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GALOIS SYMMETRY IN MANIFOLD THEORY 

AT THE PRIMES 

by Dennis SULLIVAN 

Let DU denote the category generated by compact simply connected manifolds^) 
and homeomorphisms. In this note we consider certain formal manifold categories 
related to Oil. We have the profinite category 9fc, the rational category dïlQ and 
the adele category 3ïlA. The objects in these categories are CW complexes whose 
homotopy groups are modules over the ground ring of the category (Z = lim Z/n, 

Q, and A = Q ® Z), and which have certain additional manifold structure. 

From these formal manifold categories we can reconstruct Dfi up to equivalence. 
For example a classical manifold M corresponds to a profinite manifold M, a 
rational manifold MQ, and an equivalence between the images of M and MQ in 
3rLA . In fact Dil is the fibre product of DIT, and DTcß over VïlA. 

Thus we can study OR by studying these related categories. Here we find 
certain advantages. 

— the structure of 01c finds natural expression in the related categories . 

— these categories are larger and admit more examples — manifolds with certain 
singularities and more algebraic entities than topological spaces. 

— there is a pattern of symmetry not directly observable in Die. 

For the last point consider the collection of all non-singular algebraic varieties 
over C. The Galois group of C over Q permutes these varieties (by conjugating the 
coefficients of the defining relations) and provides certain (discontinuous) self 
maps when these coefficients are fixed. 

As far as geometric topology is concerned we can restrict attention to the 
field of algebraic numbers Q (for coefficients) and its Galois group Gal (Q/Q). 
Conjugate varieties have the same profinite homotopy type (canonically) so 
Gal (Q/Q) permutes a set of smooth manifold structures on one of these profinite 
homotopy types. [S3] 

If we pass to the topological category DTI we find this galois action is abelian 
and extends to a natural group of symmetries on the category of profinite man
ifold s ; 

u i- • A I group of , abehanized \ .. ( , ~ 

Gal (ff/fl) - Î 7 | J aCtS ° n ™" 

(1) The case 7r, ¥= 0 can be treated to a considerable extent using families (see S3). 
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First description. 

The possibility of defining formal manifold categories arises from the viewpoint 
begun by Browder and Novikov. For example, Browder observes that 

(i) a manifold has an underlying homotopy type satisfying Poincaré duality. 

(ii) there is a Euclidean bundle over this homotopy type — the normal bundle 
in Rn (which is classified by a map into some universal space B) 

(iii) the one point compactification of the bundle has a certain homotopy 
theoretical property — a degree one map from the sphere Sn. (the normal invariant) 

Novikov used the invariant of (iii) to classify manifolds with a fixed homotopy 
type and tangent bundle, while Browder constructed manifolds from the ingredients 
of (i), (ii), and (iii). 

We propose tensoring such a homotopy theoretical description of a simply 
connected manifold with a ring R. For appropriate R we will obtain formal 
manifold categories DRÄ. 

To have such a description ofDRÄ we assume there is a natural construction in 
homotopy theory Y -> YR which tensors the homotopy groups with R (under 
the appropriate hypotheses) and that a map X ^ BR has an associated sphere 
fibration (sphere = SR). 

There are such constructions for R any of the subrings of Q,ZZ,any of the 
non-Archimedian completions of Q, ß p , the arithmetic completions of Z , Zpand Z, 
the finite Adeles Q ® Z (see S\). — -

The fibre product statement 

DR ~DRß x MA DR (OR = ZTCz) 

follows from the Browder surgery theorem and analogous decomposition of ordi
nary (simply connected) homotopy theory (see [B] and [Sl] chapter 3). 

Second description. 

If one pursues the study of Browder's description of classical manitolds in 
a more intrinsic manner - internal to the manifolds studied — certain transversality 
invariants occur in a natural way. These signature and arf invariants of quadratic 
forms on submanifolds control the situation and the structure which accrues 
can be expressed m the formal manifold categories see [52] and [S3], 

In the "rational manifold theory", a manifold is just a rational homotopy 
type satisfying homological duality over Q together with a preferred characteristic 
class 

'„ + '«-4 + • • • + '„-4/ + ••• = ' * ^Hn_^(X,Q) , n = dim X. 

Here /„ is an orientation class and l0 is the signature of X (if n = 0 (4)). 

To pursue a more precise discussion we should regard X as a specific CW complex 
endowed with specific chains representing the characteristic class. 

