EXAM

Practice Final

Math 132

May 15, 2004

ANSWERS

Problem 1. Find the volume of a hemisphere two ways:

(a) Use the disc method to find the volume of the "eastern" hemisphere formed by rotating the region under $y = \sqrt{1 - x^2}$ from x = 0 to x = 1 around the x axis.

Answer:

$$V = \int_0^1 \pi \left(\sqrt{1-x^2}\right)^2 dx \tag{1}$$

$$= \int_{0}^{1} \pi \left(1 - x^{2}\right) dx \tag{2}$$

$$=\pi\left(x-\frac{x^3}{3}\right)\Big]_0^1\tag{3}$$

$$=\frac{2\pi}{3}\tag{4}$$

(b) Use the shell method to find the volume of the "northern" hemisphere formed by rotating the region under $y = \sqrt{1 - x^2}$ from x = 0 to x = 1 around the y axis.

Answer:

$$V = \int_0^1 2\pi x \sqrt{1 - x^2} dx$$
 (5)

$$= -\pi \frac{2}{3} \left(1 - x^2\right)^{\frac{3}{2}} \bigg]_0^1 \tag{6}$$

$$=\frac{2\pi}{3}\tag{7}$$

It may be helpful to recall that the curve $y = \sqrt{1 - x^2}$ is a semicircle of radius 1 centered at the origin.

Problem 2. Compute the arclength of curve $y = \sqrt{1 - x^2}$ from x = 0 to x = 1. *Answer*:

The formula for arclength involves $\sqrt{1 + \left(\frac{dy}{dx}\right)^2}$, so we compute

$$1 + \left(\frac{dy}{dx}\right)^2 = 1 + \left(-\frac{x}{\sqrt{1-x^2}}\right)^2 = 1 + \frac{x^2}{1-x^2} = \frac{1}{1-x^2}.$$

So, the arclength equals $\int_0^1 \frac{1}{\sqrt{1-x^2}} dx$. We compute:

$$L = \int_0^1 \frac{1}{\sqrt{1 - x^2}} dx \, dx$$

use the substitution $x = \sin(t)$:

$$\begin{array}{l} x = \sin(t) \\ dx = \cos(t)dt \end{array} \quad \text{and} \quad \begin{array}{l} x = 0 \Rightarrow t = 0 \\ x = 1 \Rightarrow t = \frac{\pi}{2} \end{array}$$

$$= \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{1 - \sin(t)^{2}}} \cos(t) dt$$
$$= \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{\cos(t)^{2}}} \cos(t) dt$$
$$= \int_{0}^{\frac{\pi}{2}} dt$$
$$= t \Big]_{0}^{\frac{\pi}{2}}$$
$$= \frac{\pi}{2}.$$

Problem 3. It is easy to check that $\frac{1}{x^2 + x} = \frac{1}{x} - \frac{1}{x+1}$. Use this fact to

(a) Compute $\int_{1}^{\infty} \frac{dx}{x^2 + x}$

Answer:

$$\int_{1}^{\infty} \frac{dx}{x^{2} + x} = \lim_{b \to \infty} \int_{1}^{b} \frac{dx}{x^{2} + x}$$
$$= \lim_{b \to \infty} \int_{1}^{b} \left(\frac{1}{x} - \frac{1}{x + 1}\right) dx$$
$$= \lim_{b \to \infty} \left(\ln(x) - \ln(x + 1)\right) \Big]_{1}^{b}$$
$$= \lim_{b \to \infty} \ln(b) - \ln(b + 1) - (\ln(1) - \ln(2))$$
$$= \lim_{b \to \infty} \ln\left(\frac{b}{b + 1}\right) + \ln(2)$$
$$= \ln(2).$$

(b) Compute
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n} = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

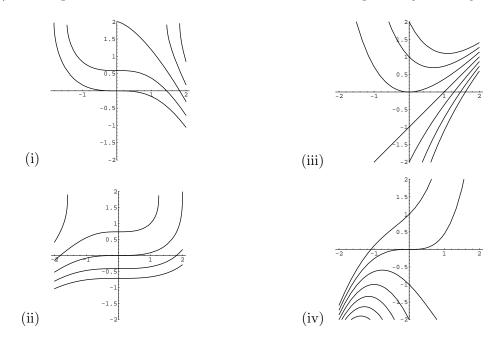
$$= \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \left(\frac{1}{4} - \frac{1}{5}\right) + \cdots$$

Written this way, one see that a lot of terms cancel giving the n^{th} partial sum $1 - \frac{1}{n}$ hence

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n} = 1.$$

Problem 4.

(a) Which plot shows solution curves for the differential equation y' = x - y?



