The Cumulant Bijection and Differential Forms

Nissim Ranade and Dennis Sullivan

Description

Given a graded commutative algebra A there is a canonical (tautologous) map $\tau: S A \rightarrow A$ where $S A$ is the graded commutative algebra generated by A. The $\operatorname{map} \tau$ is given by the formula

$$
\tau\left(x_{1} \wedge x_{2} \wedge \ldots x_{n}\right)=x_{1} x_{2} \ldots x_{n}
$$

$S A=A \oplus A \wedge A \oplus \ldots$ also has a coproduct structure $\Delta: S A \rightarrow S A \wedge S A$ given by the formula

$$
\Delta\left(x_{1} \wedge x_{2} \wedge \ldots x_{n}\right)=\sum \epsilon \cdot x_{\pi_{1}} \wedge x_{\pi_{2}}
$$

where $\pi_{1} \sqcup \pi_{2}$ is a partition of the indices into two arbitrary subsets and ϵ is the sign that arises when the first subset is moved all the way to the left. One knows that any map like $\tau: S A \rightarrow A$ lifts to a canonical coalgebra mapping $\tilde{\tau}: S A \rightarrow S A$ so that $\pi \circ \tilde{\tau}=\tau$ where $\pi: S A \rightarrow A$ is projection onto A, the linear summand of $S A$.

We verify that $\tilde{\tau}$ is given by the formula

$$
\begin{equation*}
\tilde{\tau}(v)=\tau(v)+\tau \wedge \tau \circ \Delta(v)+\tau^{\wedge 3} \circ \Delta^{2}(v)+\ldots \tag{1}
\end{equation*}
$$

Note that $\tilde{\tau}(v)=v+$ lower order terms. This implies that it is a bijection. We call this coalgebra isomorphism $\tilde{\tau}$ the cumulant bijection.

The relation of $\tilde{\tau}$ to cumulants appears when it is used to change coordinates in $S A$, in particular when it is used to conjugate extensions to $S A$ of a linear mapping of A to either a coderivation of $S A$ or to a coalgebra mapping of $S A$.

General coderivations $D: S A \rightarrow S A$ have canonical decompositions by orders $D=D_{1}+D_{2}+\ldots$ where D_{k} is determined by "Taylor coefficients" D^{k};

$$
\begin{gathered}
D^{1}: A \rightarrow A \\
D^{2}: A \wedge A \rightarrow A \\
D^{3}: A \wedge A \wedge A \rightarrow A
\end{gathered}
$$

and so on.
The explicit formulae relating D_{k} to D^{k} are

$$
D_{k}\left(x_{1} \wedge \ldots \wedge x_{n}\right)=\sum \epsilon \cdot D^{k}\left(x_{I}\right) \wedge \ldots \hat{x_{I}} \ldots
$$

where the sum is taken over all subsets I of size k of the indexing set.
A coalgebra mapping $G: S A \rightarrow S A$ is also determined by independent maps (also called the Taylor coefficients)

$$
\begin{gathered}
G^{1}: A \rightarrow A \\
G^{2}: A \wedge A \rightarrow A \\
G^{3}: A \wedge A \wedge A \rightarrow A
\end{gathered}
$$

and so on by the formula

$$
G\left(x_{1} \wedge x_{2} \wedge \ldots\right)=\sum_{\text {partitions }} \epsilon \cdot G^{j_{1}}\left(x_{\pi_{j_{1}}}\right) \wedge G^{j_{2}}\left(x_{\pi_{j_{2}}}\right) \ldots
$$

The canonical extension of a map $A \rightarrow A$ to either a coderivation or a coalgebra mapping, only has a non-zero leading order coefficient. After conjugating the canonical extensions by $\tilde{\tau}$ they have in general Taylor coefficients of all orders.

In the case of a coalgebra extension \tilde{f} of $f: A \rightarrow A$ the conjugated $g=$ $\tilde{\tau}^{-1} \tilde{f} \tilde{\tau}$ has coefficients which measure the deviation of f from being an algebra homomorphism of A.

