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 Annals of Mathematics, 108 (1978), 539-552

 A counterexample to the Periodic Orbit

 Conjecture in codimension 3

 By D. B. A. EPSTEIN AND E. VOGT*

 1. Introduction

 Let M be a manifold with a flow, such that every orbit is a circle. We

 address ourselves to the following question: Is the time-of-first-return

 function locally bounded? An equivalent question is: Is the length of the

 circular orbits a locally bounded function? (See Epstein [3] for a discussion

 of the consequences of an affirmative answer, and for other equivalent state-

 ments.) The Periodic Orbit Conjecture was the conjecture that the answer

 is affirmative for all such flows on compact manifolds. This conjecture is

 known to be false (Sullivan [5] and [6]).

 An analogous question was first tackled by Reeb in his thesis [4], where

 it arose as a natural part of the investigation of stability (the Reeb Stability

 Theorems). Here the flow is replaced by a foliation. The condition, that

 each orbit should be a circle, becomes the condition that each leaf is compact.

 The question now is: Is the volume of the leaf a locally bounded function?

 In codimension one, Reeb shows how the concept of holonomy leads to

 an affirmative answer, since, if everything is oriented, the volume of the

 leaf is a continuous function. Reeb gave an example of a foliated non-

 compact manifold, in which every leaf is compact, and the volume of the

 leaf is a locally unbounded function. Epstein [2] produced a real analytic

 flow on a non-compact 3-manifold with locally unbounded time-of-first-return

 function. However Epstein [2] shows that on a compact 3-manifold, the

 time-of-first-return function must be bounded. By modifying the proof in

 [2], this result has been extended to foliations of codimension two, such

 that each leaf is compact (see Edwards, Millett, and Sullivan [1] or Vogt

 [7]). The methods used to obtain this affirmative answer in codimension

 two are intricate and for some time after the publication of [2], it seemed
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 540 D. B. A. EPSTEIN AND E. VOGT

 reasonable to hope that better methods would be found, which would yield

 results in other codimensions.

 However, in [5] and [6] Sullivan produced an example of a flow on a

 compact 5-manifold, with every orbit a circle, but with unbounded time-of-

 first-return. Sullivan also gives in [5] and [6] an exposition of a subsequent

 example by Thurston which is real analytic. Thurston's example is also

 explained in an appendix written by D. B. A. Epstein for a forthcoming

 book by A. Besse (pseudonym) on Riemannian manifolds, all of whose geo-

 desics are closed curves.

 Stronger justification for the intricacies involved in Epstein's proof,

 [2], is provided in a forthcoming paper by E. Vogt [8]. In this paper Vogt

 produces examples in which the Epstein hierarchy ends at any pre-assigned

 countable ordinal. It follows that the complications foreshadowed in [2],

 which Epstein has to rule out in dimension 3, can in fact occur in higher

 codimensions.

 The present paper produces an example like that of Sullivan or Thurston,

 but in codimension 3 instead of 4. (Given an example we can always in-

 crease either the dimension or the codimension, by multiplying by a circle.)

 That is to say, we produce a flow on a compact 4-manifold, in which each

 orbit is a circle, and the circles have unbounded length. Moreover we im-

 prove on the analyticity of Thurston's example; ours is polynomial. Our

 compact 4-manifold M is the inverse image of 0 under a polynomial map

 F: R7 -- R3, and 0 is a regular value for F. Our vector field, generating the

 flow, is given by polynomials defined on the whole of R7. (Note that the

 flow itself can not possibly be given by polynomials, because a polynomial

 cannot be periodic with respect to any variable.)

 In [6], Sullivan gives some plausibility arguments due (jointly) to

 Epstein and Hirsch, to show that a flow on a compact 4-manifold, with every

 orbit a circle, cannot have a bad set which is a manifold. (The bad set is

 the set on which the time-of-first-return function is locally unbounded.)