Answer:

The answer is (iii), the picture in the upper right hand corner. There are many ways to see this, but for one, look in the first quadrant where x and y are positive. Since, y' = x - y will be both positive and negative, the solution curves must both increase and decrease there. In fact, when the curves lie below the straight line y = x, y' > 0 so the solution curves must increase, and they must decrease when they lie above y = x.

- (b) Which is a solution to the differential equation y' = x y?
 - (i) $y = x + \frac{1}{e^x} 1$ (iii) $y = \sin(x)$ (ii) $y = \frac{x^2}{2} - x + 1$ (iv) $y = e^x \cos(x)$

Answer:

The answer is (i). A quick computation shows that if $y = x + \frac{1}{e^x} - 1$, then $y' = 1 - \frac{1}{e^x}$, and $x - y = x + \frac{1}{e^x} - 1 = y'$.

Problem 5. Use separation of variables to find the solution to

$$\frac{dy}{dx} = xe^y, \quad y(1) = 0.$$

Answer:

We have

$$\frac{dy}{dx} = xe^y \Rightarrow e^{-y}dy = xdx$$
$$\Rightarrow \int e^{-y}dy = \int xdx$$
$$\Rightarrow -e^{-y} = \frac{x^2}{2} + C$$

We use x = 1 and y = 0 to find that -1 = C. So, we have

$$\begin{aligned} -e^{-y} &= \frac{x^2}{2} + C \Rightarrow -e^{-y} = \frac{x^2}{2} - 1 \\ \Rightarrow e^{-y} &= 1 - \frac{x^2}{2} \\ \Rightarrow -y &= \ln\left(1 - \frac{x^2}{2}\right) \\ \Rightarrow y &= -\ln\left(1 - \frac{x^2}{2}\right). \end{aligned}$$

Problem 6. Essay Question. Compare the exponential and logistic models for population growth. A full analysis will include a discussion of direction fields, sensitivity to initial conditions, asymptotic behavior, and the analytic solutions.

Answer:

See chapter seven of the textbook.

(a)
$$\int_0^1 \frac{dx}{\sqrt{x}}$$

Answer:

This integral converges:
$$\int_0^1 \frac{dx}{\sqrt{x}} = \lim_{b \to 0^+} \int_b^1 \frac{dx}{\sqrt{x}} = \lim_{b \to 0^+} 2\sqrt{x} \Big]_b^1 = \lim_{b \to 0^+} 2\sqrt{b} = 2.$$

(b)
$$\int_{1}^{\infty} \frac{dx}{\sqrt{x}}$$

Answer:

This integral diverges:
$$\int_{1}^{\infty} \frac{dx}{\sqrt{x}} = \lim_{b \to \infty} \int_{1}^{b} \frac{dx}{\sqrt{x}} = \lim_{b \to \infty} 2\sqrt{x} \Big]_{0}^{b} = \lim_{b \to \infty} 2\sqrt{b} = \infty.$$

(c)
$$\sum_{k=1}^{\infty} \frac{k!}{k^k}$$

Answer:

This series converges by the ratio test:

$$\left|\frac{a_{k+1}}{a_k}\right| = \left|\frac{(k+1)!}{(k+1)^{k+1}} \cdot \frac{k^k}{k!}\right| = \left|\frac{k+1}{(k+1)^{k+1}}\frac{k^k}{1}\right| = \left|\frac{k^k}{(k+1)^k}\right| = \left|\left(\frac{k}{k+1}\right)^k\right| \stackrel{k \to \infty}{\longrightarrow} \frac{1}{e} < 1.$$

(d)
$$\sum_{n=1}^{\infty} \frac{\sin(n)}{n^2}$$

Answer:

First, we note that $0 < \left|\frac{\sin(n)}{n^2}\right| < \frac{1}{n^2}$, so the series $\sum_{n=1}^{\infty} \left|\frac{\sin(n)}{n^2}\right|$ converges by an ordinary comparison with the convergent p series $\sum \frac{1}{n^2}$ (here p = 2 > 1). Therefore, $\sum_{n=1}^{\infty} \frac{\sin(n)}{n^2}$ converges too.

Problem 7. (Continued)

(e)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

Answer:

This series converges by the alternating series test. The $(-1)^n$ makes the terms alternate sign. We check that $\frac{1}{\sqrt{n}}$ decreases and tends to zero as $n \to \infty$.

(f)
$$\sum_{k=1}^{\infty} \frac{3n}{n^2 + 1}$$

Answer:

A limit comparison test with the divergent harmonic series is conclusive: Let $b_n = \frac{1}{n}$ and $a_n = \frac{3n}{n^2+1}$. Note that $a_n > 0$ and $b_n > 0$. We have

$$\frac{a_n}{b_n} = \frac{3n^2}{n^2 + 1} \to 3$$

Since 3 is finite and nonzero, the limit comparison test says that the series $\sum_{k=1}^{\infty} \frac{3n}{n^2+1}$ and $\sum_{k=1}^{\infty} \frac{1}{n^2+1}$ is the series $\sum_{k=1}^{\infty} \frac{3n}{n^2+1}$

 $\sum_{k=1}^{\infty} \frac{1}{n}$ do the same thing, which is diverge.

