Curvature in the Balance:

The Weyl Functional &

Scalar Curvature of

4-Manifolds

Claude LeBrun
Stony Brook University

Special Metrics in Complex Geometry University of Texas at Dallas. May 19, 2022

On Riemannian *n*-manifold (M, g), $n \geq 3$,

$$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c} \delta^{b]}_{d]} + \frac{2}{n(n-1)} s \delta^{a}{}_{[c} \delta^{b]}_{d]}$$

$$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c} \delta^{b]}_{d]} + \frac{2}{n(n-1)} \mathbf{s} \delta^{a}{}_{[c} \delta^{b]}_{d]}$$

where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

W =Weyl curvature

$$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c}\delta^{b]}_{d]} + \frac{2}{n(n-1)} s \delta^a_{[c}\delta^b_{d]}$$
 where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

W = Weyl curvature (conformally invariant)

$$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c}\delta^{b]}_{d]} + \frac{2}{n(n-1)} s \delta^a_{[c}\delta^b_{d]}$$
 where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

W = Weyl curvature (conformally invariant)

 W^a_{bcd} unchanged if $g \rightsquigarrow \hat{g} = u^2 g$.

$$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c}\delta^{b]}_{d]} + \frac{2}{n(n-1)} s \delta^a_{[c}\delta^b_{d]}$$
 where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

W = Weyl curvature (conformally invariant)

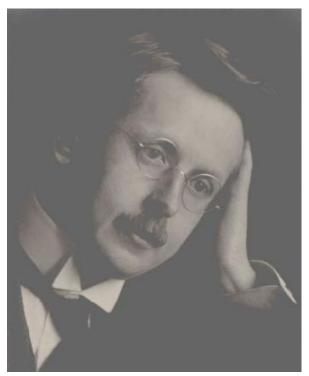
Proposition. Assume $n \ge 4$. Then (M^n, g) locally conformally flat $\iff W \equiv 0$.

$$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c}\delta^{b]}_{d]} + \frac{2}{n(n-1)} \mathbf{s} \delta^{a}{}_{[c}\delta^{b]}_{d]}$$
 where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

W = Weyl curvature (conformally invariant)



For metrics on fixed M^n ,

 $\mathscr{W}:\mathcal{G}_M\longrightarrow\mathbb{R}$

$$\mathscr{W}(g) = \int_{M} |W_g|^{n/2} d\mu_g$$

$$\mathscr{W}(g) = \int_{M} |W_g|^{n/2} d\mu_g$$

only depends on the conformal class

$$W([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$

only depends on the conformal class

$$[g] = \{u^2g \mid u : M \xrightarrow{C^{\infty}} \mathbb{R}^+\}.$$

$$\mathscr{W}([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$

only depends on the conformal class

$$[g] = \{u^2g \mid u : M \xrightarrow{C^{\infty}} \mathbb{R}^+\}.$$

$$\mathscr{W}: \mathcal{G}_M/(C^{\infty})^+ \longrightarrow \mathbb{R}$$

$$\mathscr{W}([g]) = \int_{M} |W_{g}|^{n/2} d\mu_{g}$$

only depends on the conformal class

$$[g] = \{u^2g \mid u : M \xrightarrow{C^{\infty}} \mathbb{R}^+\}.$$

Measures deviation [g] from conformal flatness.

$$\mathscr{W}([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$

only depends on the conformal class

$$[g] = \{u^2g \mid u : M \xrightarrow{C^{\infty}} \mathbb{R}^+\}.$$

Measures deviation [g] from conformal flatness.

Basic problems: For given smooth compact M,

$$\mathscr{W}([g]) = \int_{M} |W_{g}|^{n/2} d\mu_{g}$$

only depends on the conformal class

$$[g] = \{u^2g \mid u : M \xrightarrow{C^{\infty}} \mathbb{R}^+\}.$$

Measures deviation [g] from conformal flatness.

Basic problems: For given smooth compact M,

• What is $\inf \mathscr{W}$?

$$\mathscr{W}([g]) = \int_{M} |W_{g}|^{n/2} d\mu_{g}$$

only depends on the conformal class

$$[g] = \{u^2g \mid u : M \xrightarrow{C^{\infty}} \mathbb{R}^+\}.$$

Measures deviation [g] from conformal flatness.