Then a homotopy equivalence X ^ Y between two such complexes and a chain 
o>f so that f#lx - ly = duf determines a "homeomorphism" up to concordance. 
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lA There is an analogous "homological" description for DR̂  if we replace Q by 
A = Q ® Z, (or by any field of characteristic zero). 

I The profinite manifold theory has a more intricate structure. First of all there 
is a complete splitting into p-adic components 

DR ~I1DRD 

p y 

where the product is taken over the set of prime numbers and DRp is the for
mal manifold category based on the ring R = Zp, the p-adic integers. 

,p For the odd primes we have a uniform structure. Let (/:* , k*) denote the 
I cohomology theory constructed from the p-adic completion of real Ä'-theory by 

converting the filtration into a grading. Then the p-adic manifolds are just the 
fc-duality spaces at the prime p. That is, we have a CW complex X (with p-adic 
homotopy groups) and a ^-homology class. 

px E km (X) m = dim X (defn) 

so that forming cap products with the orientation class gives the Poincaré duality 

ki(X)-km_i(X)(i) 

The homeomorphisms in DR correspond to the maps X -> Y giving an isomor
phism of this natural duality in fc-theory 

^* X ĝ t k%Y 

k* Y <- k* Y, 

"homeomorphism 
condition" 

i e / is a homotopy equivalence and f#ßx
 = My-

Again a more precise discussion (determining a concordance class of homeo
morphisms. . .) requires the use of cycles (analogous to the chains above) and a 
specific homology producing the relation f*Px

 = My • 

Note that K(X)*, the group of units in k°(X), acts bijectively on the set of all 
orientations of X. Thus the set of all manifold structures (up to equivalence) on 
the underlying homotopy type of X is parametrized exactly by this group of 
units. 

Also note that a homotopy type occurs as that of a p-adic manifold precisely 
when there is a fc-duality in the homotopy type : (see [S2] and [£3]). 

l2 At the prime 2 the manifold category is not as clear. To be sure the 2-adic 
manifolds have underlying homotopy types satisfying homological duality (coef
ficients Z2). Thus we have the natural (mod 2) characteristic classes of Wu. 

(1) We could reformulate this definition of a -̂duality space at the prime p in terms of 
homological Poincaré duality and the existence of an orientation class in "periodic" K-
homology. Using the connective fc-theory seems more elegant and there is a natural cycle 
interpretation of k# in terms of manifolds with signature free singularities, (see [S2]) 

We also note that the Pontryagin character of iix would be compatible with the rational 
characteristic class of a classical manifold determining X. 
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d i m * 
vx =vx+v2 + ... + vt + ... i < — ^ ~ 

where vt G H1 (X, Z/2) is defined by duality and the Steenrod operations 

vt U x = S^ x dim x + / = dim X. 

The square of this class only has terms in dimensions congruent to zero mod 4 

v\ + v2 + v2
6 + . . . 

and the "manifold structure" on X defines a lifting of this class to Z2 coefficients. 

( i ) ßx = ix +1 2 + . . . + /, + . . . in # 4 * c r , Z2), 

The possible manifold structures on the homotopy type of X are acted on bijec-
tively by a group constructed from the cohomology algebra of X. We take inho
mogeneous cohomology classes, 

u = u2 4- a4 + u6 + .. . + u2i +... 

using Z/2 or Z2 coefficients in dimensions congruent to 2 or 0 mod 4 respectively. 
We form a group G from such classes by calculating in the cohomology ring using 
the law, 

u-v = u + v + 8 uv. 

Note that G is the product of the various vector spaces of (mod 2) cohomo
logy (in dimensions 4/ + 2) and the subgroup(^-generated byinhomogeneous 
classes of HA* (X, Z2). 

If we operate on the manifold structure of X by the element u in G8 the 
characteristic class changes by the formula 

ßxu = ßx + 8 M ( 1 +&X). 

For example, the characterictic class mod 8 is a homotopy invariant.(see S3) 

Local Categories 

If / is a set of primes, we can form a local manifold category DR/9 by construc
ting the fibre product 

™isMQ**A(n™,) 

The objects in DR; satisfy duality for homology over Z, plus the additional 
manifold condition imposed at each prime in / and at Q. 