 A rigorous proof of this is lacking. In the present paper, the bad set is the

 union of four 3-spheres and four 2-dimensional tori. Each 3-sphere has the

 Hopf flow on it, and the flow on each torus is a circular flow around one of the

 two generating circles. These are arranged like a necklace with eight beads,

 3-sphere alternating with torus. An adjacent 3-sphere and torus have ex-

 actly one circle in common. Thus the bad set in this case is a nice poly-

 hedron. This raises a second question: In the case of an analytic foliation

 with all leaves compact, is the length of the hierarchy bounded by the

 codimension?
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 COUNTEREXAMPLE TO THE PERIODIC ORBIT CONJECTURE 541

 Two methods used in this paper for constructing manifolds may pos-

 sibly be of wider interest. Suppose N is a manifold with boundary B and

 suppose I: N-o [0, oo) is a function such that B = 0-1(0). Then we double N

 by taking the set of points (x, t) in Nx R satisfying (x) = t2. We spinm N

 about B by taking the set of points (x, ul, u2) e Nx R2, satisfying 5(x)

 UI + u2. If we happen to be in a situation where a well-behaved 0 is part of

 the data, these constructions will obviously be more natural than previously

 defined methods of doubling or spinning.

 2. Finding the example-a qualitative description

 In order to make the various features of our example comprehensible,

 we will guide the reader along a path where the need for each successive

 complication is clear. (Needless to say, the historical development did not

 follow this natural path. In particular the discussion we give here under-

 states the role played by other mathematicians and their insights. For

 example, the theorem of Edwards, Millett, and Sullivan [1] giving homo-

 logical information about the bad set provided a powerful motive for put-

 ting into the bad set at least one S3 with the Hopf flow on it.)

 Our objective is to construct a compact manifold with a flow such that

 each orbit is a circle, and such that the time-of-first-return function Z is a

 (locally) unbounded function.

 First attempt. (See Figure 1.)

 A

 FIGURE 1

 The most naive thing to do is to take a 2-dimensional disk D in the

 plane, with a circular flow of the form (r, 0, t) --+ (r, 0 + to(r)). Then the

 orbits are circles C7 of radius r. We throw away a small disk around the

 origin, because the origin is a fixed point, and we obtain an annulus A. In

 order to have r(r, 0) - 2wr/(r) unbounded, we let 0(r) tend to zero as r

 tends to 1.
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 542 D. B. A. EPSTEIN AND E. VOGT

 First attempt fails. An orbit at the outer boundary C1 is a single point,

 and not a circle, as we require.

 Second attempt. We multiply the "horizontal" annulus A by a "vertical"

 circle S, and arrange for the flow to have, in addition to the flow already

 described, a constant vertical component. Then the orbit through a point

 lying over C1 will be just a copy of the circle S.

 Second attempt fails. Over the circle Cr, we have a torus Cr x S which

 is invariant under the flow. The flow on this torus is linear, and the slope

 is vertical for r = 1. For r <1 the slope is not vertical. Therefore the slope

 must be irrational for some value of r, and the orbit is not a circle.

 The third attempt. We need a better idea to force orbits to be closed:

 That idea is syqmmetry. We construct a field of vectors v(x) on A(x C A)

 tangent to S. In Figure 2, these vectors are drawn, for convenience, as if

 they were tangent to A, but in fact they are tangent to S, and orthogonal

 to A.

 FIGURE 2

 Since S = R/Z, the vectors all lie in a 1-dimensional space. We require any

 movement in the vertical direction to be cancelled out by an equal and opposite

 movement at a later time. Explicitly, we assume that the velocity along

 Cr in the horizontal direction depends only on r, and not on 0. We also

 assume that v(x)= -v(-x). If a is any arc of Cr, then as the point covers

 a, the vertical movement is proportional to v(x)dx. If a = Cr, then the

 symmetry of v(x) ensures that the integral is zero. Thus, if r < 1, eacb

 orbit is a circle covering Cr exactly once.

 Third attempt fails. Since v(x) =-v(- x) there must be at least two

 zeros of v on each circle Cr. These are shown by the row of dots in Figure 2.

 Therefore the flow is stationary over the two points (1, 0) and (-1, 0) in A.

 However, we may take heart from the fact that we now have an ex-
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 COUNTEREXAMPLE TO THE PERIODIC ORBIT CONJECTURE 543

 ample on a non-compact manifold, namely (A\{(1, 0), (-1, 0)}) x S. This ex-

 ample is essentially the same as that of Reeb [4] or Epstein [2]. The time-

 of-first-return function is not only unbounded (which is trivial to arrange

 on a non-compact manifold), but also locally unbounded on C1.