Basic problems: For given smooth compact M,

- What is $\inf \mathcal{W}$?
- Do there exist minimizers?

$$W([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$

only depends on the conformal class

$$[g] = \{u^2g \mid u : M \xrightarrow{C^{\infty}} \mathbb{R}^+\}.$$

Measures deviation [g] from conformal flatness.

Basic problems: For given smooth compact M,

- What is $\inf \mathcal{W}$?
- Do there exist minimizers?

O. Kobayashi:

$$W([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$

only depends on the conformal class

$$[g] = \{u^2g \mid u : M \xrightarrow{C^{\infty}} \mathbb{R}^+\}.$$

Measures deviation [g] from conformal flatness.

Basic problems: For given smooth compact M,

- What is $\inf \mathcal{W}$?
- Do there exist minimizers?

O. Kobayashi:

 $\inf \mathcal{W} \neq 0$ if M^{4k} has a Pontryagin number $\neq 0$.

$$\mathscr{W}([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$

only depends on the conformal class

$$[g] = \{u^2g \mid u : M \xrightarrow{C^{\infty}} \mathbb{R}^+\}.$$

Measures deviation [g] from conformal flatness.

Basic problems: For given smooth compact M,

- What is $\inf \mathcal{W}$?
- Do there exist minimizers?

O. Kobayashi:

inf $\mathcal{W} \neq 0$ if $[M \# M] \neq 0$ in cobordism Ω_n^{SO} .

For M^4 ,

For M^4 ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$

For M^4 ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$

Euler-Lagrange equations B = 0 elliptic mod gauge.

For M^4 ,

$$\mathcal{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$

Euler-Lagrange equations B = 0 elliptic mod gauge.

Here

$$B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \mathring{\mathbf{r}}^{cd}) W_{acbd}$$

For M^4 ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$

Euler-Lagrange equations B = 0 elliptic mod gauge.

Here

$$B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \mathring{\mathbf{r}}^{cd}) W_{acbd}$$

called Bach tensor.

For M^4 ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$

Euler-Lagrange equations B = 0 elliptic mod gauge.

Here

$$B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \mathring{\mathbf{r}}^{cd}) W_{acbd}$$

called Bach tensor.

Solutions called Bach-flat metrics.

For M^4 ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$

Euler-Lagrange equations B = 0 elliptic mod gauge.

Here

$$B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \mathring{\mathbf{r}}^{cd}) W_{acbd}$$

called Bach tensor.

Solutions called Bach-flat metrics.

Bianchi \Longrightarrow Any Einstein (M^4, g) is Bach-flat.

For M^4 ,

$$\mathcal{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$

Euler-Lagrange equations B = 0 elliptic mod gauge.

Here

$$B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \mathring{\mathbf{r}}^{cd}) W_{acbd}$$

called Bach tensor.

Solutions called Bach-flat metrics.

Bianchi \Longrightarrow Any Einstein (M^4, g) is Bach-flat.

Of course, conformally Einstein good enough!

For M^n ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$

For M^n ,

$$\mathcal{W}([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$

has degenerate Euler-Lagrange equation

$$|W_g|^{(n-4)/2}(\nabla\nabla\nabla\cdot W + \cdots) = 0$$

when n > 4.

For M^n ,

$$\mathcal{W}([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$

has degenerate Euler-Lagrange equation

$$|W_g|^{(n-4)/2}(\nabla\nabla\nabla\cdot W + \cdots) = 0$$

when n > 4.

Einstein metrics are usually not critical points.

For M^n ,

$$\mathcal{W}([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$

has degenerate Euler-Lagrange equation

$$|W_g|^{(n-4)/2}(\nabla\nabla\nabla\cdot W + \cdots) = 0$$

when n > 4.

Einstein metrics are usually not critical points.

For n > 4, product $K3 \times \mathbb{T}^{m-4}$ not critical,

By contrast:

For M^n ,

$$\mathcal{W}([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$

has degenerate Euler-Lagrange equation

$$|W_g|^{(n-4)/2}(\nabla\nabla\nabla\cdot W + \cdots) = 0$$

when n > 4.

Einstein metrics are usually not critical points.