For example we can form DR2 and dite the local categories corresponding to 
/ = { 2 } and / = 6 = {odd primes J. Then our original manifold category DR 
satisfies 

DR a DR2 XMQ DR0 

and we can say 

(1) Again, the Poincaré dual of ßx would be compatible with the rational characteristic 
class of a classical manifold determining X. 
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DR is built from DR2 and DRÖ with coherences in DRß 

DR2 is defined by homological duality spaces over Z(2^ satisfying certain 
homological conditions and having homological invariants (at 2). 

DR0 is defined by homological duality spaces over Z[ 1/2] with the extra struc
ture of a KO ® Z[l /2] orientation. 

DRß is defined by homological duality spaces over Q with a rational characte
ristic class. 

Examples 

(1) Let F be a polyhedron with the local homology properties of an oriented 
manifold with R coefficients. Then V satisfies homological duality for R coef
ficients. 

If R = Q, the rational characteristic class can be constructed by transversality. 
(Thorn) and we have a rational manifold 

FGDR ß 

The Thorn construction can be refined to give more information. The charac
teristic class Iv satisfies a canonical integrality condition. At 2 lv can be lifted 
to an integral class. At p > 2 lv can be lifted (via the Chern character) to a canonical 
Ä'-homology class [Sl], 

So if V also satisfica Z/p - duality (p > 2) we have a ^-duality space and 
a local manifold at odd primes, V G DR0. 

If V satisfies Z/2 - duality we have a good candidate for a manifold at 2. 
(FGDR2 ?) 

Note that such polyhedra are readily constructed by taking the orbit space of an 
action of a finite group 7r on a space W(l). For example if the transformations of 7r 
are orientation preserving then W/tr is a Z/p homology manifold if W is and p is 
prime to the order of ir. W/ir is a Q homology manifold if W is. 

(2) Now let F be a non-singular algebraic variety over an algebraically closed 
field k of characteristic p. Then the complete etale type of V determines a #-adic 
homological duality space at each prime q not equal to p (See [AM] and [Sl]). 

V has an algebraic tangent bundle T. Using the etale realization of the projec
tive bundle of T one can construct a complex AT-duality for V. To make this 
construction we have only to choose a generator \ik of 

H"(k-m,Zq)^Zq 

This /^-duality is transformed using the action of the Galois group to the appro
priate (signature) duality in real ÜT-theory, q > 2. If TT1V = 0 , we obtain a g-adic 
manifold for each q =£ 2 or q =/= p 

[ H e OR, (2) 

(1) More generally with finite isotropy groups. 
(2) The prime 2 can also be treated. [£3]. 



174 D. SULLIVAN C 2 

Now suppose that V is the reduction mod p of a variety in characteristic zero. 
Let VQ denote the manifold of complex points for some embedding of the new 
ground ring into C 

Of course Vc determines <y-adic manifolds for each q, [VQ\ G DTI,,. 

We have the following comparison. If pk corresponds to the natural generator 
ofHv(C-0, Zq)then 

[V]~[VC] indkq. 

The Galois symmetry 

To construct the symmetry in the profinite manifold category Dil we consider 
the primes separately. 

For p > 2 we have the natural symmetry of the p-adic units Z* in isomorphism 
classes in DRp. If M is defined by the homotopy type X with ^-orientation px, 
define Ma by ÌT and the Ar-orientation px using the Galois action of a G Z* on 
k-theory.(q G Z* acts by the Adams operation \j/q when q is an ordinary integer). 
Note that M and Ma have the same underlying homotopy type(i). 

For p = 2 we proceed less directly. Let M be a manifold in Cffc2 with charac
teristic class i?M = lx + l2 + If a. G Z% define ua G G8(M) by the formula 

1 + a2 L + a4 L + . . . 
1 + 8 " - - 1 + / 1 + / 2 +

2 . , . 

«. - (-T") 'i + (—i-^ + -^- ' ' ) +"-
Define Ma by letting ua act on the manifold structure of M. An interesting 

calculation shows that we have an action of Z2 on the isomorphism classes of 2-adic 
manifolds — again the underlying homotopy type stays fixedO) 

We have shown the 

THEOREM.- The profinite manifold category DR possesses the symmetry of the 
subfield of C generated by the roots of unity. 

The compatibility of this action of Z* on OR with the Galois action on complex 
varieties discussed above is clear at p > 2, and at p = 2 up to the action of elements 
of order 8 in the underlying cohomology rings of the homotopy types. We hope to 
make the more precise calculation in [53]. 
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