The first few Taylor coefficients of g are

$$
\begin{gathered}
g^{1}(x)=f(x) \\
g^{2}(x, y)=f(x y)-f(x) f(y) \\
g^{3}(x, y, z)=f(x y z)-f(x y) f(z)-f(y z) f(x)-f(z x) f(y)+2 f(x) f(y) f(z)
\end{gathered}
$$

In the case of a coderivation extension \hat{f} of f, the first few coefficients of the conjugate $h=\tilde{\tau}^{-1} \hat{f} \tilde{\tau}$ are

$$
\begin{gathered}
h^{1}(x)=f(x) \\
h^{2}(x, y)=f(x y)-f(x) y-x f(y) \\
h^{3}(x, y, z)=f(x y z)-f(x y) z+x y f(z)-f(y z) x+y x f(x)-f(z x) y+z x f(y)
\end{gathered}
$$

In the first case all the higher Taylor coefficients vanish iff $f(x y)-f(x) f(y)=$ 0 , that is f is an algebra map.

In the second case all higher Taylor coefficients vanish iff $f(x y)-f(x) y-$ $x f(y)=0$, that is f is a derivation.

1 First Application

Let us now consider the case where A is a chain complex with a differential ∂ which is not necessarily a derivation of the product structure. Suppose i : $\left(C, \partial_{C}\right) \rightarrow(A, \partial)$ is a sub-complex of (A, ∂) such that A deformation retracts to C. That is, there is $I:(A, \partial) \rightarrow\left(C, \partial_{C}\right)$ so that $I \circ i=I d_{C}$ and there is a
degree +1 mapping $s: A \rightarrow A$ so that $\partial s+s \partial=i \circ I-I d_{A}$. Now let \tilde{I} and \tilde{i} be the canonical lifts of I and i to coalgebra maps between $S A$ and $S C$.

Let d be the extension of ∂ to $S A$ and $\tilde{d}=\tilde{\tau}^{-1} d \tilde{\tau}$, Then by our previous discussion the cumulant bijection $\tilde{\tau}$ gives an isomorphism between $(S A, d)$ and $(S A, \tilde{d})$.

Theorem 1. Let C be as above. Suppose there is a coderivation ∂_{∞} on $S C$ and a differential graded coalgebra map ι from $\left(S C, \partial_{\infty}\right)$ to $(S A, \tilde{d})$ which extends i. Then there is an induced isomorphism, "the induced cumulant bijection" $\tilde{\tau}_{C}$ between $\left(S C, \partial_{\infty}\right)$ and $\left(S C, d_{C}\right)$ where d_{C} is the canonical coderivation extension of $\partial_{C} . \tilde{\tau}_{C}$ is uniquely characterized by the commutativity of the following diagram.

Proof. As ι is an injection and \tilde{I} is a surjection, $\tilde{\tau}_{C}$ must be defined to be equal to $\tilde{I} \circ \tilde{\tau} \circ \iota$. The fact that $\tilde{\tau}_{C}$ is an isomorphism follows as in Lemma 2, from the fact that since ι agrees with i on the linear terms and $I \circ i$ is identity, $\tilde{\tau}_{C}$ induces the identity map on linear terms. Then since $\tilde{\tau}_{C}$ is a coalgebra map the inductive step of Lemma 2 holds. For more details see section 3 .

Remark 1. Note that $S C$ receives the induced cumulant bijection from the map ι and not from a commutative algebra structure on C.

2 The missing details, the cumulant bijection in the associative context and more applications

Definition 1. A graded coassociative conilpotent coalgebra is a graded vector space C together with a degree zero coassociative coproduct $\Delta: C \rightarrow C \otimes C$ with the property that for all v in C there exists an integer n such that $\Delta^{n}(v)=0$. If the image of the coproduct is in the graded symmetric tensors then C is called the graded symmetric coassociative conilpotent coalgebra

Definition 2. The free coassociative conilpotent coalgebra without co-unit generated by a graded vector space V is a nilpotent coalgebra $T^{c} V$ with a projection map onto V with the following universal property: Given a linear map from a graded nilpotent coassociative coalgebra to V there exists a unique coalgebra map \tilde{f} from C to $T^{c} V$ such that the following diagram commutes.