(g)
$$\int_1^\infty \frac{x}{e^x} dx$$

Answer:

We compute using integration by parts with u = x and $dv = \frac{dx}{e^x}$ (which gives du = dx and $v = -e^{-x}$).

$$\int_{1}^{\infty} \frac{x}{e^{x}} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{x}{e^{x}} dx$$
$$= \lim_{b \to \infty} -xe^{-x} - e^{-x} \Big]_{1}^{b}$$
$$= \lim_{b \to \infty} -\frac{b}{e^{b}} - \frac{1}{e^{b}} - \left(-\frac{1}{e} - \frac{1}{e}\right)$$
$$= \frac{2}{e}.$$

(One can use L'Hôpital's rule to see that $\lim_{b\to\infty} -\frac{b}{e^b} = 0.$)

Problem 8. Use Euler's method with a step size of $\frac{1}{3}$ to approximate $y\left(\frac{2}{3}\right)$ if y satisfies the differential equation

$$y' = y\left(2 - \frac{1}{2}y^2\right), \quad y(0) = 1.$$

Answer:

We compute when x = 0, y = 1, so

$$y'(0) = 1\left(2 - \frac{1}{2}\right) = \frac{3}{2}.$$

Then

$$y\left(\frac{1}{3}\right) \approx y(0) + \frac{1}{3}y'(0) \approx 1 + \left(\frac{1}{3}\right)\left(\frac{3}{2}\right) = \frac{3}{2}$$

When $x = \frac{1}{3}, y \approx \frac{3}{2}$, so

$$y'\left(\frac{1}{3}\right) \approx \frac{3}{2}\left(2 - \frac{1}{2}\left(\frac{3}{2}\right)^2\right) = \frac{21}{16}.$$

Then

$$y\left(\frac{2}{3}\right) \approx y\left(\frac{1}{3}\right) + \frac{1}{3}y'\left(\frac{1}{3}\right) \approx \frac{3}{2} + \left(\frac{1}{3}\right)\left(\frac{21}{16}\right) = \frac{31}{16}.$$

Problem 9. True or False?

(a)
$$\int_0^\infty \frac{dx}{1+x^2} = \frac{\pi}{2}.$$

Answer:

True. Use the fact that $\int \frac{dx}{1+x^2} = \arctan(x)$.

(b) For any constant
$$c, p = \frac{1}{1 + (c-1)e^{-t}}$$
 is a solution to $p' = p(1-p)$.

Answer:

True. You can see this if you're familiar with the logistic differential equation, or just check it directly.

(c)
$$\frac{1}{1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+\cdots} = 1-x+\frac{x^2}{2!}-\frac{x^3}{3!}+\frac{x^4}{4!}-+\cdots$$

Answer:

True. Write the equation $\frac{1}{e^x} = e^{-x}$ in power series.

(d) If
$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 2$$
 then $\sum_{n=1}^{\infty} a_n$ diverges but $\sum_{n=1}^{\infty} \frac{a_n}{3^n}$ converges.

Answer:

True. $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 2$, then $\sum_{n=1}^{\infty} a_n$ diverges by the ratio test. In addition, the ratio test applied to $\sum_{n=1}^{\infty} \frac{a_n}{3^n}$ yields $\frac{a_{n+1}}{3^{n+1}} \cdot \frac{3^n}{a_n} = \frac{a_{n+1}}{a_n} \cdot \frac{1}{3} \to \frac{2}{3} < 1$, so $\sum_{n=1}^{\infty} \frac{a_n}{3^n}$ converges.

Problem 9. (Continued.)

(e) If
$$\sum_{k=1}^{\infty} |a_k|$$
 diverges then $\sum_{k=1}^{\infty} a_k$ diverges also

Answer:

This is false. For example, $\sum_{k=1}^{\infty} (-1)^k \frac{1}{k}$ converges (by the alternating series test) and $\sum_{k=1}^{\infty} |(-1)^k \frac{1}{k}| = \sum_{k=1}^{\infty} \frac{1}{k}$ diverges (by the p series test).

(f) Suppose $a_n > 0$ for all n and $\lim_{n \to \infty} na_n = 3$. Then the series $\sum_{n=1}^{\infty} a_n$ converges.

Answer:

False. If $\lim_{n \to \infty} na_n = 3$ then $\lim_{n \to \infty} \frac{a_n}{\frac{1}{n}} = 3$ which implies, by the limit comparison theorem, that $\sum a_n$ and the series $\sum \frac{1}{n}$ do the same thing, which is diverge.

