}\right)\right)$
$f . s \quad$ cavex, so $\left.f\left((1-t) y_{1}+t y_{2}\right) \leq(1-t) f_{y_{1}}\right)+t f\left(y_{2}\right)$

$$
=(1-t) F\left(g\left(x_{1}\right)\right)+t f\left(g\left(x_{2}\right)\right) \text { as desived. }
$$

16) $F:[0,1] \rightarrow R$ is cts, $\int_{0}^{x} f=\int_{x}^{1} 5 \quad \forall x \in[0,1]$ want

$$
f(x)=0 \quad \forall \quad x \in[0,1]
$$

Note that $\forall x \in[0,1], \int_{0}^{1} F=\int_{0}^{x} F+\int_{x}^{1} f \quad$ (Tha $7,2,13$ )
Low, $\int_{0}^{x} 5+\int_{x}^{1} F=0$, so

$$
=2 \xi f \quad \operatorname{setang} x=0 \Rightarrow \int_{0}^{1} F=0
$$

$$
\int_{0}^{x} f=\int_{x}^{1} f=-\int_{0}^{x} f \Rightarrow \int_{0}^{x} f=0 \quad \forall x \in[0,1]
$$

$\int_{a} f=0$ by het)

For $x, y \in\left[0,13, x<y\right.$, we have $\int_{0}^{x} f=0=\int_{0}^{y} f$ and $\quad \int_{x} f=\int_{0}^{y} F-\int_{0}^{x} f=0$, Finally, for $c \in[0,1]$ if $f(c)>0$, by problem $q$, $子 a, b \in[0,1]$ sit. $f(x)>0 \quad \forall x \in[a, b]$ $\Rightarrow \int_{d}^{b} f>0$, but this is a contradiction.
if $f(c)<0$, then $-f(c)>0$ so $-\int_{a}^{b} f>0 \quad\left(\begin{array}{c}\text { (where } \\ \text { above) }\end{array}{ }^{a, b}\right.$ we as
So $\int_{a}^{s} F<0$, but this is a contradiction.
so $f(c)=0$. This holds $\forall c \in\left\{0_{1} 1\right\}$, since $c$ was arbitrary.