On the space $T V=V \oplus V^{\otimes 2} \oplus V^{\otimes 3} \ldots$ consider the coproduct Δ given by the following formula.

$$
\Delta\left(x_{1} \otimes x_{2} \otimes \ldots \otimes x_{n}\right)=\sum_{i=1}^{n-1} x_{1} \otimes \ldots x_{i} \bigotimes \ldots \otimes x_{n}
$$

$T V$ with the coproduct Δ is the universal free conilpotent coalgebra associated to V. The formula for the lift is given later in Lemma 1 .

Definition 3. The free graded coassociative cocommutative nilpotent coalgebra generated by V is a sub-coalgebra $S^{c} V$ of $T^{c} V$ such that if C taken as above is also graded cocommutative then the image of \tilde{f} lies in $S^{c} V$, that is the following diagram commutes.

$$
S^{c} V=\bigoplus_{n=1}^{\infty} S^{n} V
$$

where $S^{n} V$ is the subspace of $V^{\otimes n}$ generated by

$$
\sum_{\sigma \in S_{n}} \pm x_{\sigma(1)} \otimes x_{\sigma(2)} \ldots x_{\sigma(n)}
$$

The signs in the summation are given by the degrees of x_{i}, for example in $S^{2} V$ is generated by elements of the form $x \otimes y+(-1)^{|x||y|} y \otimes x$. The coproduct Δ restricts to a coproduct on $S^{c} V . S^{c} V$ is linearly isomorphic to $S V=V \oplus$ $V \wedge V \oplus V \wedge V \wedge V \ldots$ by the map which sends $x_{1} \wedge x_{2} \wedge \ldots x_{n}$ in $S V$ to $\sum_{\sigma \in S_{n}} \pm x_{\sigma(1)} \otimes x_{\sigma(2)} \ldots x_{\sigma(n)}$ in $S^{c} V$. Note the product that $T^{c} V$ acquires from it's isomorphism to $T V$ does not restrict to the product $S^{c} V$ acquires from it's isomorphism to $S V$. Here onwards we will use $S V$ to denote both, the algebra with the usual product structure and the coalgebra with the induced coproduct structure.

Lemma 1. The map \tilde{f} in (2) is given by the formula,

$$
\tilde{f}(x)=f(x)+f \otimes f \circ \Delta_{C}(x)+f^{\otimes 3} \circ \Delta_{C}^{2}(x)+\ldots
$$

where Δ_{C} is the reduced coproduct on C. Since C is nilpotent this sum is finite.

Proof. Note that $\pi \circ \tilde{f}(x)=f(x)$. To prove the lemma we need to show that

$$
\Delta_{T} \circ \tilde{f}=\tilde{f} \otimes \tilde{f} \circ \Delta_{C}
$$

The Sweedler notation for higher powers of Δ_{C} applied to x is

$$
\Delta_{C}^{n}(x)=\sum_{(x)} x_{(1)} \otimes x_{(2)} \otimes \ldots \otimes x_{(n+1)}
$$

So the formula for \tilde{f} as defined becomes

$$
\tilde{f}(x)=\sum_{n} \sum_{(x)} f\left(x_{(1)}\right) \otimes f\left(x_{(2)}\right) \otimes \ldots \otimes f\left(x_{(n+1)}\right)
$$

and when we apply the coproduct to this we get

$$
\Delta_{T} \circ \tilde{f}(x)=\sum_{n} \sum_{(x)} \sum_{i} f\left(x_{(1)}\right) \otimes \ldots \otimes f\left(x_{(i)}\right) \bigotimes \ldots \otimes f\left(x_{(n+1)}\right)
$$