 Fourth attempt. We retain the symmetry v(x) = - v(- x), but we insist

 that v should never be zero. In order to achieve this, we replace Figure 2

 by Figure 3, which has yet to be made meaningful. This is done by

 FIGURE 3

 multiplying A not by a circle S = R/Z, but by a torus T = R x R/Z x Z.

 The arrows in Figure 3 are once again orthogonal to A, although they are

 drawn tangent to A". The arrows represent vectors in R2, the tangent space

 of T. As in the third attempt, the condition v(x) = - v(- x) ensures that if

 r < 1, then each orbit is a circle over Cr. Such orbits lie in Cr x T.

 Fourth attempt fails. Over a given point of C1, the flow on the torus T

 is the projection of the flow on R2 along lines of a fixed slope. As the slope

 varies, the flow on T will vary through an irrational flow, and then the

 orbits are not circles.

 Fifth attempt (success). We give a rough description at this point: In

 later sections of the paper we will be very precise.

 We have a parametrized family of tori, one for each point of A. We

 use the symbols u and w to denote coordinates in R2, so that (u, w) is a

 typical point. The idea is to let the tori, which we write as Su x Sf (x C A),

 vary in size. Here Su and Sw are circles. Now if we insist that for each

 x x A we obtain a true torus, then the slope of v(x) on C1 will be frozen at

 a constant rational value, making v(x) = - v(- x) impossible. However, if

 we allow the radius of one of the circles, say Su, to shrink down so as to be

 zero along an arc Q of C1, and if the vector v(x) always has a non-zero com-

 ponent in the w-direction, for x in Q, then we get a well-defined flow on the

 space thus described. Moreover the slope of v(x) will be unfrozen within
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 544 D. B. A. EPSTEIN AND E. VOGT

 this limitation.

 In order to convince oneself that the union of such parametrized tori

 gives a manifold, rather than a manifold with a singularity, we contemplate

 the construction called spinning, due to E. Artin. If we take a rectangle

 and spin it around one edge, we get a solid cylinder. The edge becomes the

 axis of the cylinder, and disappears into the interior of the solid cylinder.

 The other three boundary edges spin to produce new boundary pieces, each

 of dimension two. As a point on the rectangle moves nearer to the axis,

 the circle it generates becomes smaller, until the circle actually shrinks to

 a point, when the axis is reached.

 Thus, the situation described above, with a family of tori over A, can

 be achieved by first spinning around the arc Q of C1, and then multiplying

 by a circle. This shows that our family of parametrized tori gives rise to

 a 4-dimensional manifold. Over the arc Q, the vector v(x) may be varied

 in direction, as long as the w-component is always non-zero. Over each

 point of Q, we have a copy of the circle SW, and the flow simply goes around

 this circle.

 The idea now is to use the spinning operation along several disjoint arcs

 of C1. In between these arcs, we will keep the slope of v(x) constant and

 rational, thus getting a rational flow on the torus Su x Sw. On each of the

 arcs, either Su or Sw will be shrunk to a point (but not both), and v(x) will

 either have the w-component never zero or the u-component never zero.

 Thus Figure 3 is replaced by Figure 4.

 Qs

 Q14

 FIGURE 4

 On each of the arcs Q1, Q3, Q5, Q7, the slope of v(x) is constant and is

 equal to ?1. On the arcs Q2 and Q6, v(x) has a non-zero w-component. On the

 arcs Q4 and Q8, v(x) has a non-zero u-component. We spin the annulus simul-
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 COUNTEREXAMPLE TO THE PERIODIC ORBIT CONJECTURE 545

 taneously around the arcs Q2 and Q6, thus generating the circles Su which

 shrink down to zero radius precisely on Q2 and Q6. We also spin simultane-

 ously around Q4 and Q8, thus generating the circles SW, with zero radius

 precisely on Q4 and Q,. This construction gives a 4-manifold with five

 boundary components, corresponding to Q1, Q3, Q5, Q7 and the interior circle

 of the annulus. We double the manifold to remove the boundary.

