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SOME EXAMPLES 1)

by Dennis Sullivan arid William Thurston

We will consider examples of low dimensional manifolds with inversive,

projective, and affine structures (see below). The geometry of the associated

developing maps is a problem like the qualitative study of dynamical Systems

involving as it does the "infinité composition" of finitely many opérations. Our

goal will be to answer in the négative certain questions about affine manifolds?
by producing examples where the developing map is either not a covering of its

image or has a rather complicated image.
Thèse structures, classically called locally homogeneous spaces [1, 3, 8] or

spaces with a flat Cartan connection [4], are determined by "canonical
coordinate charts" on manifolds and may be defined in gênerai as follows :

One starts with a model manifold A (see table below) and a transitive group
,c/ (usually a Lie group) of real analytic homeomorphisms of A. Then one
constructs ail possible manifolds by choosing open sets of A and pasting thèse

together using restrictions of homeomorphisms from the given group s/ of
analytic homeomorphisms. Such a manifold M is called an ,o/-manifold. More
precisely, an «c/-manifold is a manifold M together with an atlas k,- : [/,- -> A such
that the changes of charts are restrictions of éléments oLo/ ; a "canonical chart" is

any chart on M which is with thèse.

We will consider the following cases :

l
) Our first draft of this paper was done in January 1977. The présent version contains

notes and clarifications by N. Kuiper bringing the paper to a more précise form. The
authors acknowledge their thanks.



We are basically interested in the compact case.

The dynamical nature of such a structure on M arises from the ability to
"roll" or "develop" the manifold M along paths of M (by pasting the opén sets of
A) into the model manifold A. We can do this in particular for closed paths
representing generators of the fundamental group n-^M of M. The words in kIMk

1 M
then détermine a dynamical System on A.

Starting from one of the open sets U a A, the development produces a

covering space M' -» M, a représentation kIMk
1 M AG called the holonomy and a

structure preserving immersion, the developing map M' -4 A, which is

equivariant via p with respect to the action of kIMk
1 M on M' and se on A.

The ambiguity in the development M' -4 A is the choice of one canonical
chart k : U -> A about a base point x e U on M, uniquely determined up to

multiplication on the right by an élément of se . In other words, the development
à may be found by choosing an arbitrary structure-preserving map in one patch,
then extending this choice by analytic continuation. This process works globally
because se is a group of globally analytic diffeomorphisms.

In Note 1 at the end of this paper Ehresmann's neat définition of the

development is given.

In Note 2 one sees how an can be viewed as a fibrebundle

A -> E -> M with fibre A and structure group se, fixed cross section s(M), and

a foliation 3F transverse to the fibres and to s(M) ; the foliation 3F defines

a "parallel transport" of the "tangent" fibres such that, the holonomy is in se .

In Note 3 one finds the development of curves in a manifold with Cartan
connection as described by Ehresmann in [4], and how this spécialises for flat
connections to the above developing map into one fibre.



Figure 1

Before going to our examples we remark that considérations of the

developing map (an immersion of manifolds of equal dimension),

immediately shows such things as

i) there are no compact manifolds with fmite fundamental group which hâve

affine structures.

ii) the only compact «-manifolds with finite fundamental group with projective
or inversive structures are actually covered by the n-sphere Sn

.

Actually i) is true whenever the model manifold A is non-compact and ii) is

true whenever the model manifold A has a compact universal covering like S".

In this context we remark that it is not totally unreasonable to hope that ail 3
manifoldshâve canonical charts relative to some subgroup of analytic
homeomorphisms ofS 3

. This statement by the above remark implies a strong form
of the Poincaré conjecture ; yet the statement itself only involves dimension 3 and

not the fundamental group explicitly.
Now we turn to our 2-dimensional examples.



Inversive 2-manifolds

Inversive structures on orientable two manifolds of genus > 1 form a rich

theory properly containing for example the classical subject of Fuchsian and

Kleinian surface groups.
If Sl(2, C)/±l = G/(2, C)/G/(l, C) is the group of fractional linear

transformations of CP 1

, that is the group of orientable inversive (conformai)
transformations of S 2

, and F is a discrète subgroup acting freely and

discontinuously on a connected open set Q. cz S 2
, then Q/V is a 2-manifold M

with inversive structure. M' is just Q and the developing map is an embedding.

Example 1. If Fisa Fuchsian group, that is, Qisan open (round) disk in
Ccz S 2

, then the inversive structure is actually a hyperbolic structure?
corresponding to a metric of constant négative curvature. The structure is

inversive and projective at the same time.

Example 2. If Fasin Example lis deformed slightly (a so-called quasi-
Fuchsian group ; see [9]) then Q. remains an open disk whose boundary can be a

rather remarkable non rectifiable Jordan curve. This curve has no tangent at a

dense set.