On the other hand we have

$$
\begin{gathered}
\tilde{f} \otimes \tilde{f} \circ \Delta_{C}(x)=\sum_{(x)} \tilde{f}\left(x_{(1)}\right) \otimes \tilde{f}\left(x_{(2)}\right) \\
=\sum_{(x)} \sum_{i, j} f\left(x_{(1)}\right) \otimes \ldots \otimes f\left(x_{(i)}\right) \bigotimes \ldots \otimes f\left(x_{(i+j)}\right) \\
=\sum_{n} \sum_{(x)} \sum_{i} f\left(x_{(1)}\right) \otimes \ldots \otimes f\left(x_{(i)}\right) \bigotimes \ldots \otimes f\left(x_{(n+1)}\right)
\end{gathered}
$$

which is what is required.
If C is graded cocommutative then the image of \tilde{f} is in $S^{c} V$ which we have identified with $S V$. So the formula in Lemma 1 becomes

$$
\tilde{f}(x)=f(x)+f \wedge f \circ \Delta_{C}(x)+f^{\wedge 3} \circ \Delta_{C}^{2}(x)+\ldots
$$

Suppose A is a graded commutative associative algebra. Then consider the $\operatorname{map} \tau: S A \rightarrow A$ which takes $x_{1} \wedge x_{2} \wedge \ldots x_{n}$ to $x_{1} x_{2} \ldots x_{n}$. We call this map the tautologous map. Since this is a map from a graded cocommutative coalgebra we can lift it to a map $\tilde{\tau}: S A \rightarrow S A$ and from Lemma 1 the formula for $\tilde{\tau}$ is given by the equation 1

Lemma 2. $\tilde{\tau}: S A \rightarrow S A$ is a coalgebra isomorphism.
Proof. Let $F_{n}=\bigoplus_{i=1}^{n} \wedge^{i} A$ where $\wedge^{i} A$ is the graded symmetric product of i copies of A. Then F_{n} defines an increasing filtration of $S A$ and $S A$ is the direct limit of this sequence of sub-coalgebras.

$$
A=F_{1} \hookrightarrow F_{2} \hookrightarrow \ldots F_{n} \hookrightarrow \ldots
$$

For $v \in \wedge^{n} A, \tilde{\tau}$ is given by the formula

$$
\tilde{\tau}(v)=\tau(v)+\tau \wedge \tau(\Delta(v))+\ldots+\tau^{\wedge n}\left(\Delta^{n-1}(v)\right)
$$

Note that the highest degree term in the formula is v and so this formula preserves the filtration F_{n}. We will show by induction that $\tilde{\tau}$ restricted to F_{n} is an isomorphism for each n. Now on $F_{1}, \tilde{\tau}$ is identity hence an isomorphism. Now consider the following short exact sequence

$$
0 \rightarrow F_{n-1} \hookrightarrow F_{n} \rightarrow \wedge^{n} A \rightarrow 0
$$

On $F_{n-1}, \tilde{\tau}$ is an isomorphism by induction hypothesis and on $\wedge^{n} A$ the map induced is the identity map. So $\tilde{\tau}$ is an isomorphism on F_{n}. Since it's restriction to each F_{n} is an isomorphism, $\tilde{\tau}$ is an isomorphism from $S A$ to $S A$.

A linear map from a graded commutative algebras A to itself can be extended to either a coderivation or a coalgebra map from $S A$ to $S A$. These can then be conjugated by $\tilde{\tau}$ as it is an isomorphism. The linear map itself doesn't have to be an algebra map or a derivation.
Theorem 2. i) Suppose d is any linear map from a graded commutative algebra A to A. Then there exists a unique coderivation \tilde{d} from $S A$ to $S A$ such that the following diagram commutes.

The coderivation construction, d gives \tilde{d}, preserves commutators. This implies that if d has degree -1 and squares to zero then \tilde{d} also has degree-1 and squares to zero.
ii) Suppose f is any linear map between graded commutative algebras A to B. Then there exists a unique coalgebra morphism \hat{f} from $S A$ to $S B$ such that the following diagram commutes.

Note that the uniqueness implies that the coalgebra construction, f gives \hat{f}, respects composition.
iii) (1] and [2]) Suppose A and B are graded commutative algebras and d_{A} and d_{B} are linear maps, not necessarily derivations, of degree -1 and square zero on A and B respectively. Suppose f is a linear map, not necessarily an algebra map, from A to B such that $f \circ d_{A}=d_{B} \circ f$. Then \hat{f} as in ii) is the unique homomorphism of differential graded coalgebras from $\left(S A, \tilde{d_{A}}\right)$ to $\left(S B, \tilde{d_{B}}\right)$ such that the following diagram commutes.