For
$$n > 4$$
, product $K3 \times \mathbb{T}^{m-4}$ not critical,
 $CY \times \text{flat}$

By contrast:

For M^n ,

$$\mathcal{W}([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$

has degenerate Euler-Lagrange equation

$$|W_g|^{(n-4)/2}(\nabla\nabla\nabla\cdot W + \cdots) = 0$$

when n > 4.

Einstein metrics are usually not critical points.

For n > 4, product $K3 \times \mathbb{T}^{m-4}$ not critical,

Ricci-flat
$$\Longrightarrow$$
 $W = \mathcal{R}$.

By contrast:

For M^n ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$

has degenerate Euler-Lagrange equation

$$|W_g|^{(n-4)/2}(\nabla\nabla\nabla\cdot W + \cdots) = 0$$

when n > 4.

Einstein metrics are usually not critical points.

For n > 4, product $K3 \times \mathbb{T}^{m-4}$ not critical,

since, for fixed CY on K3, $\mathscr{W}(g) \propto \operatorname{Vol}(\mathbb{T}^{m-4})$.

The Lie group SO(4) is not simple:

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented (M^4, g) ,

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$
 On oriented $(M^4,g), \Longrightarrow$

 $\Lambda^2 = \Lambda^+ \oplus \Lambda^-$

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$
On oriented $(M^4, g), \Longrightarrow$

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$
where Λ^{\pm} are (± 1) -eigenspaces of $\star : \Lambda^2 \to \Lambda^2,$

$$\star^2 = 1.$$

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented
$$(M^4, g)$$
, \Longrightarrow

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

where Λ^{\pm} are (± 1) -eigenspaces of

$$\star : \Lambda^2 \to \Lambda^2,$$

$$\star^2 = 1.$$

 Λ^+ self-dual 2-forms.

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented
$$(M^4, g)$$
, \Longrightarrow

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

where Λ^{\pm} are (± 1) -eigenspaces of

$$\star : \Lambda^2 \to \Lambda^2,$$

$$\star^2 = 1.$$

 Λ^+ self-dual 2-forms.

 Λ^- anti-self-dual 2-forms.

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\mathcal{R}:\Lambda^2\to\Lambda^2$$

splits into 4 irreducible pieces:

$$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & \mathring{r} \\ & & \\ \mathring{r} & W_{-} + \frac{s}{12} \end{pmatrix}$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

$$\mathcal{R}:\Lambda^2\to\Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

 $W_{+} = \text{self-dual Weyl curvature}$

 W_{-} = anti-self-dual Weyl curvature

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

 $W_{+} = \text{self-dual Weyl curvature } (conformally invariant)$

 W_{-} = anti-self-dual Weyl curvature

$$\mathcal{G}_{M} \longrightarrow \mathbb{R}$$

$$g \longmapsto \int_{M} P(\mathcal{R}_{g}) d\mu_{g}$$

$$\mathcal{G}_{M} \longrightarrow \mathbb{R}$$

$$g \longmapsto \int_{M} P(\mathcal{R}_{g}) d\mu_{g}$$

where $P(\mathcal{R})$ is SO(4)-invariant polynomial function of curvature.

$$\mathcal{G}_{M} \longrightarrow \mathbb{R}$$

$$g \longmapsto \int_{M} P(\mathcal{R}_{g}) d\mu_{g}$$

where $P(\mathcal{R})$ is SO(4)-invariant polynomial function of curvature.

Scale invariance $\implies P$ quadratic.

$$\mathcal{G}_{M} \longrightarrow \mathbb{R}$$

$$g \longmapsto \int_{M} P(\mathcal{R}_{g}) d\mu_{g}$$

where $P(\mathcal{R})$ is SO(4)-invariant polynomial function of curvature.

Scale invariance $\implies P$ quadratic.

Any such $P(\mathcal{R})$ is linear combinations of

$$s^2$$
, $|\mathring{r}|^2$, $|W_{+}|^2$, $|W_{-}|^2$.

$$\mathcal{G}_{M} \longrightarrow \mathbb{R}$$

$$g \longmapsto \int_{M} P(\mathcal{R}_{g}) d\mu_{g}$$

where $P(\mathcal{R})$ is SO(4)-invariant polynomial function of curvature.

Scale invariance $\implies P$ quadratic.

Any such $P(\mathcal{R})$ is linear combinations of

$$s^2$$
, $|\mathring{r}|^2$, $|W_+|^2$, $|W_-|^2$.