 This completes the qualitative description of the flow. Off C1, orbits are

 circles because of the symmetry v(x)= -v(--x). Over Q1, Q3, Q5, and Q7,

 where the inverse image of a point is a torus, the flow on the torus has

 slope ?1, so every orbit is a circle. Over Q2, Q4, Q6, and Q,, where the inverse

 image of a point is a circle (or two circles, because of doubling), the orbit

 is equal to that circle.

 The part of the manifold over Qj, for i = 1, 3, 5 or 7, is a 3-sphere. The

 part over Qj, for i = 2, 4, 6 or 8, is a 2-dimensional torus, obtained by dou-

 bling an annulus.

 The time of first return function is locally unbounded at points of C1,

 because it is equal to 27w/'(r) or Cr if r < 1, as described above in the first

 attempt.

 3. Finding the equations for the manifold

 We now show how to translate the informal description of Section 2 into

 polynomial formulas. We note that analytic continuation prevents different

 types of phenomena from occurring along the eight arcs of a round circle,

 FIGURE 5
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 546 D. B. A. EPSTEIN AND E. VOGT

 as described in the fifth attempt of Section 2. We therefore replace the

 circle by an octagon bounded by the lines x= ?2, y= 2, x + y= ?3,

 x - y= ?3, as shown in Figure 5.

 We replace the radius function by

 (3.1) *(x, y) = (2-x)(2 + x)(2-y)(2 +y)(3 + x + y)(3-x-y)(3-x +y)(3 + x-y).

 We define

 D = {(x, y): -2 x < 2,-y2 < _ 2, -3 X + y _ 3, -3 x X-y _ 3}.

 On int D, 2 > O.

 LEMMA 3.2. Let R be any interval with one endpoint at 0 and the other

 on the boundary of D. If R is parametrized linearly, then * restricted to

 R has non-zero derivative, except possibly at the endpoints. In particular,

 d* # 0 on int D - {0}. If 0 < r < 1296, then +-l(r) n D is a simple closed

 curve.

 Proof.

 V(x, y) (4 - x2)(4 - y2)(9- (x + y)2)(9 (x -))

 Differentiating along R we obtain four non-positive terms, with at most one

 being zero. The lemma follows.

 We define A to be the annulus

 A =D n {(x, y): +(x, y) < 1}

 The spinning operations are performed as follows. We work in R6, with

 variables (x, y, u1, u2, wl, w2), and we consider the subset of R6 consisting of

 points (x, y, u1, u2, w1, w2) with (x, y) e A and satisfying the equations

 (3.3) u2 + u2 = 4-X2

 and

 (3.4) w + w2 =4-y2 .

 The projection of this subset onto A has the properties required. Namely,

 the inverse image of a point of Q2 or Q6 is a circle in the w-plane; the inverse

 image of a point in Q4 or Q8 is a circle in the u-plane; and the inverse image

 of any other point of A is a torus.

 We now perform the doubling operation. We add another variable z,

 so that we are working in R7, subject to the additional condition

 (3.5) z2 = P(x, y)

 where

 (3.6) P(X, y) = (1-0(3-x-Y)(3-x + Y)(3 + x-y)(3 + x + y) .
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 COUNTEREXAMPLE TO THE PERIODIC ORBIT CONJECTURE 547

 The effect of these equations is that every point of our subset in R6 gives

 rise to two distinct points in R7, corresponding to the two solutions for z,

 except that if AP(x, y) = 1, or if (x, y) e Q, U Q3 U Q5 U Q7, we obtain only one

 point in R7.

 4. Rigorous description of the 4-manifold

 Let ;(x, y, un, U2, w1, w2, z) e R7. We define F: R7---> R3 as the poly-

 nomial function given by the formulas

 Fj(d) = U4 + u2 -4 + x2,

 F2 - w2 + w2 - 4 + y2

 F3(Q) = Z2 _ p(X, y)

 where F(Q) = (F1('), F2(Q), F3(Q)) e R3. We define M F'(O). Then Mis the

 subset of R7 satisfying (3.3), (3.4), and (3.5). We will prove that FI M is

 regular and that M is compact, so that M is a compact 4-manifold smoothly

 embedded in R7, and a non-singular real algebraic variety.

 LEMMA 4.1. The projection of R7 onto the first two coordinates maps

 M onto A.