Proof. i) A linear map d from A to A can be uniquely extended to a coderivation D on $S A$ which commutes with the projection map to A for the coalgebra structure on $S A$. That is there exists a unique D such that the following diagram commutes.

where π is the projection map. D is given by the following formula.

$$
D\left(x_{1} \wedge x_{2} \wedge \ldots x_{n}\right)=\sum_{i} \pm x_{1} \wedge \ldots \wedge d\left(x_{i}\right) \wedge \ldots x_{n}
$$

The signs in the sum depend on the degrees of x_{i} and the degree of the map d. Consider the map $\tilde{d}:=\tilde{\tau} \circ D \circ \tilde{\tau}^{-1}$. This map is the unique coderivation on $S A$ which makes (4) commute.

If d_{1} and d_{2} are two linear maps of some degrees from A to A and let D_{1} and D_{2} be the coderivations on $S A$ which commute with the projection maps. Since the bracket of two coderivations is a coderivation, $\left[D_{1}, D_{2}\right.$] is a coderivation. Besides this is the unique coderivation which extends $\left[d_{1}, d_{2}\right]$. So, $\left[\tilde{d}_{1}, \tilde{d}_{2}\right]$ is the unique coderivation with the above property for the map $\left[d_{1}, d_{2}\right]$. Thus if d has degree -1 and squares to zero, then $\tilde{d}^{2}=1 / 2[\tilde{d}, \tilde{d}]$ is a coderivation which uniquely extends d^{2}. Since d^{2} is zero, \tilde{d}^{2} will also be zero. So maps of degree -1 which square to zero give coderivations which square to zero on $S A$.
ii) A linear map f between A and B can be uniquely extended to a homomorphism of coalgebras F from $S A$ to $S B$ which commutes with the
projection maps. That is there exists a homomorphism of coalgebras such that the following diagram commutes.

F is given by the following formula.

$$
F\left(x_{1} \wedge x_{2} \wedge \ldots x_{n}\right)=f\left(x_{1}\right) \wedge f\left(x_{2}\right) \wedge \ldots f\left(x_{n}\right)
$$

The map $\hat{f}=\tilde{\tau} \circ F \circ \tilde{\tau}^{-1}$ is then the unique coalgebra homomorphism which makes (5) commute.
iii) We only need to check that $\hat{f} \circ \tilde{d_{A}}=\tilde{d_{B}} \circ \hat{f}$. Let D_{A} and D_{B} be the coderivations on $S A$ and $S B$ respectively which commute with the projection maps and F be the coalgebra homomorphism from $S A$ to $S B$ which commutes with the projections. Since $f \circ d_{A}=d_{B} \circ f$, by direct computation we have that $F \circ D_{A}=D_{B} \circ F$. It follows then that $\hat{f} \circ \tilde{d_{A}}=\widetilde{d_{B}} \circ \hat{f}$.

Conjugation by $\tilde{\tau}$ of the lift to a coalgebra map measures the deviation of the original map from being an algebra homeomorphism and that of the lift to a coderivation measures how far the original map was from being a derivation for the algebra structure.

Proposition 1. Let d be a linear map from A to A and \tilde{d} be the coderivation constructed in the previous theorem. Let f be a linear map from A to B and \hat{f} be homomorphisms constructed from f in the last theorem.
i) d is a derivation if and only if

$$
\tilde{d}\left(x_{1} \wedge x_{2} \wedge \ldots x_{n}\right)=\sum_{i} \pm x_{1} x_{2} \ldots d\left(x_{i}\right) \ldots x_{n}
$$

ii) f is a homomorphism of algebras if and only if

$$
\hat{f}\left(x_{1} \wedge x_{2} \wedge \ldots x_{n}\right)=\tau\left(f\left(x_{1}\right) \wedge f\left(x_{2}\right) \wedge \ldots f\left(x_{n}\right)\right)=f\left(x_{1}\right) f\left(x_{2}\right) \ldots f\left(x_{n}\right)
$$