Figure 2

Example 3. Let Fbe generated by two gênerai hyperbolic éléments of

sufficient strength so that the union of the fundamental domains of each covers

the entire sphère. Then Q is S2S
2 minus a Cantor set and Q/F is a compact

conformai 2 manifold whose developing image is Q. (Shottky group)

In Figure 3, rlsr l5 r2r
2 and r3r

3 are inversions (reflections) in three circles and F consists

of ail products of an even number of thèse inversions. Fis generated by r 1 r 2 and

r { r 3 . A fundamental domain is Du r Y D, D=Dl u D 2 . The Cantor set appears

clearly on the line of symmetry m.



Figure 3

Example 4. A class of examples not always arising from Kleinian groups as

above can be achieved as follows. Let y be the boundary of an immersed disk in
S 2

. Approximate ybya closed immersed curve again bounding an immersed disk
constituted of 2g + 2 (for some integer g > 0) successive arcs ofcircles meeting
at right acute angles (Fig. 4). The new disk with scalloped edges has a conformai
structure from the immersion and four of thèse may be assembled to obtain an
inversive 2-manifold of genus g. This topological assemblage is suggested in

Figure 5.

Figure 4

Figure 5



Note this construction uses inversion in circles, and four angles at a vertex
add up to achieve the non singular conformai structure. Also note the original
immersed disk may be chosen (for g big enough) to cover S2S

2 completely (in a very
complicated way) and then the developing map M' -> S2S

2 cannot be a covering.
In Figure 6an example with immersed disk D with 6 vertices (g = 2) is suggested,
where the developing map covers clearly S2S

2 completely.

Figure 6

We note conversely that if the developing map M' -> S2S
2 is not onto (see

Fig. 3, where D { is the initial disk, for an example) then the developing map is

rather remarkably a covering of its image (Gunning [6]). The idea of the proof is

the following?if the image omits at least three points, (exactly one or two points
is easy) M' has a Poincaré metric of constant négative curvature preserved by the

holonomy group of Moebius transformation acting on the image. Then the

developing map becomes an isometric immersion of a complète manifold and

thus a covering map.

Example 5. There are interesting projective structures on the torus
constructed as follows. Start with a generic linear flow on the projective plane

(with a source, a sink, and a saddle in point B in Fig. la) and choose an immersed

curve transverse to the flow lines (Fig. 7b). Note that such curves may be based on

a word in 2 symbols for example ccaaaa in Figure 7, and ccaaacacaa in Figure 8,

where the closed curve on RP 2 is drawn on the open band that universally
covers the Moebius band, projective plane minus point B.



Figurh la Figure 1b

Figure $hFigure 8a

Flowing the curve along for time f sweeps out a thickening of the immersed

curve, an immersed annulus. We may identify the two boundary components of
the annulus by the time r map, a locally projective isomorphism.

The identification space is a projective structure on the torus M whose

developing map is the map: M' = S 1

x R-» RP 2
, obtained by spreading the

immersed curve around by the flow for ail time f g R.

The developing map is not a covering and the image is the projective plane
minus three points for any word différent from aa or ce. Note that the covering



space M' is obtained by gluing, each time along one of the two segments oîa or c,

as many copies of open sectors bounded by the lines a and c, (each covering an

open annulus [s]) as there are letters in the characteristic word. Thèse projective
structures on the 2-torus are characterized by their (cyclic) word and the t = 1

flow map. In suitable homogeneous coordinates the last is expressed as

f{ : ./; : (x, y, z) -> (xc«, ye*\ zeyt ) a< 6<y, t = 1.

Remark. Following the curve from its initial point Pto its endpoint P\ one
can say that the sectors of P and P' were identified by the identity map: in
homogeneous coordinates.

A more gênerai case (see Goldman [s]) is obtained if we identify by any
projectivity commuting with J\ :

À, U, V G R.

Affine structures in 2, 3, and 4 dimensions

In dimension two orily the torus admits an affine structure by Benzecri [1]
and for ail affine structures the developing map is a covering of its image by

Nagano-Yagi [7]. The image is affinely équivalent to either the whole plane, the

once punctured plane, the half plane or the quarter plane.

We obtain interesting affine structures in dimensions 3 and 4 using

respectively the projective and inversive structures in dimension 2 discussed

above.

i) A projective transformation of the real projective plane RP 2 = R3R
3

- {o}/R* (where R* = R - {0}) lifts to an affine transformation of V = R3R
3

? [o], unique but for scalar multiplication. Any such commutes with scalar

multiplication by a real number a > 1 (e.g. oc = 2).