 Proof. Let I = (x, y, U1, U2, W1, W2, z) e M. Since F1 = 0, we have

 4- x2 > . Since F2= 0, we have 4 - y2 > 0. Hence (4- x2)(4 - y2) > 0.

 Since F3 = 0, we have p(x, y) > 0. Hence

 0 ? p(x, y)(4 - x2 )(4 - y2) (1 -

 Therefore 0 ? j ? 1.

 We now suppose that (x, y) X A, and obtain a contradiction. By applying

 the symmetries x - - >-x, and y --> - y, which preserve both 1 and p, we may

 suppose that x + y > 3. Since we already know that -2 ? x ? 2 and

 -2 ? y ? 2, we must have 1 < x < 2 and 1 < y ? 2. Hence -1 x-Jy < 1

 and so

 (9-(X + y)2)(9_(X _ y)2) < 0.

 Since p > 0, (3.6) shows that + > 1. Hence - = 1. But then

 1 = _ (4 - x2)(4-8 y2)(9_(X + y)2)(9(X - y)2) <! 0

 which is a contradiction.

 Conversely, if (x, y) e A, we can clearly solve for l ul, w1, w2, and z, so

 that d e M.

 LEMMA 4.2. F: R7 -> R3 is r egular on M = F'1(0), so that M is a

 4-dimensional manifold.

 Proof. The Jacobian of F is
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 548 D. B. A. EPSTEIN AND E. VOGT

 ~ 2x 0 2u, 2u2 0 0 0-

 0 2y 0 0 2w, 2w2 2]

 -aplax -aplay O 0 0 0 2z-

 Neither of the first two rows can be zero on M, so the matrix has rank 2 or

 3. We will suppose it has rank 2 and deduce a contradiction.

 If the matrix has rank 2, then the third row must be a times the first

 row plus f8 time the second row, where a, f8 e R. Therefore z = 0, and so

 p = 0 by (3.5).

 If (9-(x + y)2)(9-(x - y)2) # 0, then + 1 by 3.6, and so

 dp= -dr(9-(x + y)2)(9_(x _ y)2)

 which is non-zero by Lemma 3.2. But since y = 1, U4 + U2 0 0 and

 w2 + wI # 0 by (3.3) and (3.4). Hence a =8 = 0, so that ap/&x = 0 = &p/&y.

 This shows that if the rank is 2, then (9-(x + y)2)(9_(x _ y)2) 0.

 By applying the symmetries x >-x and y >-y, we may assume that

 x + y = 3. ThenV0 = 0 and

 dp = 6(dx + dy)((x - y)2 - 9)

 which is non-zero since (x, y) e A. Therefore ap/&x = dp/&y t 0 and so both

 a and f8 are non-zero. But then ul-U2 = w1 w2 =0, which is impossible

 by (3.3), (3.4), and Lemma 4.1.

 LEMMA 4.3. M is compact.

 Proof. We know that M is closed. That M is bounded follows from

 Lemma 4.1, and equations (3.3), (3.4), (3.5).

 5. Finding the equations for the vector field

 From Section 2, we see that the vector field should preserve the level

 surfaces of '. We have

 i = (a&l/x)x + (&f/&y)y.

 So we get 0 by making (x, y) proportional to (aa/&y, -a*/&x). Since

 we also want (x, y) to be zero when , = 0, we define

 (5.1) x = arlr/y and y = -*ar/&x.

 Then * is constant along orbits. By Lemma 3.2, (x, y) is zero on M, if and

 only if f = 0. The orbits in the (x, y)-plane are simple closed curves in A,

 except when * = 0.

 To find out what z should be, we differentiate (3.5), obtaining

 (5.2) 2zz = (&p/&x)Jx + (&p/&y)y = &(a*/&y)(ap/ax) -(a*1ax)(aplay) .
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 COUNTEREXAMPLE TO THE PERIODIC ORBIT CONJECTURE 549

 Differentiating the logarithm of

 p(X, y) = (1 -_ )(9-(X + y)2)(9_(X _ y)2)

 we see that the right-hand side of (5.2) becomes 2p(x, y)u(x, y) where

 (5.3) q(x Y) = &_ ( (x + Y)* ) +_ + &+)( (y - x)+

 x ay I 9-(X + y)2 ax ay 9-(X -)2

 Thus a(x, y) is a polynomial with integer coefficients. Since Z2 = p(x, y), we

 set

 (5.4) i = zc(x, y) .