Integrals give four scale-invariant functionals.

Four Basic Quadratic Curvature Functionals

Four Basic Quadratic Curvature Functionals

$$\mathcal{G}_{M} \longrightarrow \mathbb{R}$$

$$\begin{cases}
\int_{M} s^{2} d\mu_{g} \\
\int_{M} |\mathring{r}|^{2} d\mu_{g} \\
\int_{M} |W_{+}|^{2} d\mu_{g} \\
\int_{M} |W_{-}|^{2} d\mu_{g}
\end{cases}$$

Four Basic Quadratic Curvature Functionals

$$g \longmapsto \begin{cases} \int_{M} s^2 d\mu_g \\ \int_{M} |\mathring{r}|^2 d\mu_g \\ \int_{M} |W_{+}|^2 d\mu_g \\ \int_{M} |W_{-}|^2 d\mu_g \end{cases}$$

However, these are not independent!

For (M^4, g) compact oriented Riemannian,

For (M^4, g) compact oriented Riemannian,

Euler characteristic

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

For (M^4, g) compact oriented Riemannian,

Euler characteristic

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

Signature

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

$$\int_{M} s^2 d\mu_g$$
 and $\int_{M} |\mathring{r}|^2 d\mu_g$.

$$\int_{M} s^2 d\mu_g$$
 and $\int_{M} |\mathring{r}|^2 d\mu_g$.

Einstein metrics are critical for both.

$$\int_{M} s^2 d\mu_g$$
 and $\int_{M} |\mathring{r}|^2 d\mu_g$.

Einstein metrics are critical for both.

 \therefore Einstein metrics critical \forall quadratic functionals!

$$\int_{M} s^2 d\mu_g$$
 and $\int_{M} |\mathring{r}|^2 d\mu_g$.

Einstein metrics are critical for both.

- \therefore Einstein metrics critical \forall quadratic functionals!
- e.g. critical for Weyl functional

$$g \longmapsto \int_{M} |W|_{g}^{2} d\mu_{g}$$

$$\int_{M} s^2 d\mu_g$$
 and $\int_{M} |W_+|^2 d\mu_g$.

$$\int_{M} s^2 d\mu_g$$
 and $\int_{M} |W_+|^2 d\mu_g$.

For example,

$$\int_{M} s^2 d\mu_g$$
 and $\int_{M} |W_+|^2 d\mu_g$.

For example,

$$\mathscr{W}([g]) = -12\pi^2 \tau(M) + 2\int_M |W_+|^2 d\mu_g$$

$$\int_{M} s^2 d\mu_g$$
 and $\int_{M} |W_+|^2 d\mu_g$.

For example,

$$\mathscr{W}([g]) = -12\pi^2 \tau(M) + 2\int_M |W_+|^2 d\mu_g$$

So $\int |W_+|^2 d\mu$ equivalent to Weyl functional.

$$\int_{M} s^2 d\mu_g$$
 and $\int_{M} |W_+|^2 d\mu_g$.

$$\int_{M} \frac{s^2}{24} d\mu_g$$
 and $\int_{M} |W_+|^2 d\mu_g$.

$$\int_{M} \frac{s^2}{24} d\mu_g$$
 and $\int_{M} |W_+|^2 d\mu_g$.

Today's theme: How do these compare in size,

$$\int_{M} \frac{s^2}{24} d\mu_g$$
 and $\int_{M} |W_+|^2 d\mu_g$.

Today's theme: How do these compare in size,

for specific classes of metrics on interesting 4-manifolds?

Suppose g Kähler metric on (M, J).

Suppose g Kähler metric on (M, J).

Give M orientation determined by J.