Thus one may build an affine 3-manifold using as a pattern a projective two

manifold (open sets in the projective plane lift to open sets (cônes) in V etc.). If we

further divide by the action of a compactness is preserved in the construction.

The projective structures on the two torus constructed above yield compact
affine 3-manifolds where the developing map is not a covering. In particular,
from the example in Figure 7, we can obtain an affine 3-manifold which develops



over the part outside the coordinate axes of {X > 0} u {Z > 0} c R3R 3

= [(.v, y, z)], but not as a covering. In thèse examples the 3-manifold M is a 3
torus.

ii) Similarly, a projective transformation of the complex projective line CP 1

= c2c 2 - (o}/C*, that is to say an orientable conformai or inversive

transformation of S2S
2 = CP 1

, lifts to a complex affine transformation of V

= C2C
2 - {o}, unique but for scalar multiplication and commuting with scalar

multiplication.

We can build a four dimensional affine manifold from an inversive 2-mani

fold,which is actually a complex affine manifold of C-dimension 2, and this

construction is the analogue of the above over C, thinking of S2S
2 as CP 1 and the

conformai transformations as the C-projective transformation.

Again compactness is achieved if we divide by a = 2. Thus using the

inversive Example 2 we obtain affine 4-manifolds whose developing image has a

complicated boundary related to the non-differentiable Jordan curve. Using
Example 3, we obtain an affine four-manifold whose developing image in R4R 4

omits a Cantor set of two planes passing through the origin.
Using Example 4, we can build affine manifolds whose developing map is not

a covering of its image (which is ail of C2C
2 ? 0). And we repeat, ail the above are

actually complex affine structures on compact 4-manifolds.

Note 1 (see page 16). Ehresmann defined the development map as foliows.

Let 2P -? M be the principle j/-bundle over M, whose points are germs [x, k]
of canonical charts {x e U a M, k: U -? A}. Define a new topology #"(^) in
the set 0> by taking as open set the germs at ail points x e U of any given chart

k: U -> A. The natural map d: 3F(&) -» A is an immersion. Choose one com
ponentof J^(^) and call it M'. The restriction d: M' -? A is a develop
mentmap. The restriction of the natural fibre bundle projection p: 3F (g?) -> M
is a covering M' -> M.

Note 2 (see page 16). The fibre bundle picture. For the simple local
discussion of one canonical chart U a A, we can describe a trivial fibre bundle
E v = U x A-+Uby assigning to any xeU the "heavily osculating" model
space A x = A. The manifold Uis embedded as the diagonal cross section. s(U)
-= {(v, y)) = diag((7 x U) c U x U a U x A. Its points are the points of
tangency of fibre and base manifolds. Finally a foliation J* is defined as the one
with horizontal leaves U x {v} ci E v = U x A, for veA.

For the global discussion of an j^-structure on a manifold M, we assume «in
compatiblecanonicalcharts that are topological embeddings k : U c> A for



small open sets [/ c M. A point of the fibre bundle space E over M is by
définition a triple

where xeUaM,k:U A is a canonical chart and veA, modulo

équivalence by the action of se given by g: {x, k, v} {x, k', t/} where k'

= g o k, v' = gv, g g se . In £, M is embedded as the "diagonal cross section"

s{M), whose points are represented by triples {x, k, k(x)}. The foliation J*7 has the
local "horizontal" leaves represented by triples {U, k, v}. For contractible closed

curves starting and ending at x0 eMin the base space M, the holonomy of the

foliation is of course the identity map of the fibre Ax .Asa conséquence for closed

curves in gênerai, starting and ending at x0 the holonomy gives the

représentation of nIMn
1 M into the group se acting on A

Xq . "Parallel displacement"
of the points of s(M) along the lifting in of curves in the base space
ending at xO,x 0 , détermines the development map M' -* Ax .

Note 3 (see page 16). Flat Carton connections. Manifolds with canonical

(j/, A)-charts are the flat cases (without torsion and without curvature) of
manifolds M with a gênerai {se , A)-connection. They are defined in [4] as

follows

(1) A fibre bundle A -* E -? M with fibre A over M

(2) A fixed cross section s(M)

(3) An n-plane field £ in E transversal to the fibres and transversal to the fixed

cross sections, such that

(4) The holonomy obtained by lifting a closed curve starting and ending at

x0 gM, into ail curves tangent to £„ belongs to se acting on Ax . It is in

gênerai différent for homotopic curves. It is flat if contractible closed curves
hâve trivial holonomy (= identity).

The development of a curve ending in x0 in M, is obtained by dragging along Ç

the corresponding points oîs(M) until they arrive in the fibre Ax .In the flat case

homotopic curves with common initial and end points give the same image of the

initial point in the end fibre and the development map is achieved.
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