(g)
$$\int f(x)g(x)dx = \left(\int f(x)dx\right)\left(\int g(x)dx\right).$$

Answer:

False. Check with almost any example to see it.

Problem 10. Sometimes it is possible to find the sum of a convergent series precisely by comparing it to a familiar power series specialized to a particular value of x. Find the sum:

(a)
$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + - \cdots$$

Answer:
 $= \arctan(1) = \frac{\pi}{4}$

(b)
$$\frac{\pi}{2} - \frac{\pi^3}{3! \cdot 2^3} + \frac{\pi^5}{5! \cdot 2^5} - + \cdots$$

Answer:
 $= \cos\left(\frac{\pi}{2}\right) = 0.$

(c)
$$1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \cdots$$

Answer:

Since $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$, we have $e^1 = 1 + 1 + \frac{1}{2} + \frac{1}{3!} + \cdots$, so the answer to the problem is e - 1.

(d)
$$1 + 6\left(-\frac{1}{2}\right) + 15\left(-\frac{1}{2}\right)^2 + 20\left(-\frac{1}{2}\right)^3 + 15\left(-\frac{1}{2}\right)^4 + 6\left(-\frac{1}{2}\right)^5 + \left(-\frac{1}{2}\right)^6$$

Answer:

For any x, $(1+x)^6 = 1 + 6x + \frac{(6)(5)}{2!}x^2 + \frac{(6)(5)(4)}{3!}x^3 + \dots + 6x^5 + x^6$. So,

$$1+6\left(-\frac{1}{2}\right)+15\left(-\frac{1}{2}\right)^{2}+20\left(-\frac{1}{2}\right)^{3}+15\left(-\frac{1}{2}\right)^{4}+6\left(-\frac{1}{2}\right)^{5}+\left(-\frac{1}{2}\right)^{6}=\left(1+\left(-\frac{1}{2}\right)\right)^{6}=\frac{1}{64}$$

Problem 11. Use power series to approximate

$$\int_0^1 x^2 \cos\left(x^{\frac{3}{2}}\right) \, dx$$

with an error less than $\frac{1}{(12)(720)}$.

Answer:

Begin with

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} - + \cdots$$

. Then,

$$\cos\left(x^{\frac{3}{2}}\right) = 1 - \frac{x^3}{2!} + \frac{x^6}{4!} - \frac{x^9}{6!} + \dots$$

and

$$x^{2}\cos\left(x^{\frac{3}{2}}\right) = x^{2} - \frac{x^{5}}{2!} + \frac{x^{8}}{4!} - \frac{x^{1}1}{6!} + \cdots$$

Now, we integrate

$$\int_{0}^{1} x^{2} \cos\left(x^{\frac{3}{2}}\right) dx = \int_{0}^{1} x^{2} - \frac{x^{5}}{2!} + \frac{x^{8}}{4!} - \frac{x^{1}1}{6!} + \cdots$$

$$= \frac{x^{3}}{3} - \frac{x^{6}}{6 \cdot 2!} + \frac{x^{9}}{9 \cdot 4!} - \frac{x^{1}2}{12 \cdot 6!} + \cdots \Big]_{0}^{1}$$

$$= \frac{1}{3} - \frac{1}{6 \cdot 2!} + \frac{1}{9 \cdot 4!} - \frac{1}{12 \cdot 6!} + \cdots$$

$$\approx \frac{1}{3} - \frac{1}{6 \cdot 2!} + \frac{1}{9 \cdot 4!}$$

$$= \frac{55}{216}.$$

Since the series

$$\frac{1}{3} - \frac{1}{6 \cdot 2!} + \frac{1}{9 \cdot 4!} - \frac{1}{12 \cdot 6!} + - \cdots$$

converges by the alternating series test, the error in made by approximating the sum with the first three terms is smaller than the fourth term, which is $\frac{1}{12 \cdot 6!} = \frac{1}{(12)(720)}$.

Problem 12. Let $f(x) = \frac{x^2}{e^{2x}}$. Use power series to find $f^{(5)}(0)$, the fifth derivative of f at x = 0.

Answer:

Start with

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

to get

$$e^{-2x} = 1 - 2x + 4\frac{x^2}{2} - 8\frac{x^3}{6} + \cdots$$

and

$$x^{2}e^{-2x} = x^{2} - 2x^{3} + 2x^{4} - \frac{4}{3}x^{5} + \cdots$$

We know that the coefficient of x^5 in this expansion equals $\frac{f^{(5)}(0)}{5!}$. Therefore

$$-\frac{4}{3} = \frac{f^{(5)}(0)}{5!} \Rightarrow f^{(5)}(0) = -5! \left(\frac{4}{3}\right) = -160.$$