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^-$$

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^-$$

$$\Lambda^{+} = \mathbb{R}\omega \oplus \Re e(\Lambda^{2,0})$$

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^{-}$$

$$\Lambda^{+} = \mathbb{R}\omega \oplus \Re e(\Lambda^{2,0})$$

$$\nabla J = 0 \Longrightarrow \mathcal{R} \in \operatorname{End}(\Lambda^{1,1})$$

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^{-}$$

$$\Lambda^{+} = \mathbb{R}\omega \oplus \Re e(\Lambda^{2,0})$$

$$\nabla J = 0 \Longrightarrow \mathcal{R} \in \operatorname{End}(\Lambda^{1,1}) \Longrightarrow$$

$$W_{+} + \frac{s}{12} = \begin{pmatrix} 0 \\ 0 \\ * \end{pmatrix}$$

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^{-}$$

$$\Lambda^{+} = \mathbb{R}\omega \oplus \Re e(\Lambda^{2,0})$$

$$\nabla J = 0 \Longrightarrow \mathcal{R} \in \operatorname{End}(\Lambda^{1,1}) \Longrightarrow$$

$$W_{+} + \frac{s}{12} = \begin{pmatrix} 0 \\ 0 \\ \frac{s}{4} \end{pmatrix}$$

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^-$$

$$\Lambda^{+} = \mathbb{R}\omega \oplus \Re e(\Lambda^{2,0})$$

$$\nabla J = 0 \Longrightarrow \mathcal{R} \in \operatorname{End}(\Lambda^{1,1}) \Longrightarrow$$

$$W_{+} = \begin{pmatrix} -\frac{s}{12} \\ -\frac{s}{12} \\ \frac{s}{6} \end{pmatrix}$$

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^-$$

$$\Lambda^+ = \mathbb{R}\omega \oplus \Re e(\Lambda^{2,0})$$

$$\nabla J = 0 \Longrightarrow \mathcal{R} \in \operatorname{End}(\Lambda^{1,1}) \Longrightarrow$$

$$|W_+|^2 = \frac{s^2}{24}$$

Suppose g Kähler metric on (M, J). Hence:

Give M orientation determined by J.

Hence:

$$\frac{s^2}{24} = |W_+|^2$$

at every point.

Suppose g Kähler metric on (M, J).

Give M orientation determined by J.

Hence:

$$\frac{s^2}{24} = |W_+|^2$$

at every point.

... Two basic functionals agree on Kähler metrics!

Suppose g Kähler metric on (M, J).

Give M orientation determined by J.

Hence:

$$\frac{s^2}{24} = |W_+|^2$$

at every point.

... Two basic functionals agree on Kähler metrics!

$$\int_{M} \frac{s^2}{24} d\mu_g = \int_{M} |W_{+}|^2 d\mu_g .$$

More general Riemannian metrics?

Theorem (Gursky-L '99, Gursky '00). Let (M, g) be a compact oriented Einstein 4-manifold

Theorem (Gursky-L '99, Gursky '00). Let (M, g) be a compact oriented Einstein 4-manifold with s > 0

Theorem (Gursky-L '99, Gursky '00). Let (M, g) be a compact oriented Einstein 4-manifold with s > 0 that is not an irreducible symmetric space.

Theorem (Gursky-L '99, Gursky '00). Let (M, g) be a compact oriented Einstein 4-manifold with s > 0 that is not an irreducible symmetric space.

Excluded: Round S^4 , Fubini-Study $\overline{\mathbb{CP}}_2$.

Theorem (Gursky-L '99, Gursky '00). Let (M, g) be a compact oriented Einstein 4-manifold with s > 0 that is not an irreducible symmetric space.

Theorem (Gursky-L '99, Gursky '00). Let (M, g) be a compact oriented Einstein 4-manifold with s > 0 that is not an irreducible symmetric space. Then

$$\int_{M} |W_{+}|^{2} d\mu_{g} \geq \int_{M} \frac{s^{2}}{24} d\mu_{g}$$

with equality $\Leftrightarrow g$ is locally Kähler-Einstein.

• admits a symplectic form ω , but

- admits a symplectic form ω , but
- does not admit an Einstein metric with s > 0.

- admits a symplectic form ω , but
- does not admit an Einstein metric with s > 0.

Excluded: Del Pezzo Surfaces (10 diffeotypes)

- admits a symplectic form ω , but
- does not admit an Einstein metric with s > 0.

- admits a symplectic form ω , but
- does not admit an Einstein metric with s > 0.

Then, with respect to the symplectic orientation,

- admits a symplectic form ω , but
- does not admit an Einstein metric with s > 0.

Then, with respect to the symplectic orientation, any Einstein metric g on M satisfies

- admits a symplectic form ω , but
- does not admit an Einstein metric with s > 0.