Proof. i) In the proof of the last theorem we defined the coderivation D such that it satisfies the formula

$$
\tau \circ D\left(x_{1} \wedge x_{2} \wedge \ldots x_{n}\right)=\sum_{i} \pm x_{1} x_{2} \ldots d\left(x_{i}\right) \ldots x_{n}
$$

This expression is equal to $d\left(x_{1} x_{2} \ldots x_{n}\right)=d \circ \tau\left(x_{1} \wedge x_{2} \wedge \ldots x_{n}\right)$ if and only if d is a derivation for the algebra A. Thus we have that $d \circ \tau=\tau \circ D$ if and only if d is a derivation for the algebra A. Since \tilde{d} is the unique coderivation that commutes with $\tau, \tilde{d}=D$ if and only if d is a derivation.
ii) Similar to the proof of the first part

$$
\tau \circ F\left(x_{1} \wedge x_{2} \wedge \ldots x_{n}\right)=\tau\left(f\left(x_{1}\right) \wedge f\left(x_{2}\right) \wedge \ldots f\left(x_{n}\right)\right)=f\left(x_{1}\right) f\left(x_{2}\right) \ldots f\left(x_{n}\right)
$$

which is equal to $f\left(x_{1} x_{2} \ldots x_{n}\right)$ if and only if f is a homomorphism. By uniqueness of \tilde{f} we have that it is equal to F if and only if f is a homomorphism.

3 More detailed Proof of Theorem 1

Proof. The proof is similar to the proof of Lemma 2. Define $\tilde{\tau}_{C}$ to be $\tilde{I} \circ \tilde{\tau} \circ \iota$. This map is a composition of differential coalgebra maps and hence is itself a differential coalgebra map. Let $F_{n}=\bigoplus_{i=1}^{n} \wedge^{i} C$, where $\wedge^{i} C$ is the graded symmetric product of i copies of C. The F_{n} is the filtration on $S C$. We will use induction on the degree of the filtration to prove that $\tilde{\tau}_{C}$ is an isomorphism. As ι preserves the filtration $\tilde{\tau}_{C}$ also preserves the filtration. Also as ι agrees with i on $C=F_{1}$ and since $\tilde{\tau}$ is identity on $A, \tilde{\tau}_{C}$ is identity on F_{1}. Now suppose $\tilde{\tau}_{C}$ is an isomorphism when restricted to F_{n-1}. Since $\tilde{\tau}_{C}$ is a coalgebra mapping, for $v=x_{1} \wedge x_{2} \wedge \ldots x_{n}$ in $\wedge^{n} C$ we have that $\tilde{\tau}_{C}^{\wedge} \circ \Delta^{n-1}(v)=\Delta^{n-1} \circ \tilde{\tau}_{C}(v)=v$. This implies that $\tilde{\tau}_{C}(v)=v+$ lower order terms. Then consider the short exact sequence

$$
0 \rightarrow F_{n-1} \hookrightarrow F_{n} \rightarrow \wedge^{n} C \rightarrow 0
$$

By induction hypothesis $\tilde{\tau}_{C}$ is an isomorphism on F_{n-1} and by the above argument it induces identity on $\wedge^{n} C$. Hence it is an isomorphism on F_{n} for every n which implies it is a coalgebra isomorphism of $S C$.

4 Related Work

Our focus on the cumulant bijection was directly inspired by a lecture of Jae Suk Park at CUNY November 2011. The ideas in the lecture have been developed in the two papers [1] and [2].

The "induced cumulant bijection" is used in [3] to set up potential algorithms for computing 3D fluid motion based on differential forms and the integration deformation retract to cochains.

References

[1] Gabriel C. Drummond-Cole, Jae-Suk Park, John Terilla. "Homotopy Probability Theory I". preprint arXiv February 2013
[2] Gabriel C. Drummond-Cole, Jae-Suk Park, John Terilla. "Homotopy Probability Theory II". preprint arXiv February 2013
[3] D. Sullivan. "3D Incompressible Fluids: Combinatorial Models, Eigenspace Models, and a Conjecture about Well-posedness of the 3D Zero Viscosity Limit". to appear in JDG Hirzebruch Volume 2014