 We now wish to define ul, ui, w1, and w2 so as to achieve the situation

 shown in Figure 5. Restricting our attention for the moment to the u-plane,

 note that we would like to have a circular motion about the center. Such

 a flow is given by

 A1=-pu2 and t2 = pu1

 where p = is the angular velocity. Note that it is the angular velocity

 which is depicted by the vectors in Figures 2, 3, 4, and 5. (Look first at

 Figure 2 to see this.)

 Simultaneouly the radius of the circle in the u-plane will change with

 time, since (3.3) shows that

 d(U2 + U2)/dt -2xa =2x~a8lay .

 The equations A, = Ku, - pU2 and t2 = pUm + KU2 combine both an angular

 and a radial velocity. This gives rise on M to

 d(U2 + U2)/dt = 2K(U2 + u2) = 2K(4 - x2).

 So we define

 (5.5) K(x, y) -x(a&/&y)(4 - y2)(9_(X + y)2)(9_(X - y)2)

 Similarly, putting

 wb = Lw1 - qw2 and w2 = qw1 + Lw2,

 we are led to define

 (5.6) L(x, y) = y(aa/&x)(4 -x2)(9_(x + y)2)(9_(X - y)2)

 In order to define p and q, we look again at Figure 5. We see that we

 want to have angular velocity functions p and q with the following pro-

 perties:

 (5.7) i) p(x, y) > O if O < y?< 2;

 ii) q(x, y)> O if O < x?<a 2;

 iii) p(x, y) p(-x, y) = -p(x, -y);
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 550 D. B. A. EPSTEIN AND E. VOGT

 iv) q(x, y) =-q(-x, y) = q(x, -y);

 v) p =q on x + y =3.

 If we define

 (5.8) p(x, y) = (9 + x2 - y2)y and q(x, y) = (9 - x2 + Y2)x

 we see that these conditions are satisfied.

 6. Rigorous treatment of the vector field

 We define a vector field X on R7as follows. Let :(x, y, Ut, u2, w1, w2, z).

 Then

 Xe = ,A(ai/ay)0ax - P(aD/&x)a/ay + (Ku, - pu2)a&aul + (PU1 + KU2)&/&U2

 +(Lw, - qw2)a/aw1 + (qwl + Lw2)4/Dw2 + ZU(X, Y)d/&Z

 where K is defined in (5.5), L in (5.6), p and q in (5.8) and a in (5.3).

 LEMMA 6.1. If g; e M, then X. is tangent to M.

 Proof. Since F: R 7-> R' is regular on M, we need only show that

 (DF)X. = 0, and this is a trivial calculation.

 LEMMA 6.2. X is never zero on M.

 Proof. We suppose X, = 0 for Y (x, Y, Uln, u2, wl, w2, z) e M and deduce

 a contradiction. We have

 0 = U2u, - it1u2 =p(X, y)(u2 + U2)

 and similarly q(x, y)(W2 + W2) 0. If u2 + u2 # 0 then p(x, y) = 0, and so

 y- 0by (5.7). By (3.4) w2 + w2 # 0, and so q(x, y) = 0, which implies that

 x = 0 by (5.7). But (x, y) = (0, 0) is not in A, which contradicts Lemma 4.1.

 It follows that ul + u2= 0, and, by (3.3), that x2 = 4. Therefore

 q(x, y) / 0. Hence w2 + w2 0 and so y2 = 4. Once again (x, y) 2 A, a con-

 tradiction.

 LEMMA 6.3. The functions A, p, a, and F and the vector field X are in-

 variant under rigid rotations about the origin in either the u-plane or the

 w-plane.

 Proof. This is clear for A, p, a, and F. It follows for X since a matrix

 of the formLpK 7j is a scalar multiple of a rigid rotation of R2 about the

 origin. Hence the matrix commutes with such rotations. The lemma fol-

 lows.

 LEMMA 6.4. Let T: RI -> R7 be the involution defined by

 T(X, X, u1 Uu2, w1, W2, Z) = (-X, -y, U2, U1, W2, W1, Z)
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 Then ,r, p, F, M, and X are invariant under T.

