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For metrics on fixed M"™, Weyl functional

P = [ Wl

only depends on the conformal class

lg] = {u29 | u: M QRJF}.

Measures deviation [¢g| from conformal flatness.

Basic problems: For given smooth compact M
e What is inf 77

e Do there exist minimizers?

)

O. Kobayashi:
inf # £ 0 if [M#M] # 0 in cobordism Q2.
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Euler-Lagrange equations B = 0 elliptic mod gauge.

Here |
By = (vcvd + §%Cd)Wa,cbd

called Bach tensor.
Solutions called Bach-flat metrics.

Bianchi = Any Einstein (1%, ¢) is Bach-flat.

Of course, conformally Einstein good enough!
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By contrast:

For M™
7 (g]) = / W[ 2du,
M

has degenerate Euler-Lagrange equation
‘Wg‘(n—ﬂr)/?(vv.w 4o ) =0
when n > 4.

Einstein metrics are usually not critical points.
For n > 4, product K3 x T™~% not critical,

since, for fixed CY on K3,  #/(g)ocVol(T™™4).
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The Lie group SO(4) is not simple:

s50(4) = s0(3) @ s0(3).
On oriented (M4, g), —
A=At @A~
where AF are (£1)-eigenspaces of
x 1 A% = A2
x> = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.
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R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—82 r

s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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where P(R) is SO(4)-invariant polynomial
function of curvature.

Scale invariance = P quadratic.

Any such P(R) is linear combinations of
2 0 |2 2 2
SR U P LS8 e L

Integrals give four scale-invariant functionals.
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0= AW |2+ 2/VW o[>+ | W1 |? — 36 det(W )
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with equality <q is a Kahler-Einstein metric.

Method: Seiberg-Witten theory:.

Hypotheses = 3 solution (P, 8) of SW equations
for spin® structure determined by w. —

0 = 2A|D) + 4|V@|* + s|D) + |D*
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for all metrics g on M.
But this is actually a silly question!
Ju W 4] 2d,ug conformally invariant.

2
f M%d/{q is certainly not!
Standard lore for Yamabe problem =

4 metrics g; in any conformal class
9
g] = {u?g} with fM%dﬂgj — +-00; but
9
3 minimizer of [, 5714 in any [g],
and s = constant for any such minimizer.

. Any complex surface M with by even carries
(conformally Kéhler) metrics with > and <.
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— Finstein metrics;
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H*(M,R)={p e D(A°) | dp =0, d*p =0}
Since « is involution of RHS, =—

H*(M,R) =H} dH,,

where

Hy ={p € I(A\") | dp = 0}

self-dual & anti-self-dual harmonic forms. Then

b+ (M) = dim#H.
The subspaces ?—[;t are conformally invariant:

Same for ¢ and any § = u?g.
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Proposition (Atiyah-Hitchin-Singer '78). The Fubini-
Study metric on CPy 1s self-dual. Consequently,
minimaizes Weyl functional.
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Conjecture (Kobayashi). The Kdhler-Einstein
product metric on S? x S? minimizes the Weyl
functional W' .

Gave weak evidence:

Local minimum.
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Natural Generalization:

Conjecture. On any del Pezzo surface (M4, J),
the conformally Kahler, Einstein product metric
minimizes the Weyl functional W .

Persuasive partial results.

But problem still not settled.
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with s > 0.

Method: Weitzenbock formula

— Jg=ug st. 5:=35—2/6|IWV| <0.
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A different use of self-dual harmonic forms
yields a complementary result.

Definition. A conformal class |g] on a compact
oriented 4-manifold M 1s said to be of symplectic
type <3 self-dual harmonic 2-form w on (M, g)
such that w # 0 everywhere.

Open condition in C? topology on metrics.

(Harmonic forms depend continuously on metric. )
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satisfies
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with equality <|g| contains a Kdahler-Einstein
metric g.

However, only works for M del Pezzo.

This is apparently not an accident!
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But Gursky’s theorem also works for (S? x S2)#(S? x S?).
And indeed for all iterated connect-sums m(S* x S?),

What happens there in the Yamabe-negative realm?
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Theorem A. For any sufficiently large integer
m, the smooth compact simply-connected spin
manzifold

M = m(S?x 5% = (S°x S°)#t - - #(5”x 5°)

m

admits Riemannian conformal classes |g] such

that
/ W |dp <
M

Simalarly, for any any sufficiently large integer
m and any integer n such that - is sufficiently
close to 1, the smooth compact stmply-connected
non-spin manifold

M = mCPy#nCPy := CPogt - - - #CPy # CPo# - - - #CPy

m n

e

; (2x + 37)(M).

admits conformal classes |g| where the above in-
equality holds.
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Key facts used in proot:

Wall '66: It Y and Z are homotopy-equivalent simply-
connected smooth compact 4-manifolds,

then Y#0(5% x S?) ~ Z#0(5?x S?) for all £ > 0.

In proof, we apply this to
M = (k+ O)(X#X)#(k + 20)(5? x S?)

where X simply-connected minimal complex sur-
face of general type with 7(X) > 0.

Such X now known to exist in profusion!
Roulleau-Urzta "15: 3 sequences with 7/x — 1/3.

— Miyaoka-Yau line! Can choose spin or non-spin!
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e Almost-Kahler Manifolds; and

e Harmonic self-dual Weyl curvature.

Dessert course:

Another new result involving these ideas.
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with equality < (M, g,w) is Kahler. By con-
trast, if (M,qg,w) instead has scalar curvature
s >0, then

/ ‘W+‘2dﬂg / dig,

again with equality < (M, g,w) is Kdhler.

In particular, any compact almost Kahler 4-manzifold
(M, g,w) with W =0 and s > 0 is Kahler.
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