 Proof. If T transforms an object such as a function, a differential

 form or a vector field to its negative, we will call that object anti-invariant.

 Clearly A,, p, and F are invariant, and hence dir is invariant. Since dx and

 dy are anti-invariant, we have

 (a&/&x)dx + (a&0/ay)dy = di

 = T*d*

 --(aiax o T)dx - (al/ay o T)dy .

 Hence 8+/8x and a/ay are anti-invariant, and the same goes for ap/ax and

 &p/ay. From (5.3), a is invariant. The polynomials p and q are anti-invariant,

 and K and L are invariant. Hence the definition of X shows that it is in-

 variant.

 Recall that 0 = 0 by (5.1). Hence * is constant on each orbit.

 LEMMA 6.5. On M, if + > 0, then each orbit is (diffeomorphic to) a

 circle. As * tends to zero, the time of first return tends to infinity.

 Proof. Let

 (t) = (x(t), y(t), U1(t), U2(t), W(t), W2(t), z(t)) e M

 be a point moving under the flow at time t. Since (x, )LO, by Lemma (3.2),

 and since the level curves of +Y in A are simple closed curves, we see that

 (x(t), y(t)) traverses such a level curve, always moving in the same direction

 (counter-clockwise). Let 2x > 0 be the time of first return of (x(t), y(t)).

 It is clear, by the symmetry of *, that x(X)= -x(O) and y(X)= -y(0).

 If z(O) = 0, then by (3.5) and (3.6) ' = 1 (since we are assuming that * > 0).

 It follows from (3.6) that z(t) = 0 for all t. Therefore, if z(O) > 0, then

 z(t) > 0 for all t, and if z(O) < 0, then z(t) < 0 for all t.

 By (3.5), z is determined, apart from its sign, by x and y. Hence

 z(O) = z(X). By (3.3) and (3.4),

 u1(X)2 + U2(X)2 = U1(0)2 + U2(0)2

 and

 w1(X)2 + w2(X)2 = w1(0)2 + w2(0)2.

 Therefore there is a rotation R in the u-plane and a rotation S in the

 v-plane such that

 RS T i(0) .

 Of course, R and S depend on i(0). By Lemmas (6.3) and (6.4), T*X=

 R*X = S*X = X. It follows that i(t + X) = RST (t) for all t. Also T
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 conjugates both R and S to their inverse, so that RSTRST is the identity.

 By putting t = x., we deduce that d(2\..) = d(O). Hence the orbit is a simple

 closed curve with time of first return equal to 2X'.

 As 1 tends to zero, (x, y) tends to zero. But the length of the orbit of

 (x, y) in A does not tend to zero. (In fact it tends to 8 + 41/v2.) Hence A,

 tends to infinity as r tends to zero.

 LEMMA 6.6. If x + y= +3 or x - y= ?3 for a point in M, then the

 orbit through this point is a circle.

 Proof. We have + = p 0. Therefore x(t) and y(t) are independent of

 t. By (3.5), z(t) = Ofor allt. By (5.5) and (5.6), K(x(t), y(t))=L(x(t), y(t))=0

 for all t. Therefore, throughout the orbit, the following equations are

 satisfied

 Xc= 8= i= 'I U Y1-pt a2 =u, PU1Y =-lqW2 , b2 = qWl

 By (5.7) p q or p - q throughout the orbit. The angular speeds in the

 u-plane and in the w-plane are equal to Ip1, which is non-zero by (5.7). There-

 fore, after a time 2X/1 p 1, the point returns to its starting position, and this

 is also the time of first return.

 LEMMA 6.7. If x= ? 2 or y ?2 for a point in M, then the orbit through

 this point is a circle.

 Proof. Suppose for example that x = 2. Then u1= u, = 0 by (3.3).

 Also x = 0 since r = 0. Therefore z(t) is constant by (3.5) and so z 0.

 Hence x = i 0-it, = = and L(x, y) = 0 throughout the orbit. So,

 on the orbit, we have the equation 'l (=-qw2, ?b2 qw,, where wl + w2=

 4 - y2 t- 0. The time of first return is 27r/1 q I = wr/5 + y2.
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