Then, with respect to the symplectic orientation, any Einstein metric g on M satisfies

$$\int_{M} \frac{s^{2}}{24} d\mu_{g} \ge \int_{M} |W_{+}|^{2} d\mu_{g} ,$$

- admits a symplectic form ω , but
- does not admit an Einstein metric with s > 0.

Then, with respect to the symplectic orientation, any Einstein metric g on M satisfies

$$\int_{M} \frac{s^{2}}{24} d\mu_{g} \ge \int_{M} |W_{+}|^{2} d\mu_{g} ,$$

with equality $\Leftrightarrow g$ is a Kähler-Einstein metric.

Theorem (Gursky-L '99, Gursky '00). Let (M, g) be a compact oriented Einstein 4-manifold with s > 0 that is not an irreducible symmetric space. Then

$$\int_{M} |W_{+}|^{2} d\mu_{g} \geq \int_{M} \frac{s^{2}}{24} d\mu_{g}$$

with equality $\Leftrightarrow g$ is locally Kähler-Einstein.

Theorem (Gursky-L '99, Gursky '00). Let (M, g) be a compact oriented Einstein 4-manifold with s > 0 that is not an irreducible symmetric space. Then

$$\int_{M} |W_{+}|^{2} d\mu_{g} \geq \int_{M} \frac{s^{2}}{24} d\mu_{g}$$

with equality $\Leftrightarrow g$ is locally Kähler-Einstein.

Method: Weitzenböck formula for $\delta W_+ = 0$.

Theorem (Gursky-L '99, Gursky '00). Let (M, g) be a compact oriented Einstein 4-manifold with s > 0 that is not an irreducible symmetric space. Then

$$\int_{M} |W_{+}|^{2} d\mu_{g} \geq \int_{M} \frac{s^{2}}{24} d\mu_{g}$$

with equality $\Leftrightarrow g$ is locally Kähler-Einstein.

Method: Weitzenböck formula for $\delta W_{+} = 0$.

$$0 = \Delta |W_{+}|^{2} + 2|\nabla W_{+}|^{2} + s|W_{+}|^{2} - 36\det(W_{+})$$

Theorem (Gursky-L '99, Gursky '00). Let (M, g) be a compact oriented Einstein 4-manifold with s > 0 that is not an irreducible symmetric space. Then

$$\int_{M} |W_{+}|^{2} d\mu_{g} \geq \int_{M} \frac{s^{2}}{24} d\mu_{g}$$

with equality $\Leftrightarrow g$ is locally Kähler-Einstein.

Method: Weitzenböck formula for $\delta W_{+} = 0$.

$$0 = \Delta |W_{+}|^{2} + 2|\nabla W_{+}|^{2} + s|W_{+}|^{2} - 36\det(W_{+})$$

$$\implies \exists \widehat{g} = u^{2}g \quad \text{s.t.} \quad \widehat{\mathfrak{s}} := \widehat{s} - 2\sqrt{6}|\widehat{W}_{+}| \le 0.$$

- admits a symplectic form ω , but
- does not admit an Einstein metric with s > 0.

Then, with respect to the symplectic orientation, any Einstein metric g on M satisfies

$$\int_{M} \frac{s^{2}}{24} d\mu_{g} \ge \int_{M} |W_{+}|^{2} d\mu_{g} ,$$

with equality $\Leftrightarrow g$ is a Kähler-Einstein metric.

- admits a symplectic form ω , but
- does not admit an Einstein metric with s > 0.

Then, with respect to the symplectic orientation, any Einstein metric g on M satisfies

$$\int_{M} \frac{s^{2}}{24} d\mu_{g} \ge \int_{M} |W_{+}|^{2} d\mu_{g} ,$$

with equality $\Leftrightarrow g$ is a Kähler-Einstein metric.

Method: Seiberg-Witten theory.

- admits a symplectic form ω , but
- does not admit an Einstein metric with s > 0.

Then, with respect to the symplectic orientation, any Einstein metric g on M satisfies

$$\int_{M} \frac{s^{2}}{24} d\mu_{g} \ge \int_{M} |W_{+}|^{2} d\mu_{g} ,$$

with equality $\Leftrightarrow g$ is a Kähler-Einstein metric.

Method: Seiberg-Witten theory.

Hypotheses $\Longrightarrow \exists$ solution (Φ, θ) of SW equations for spin^c structure determined by ω .

- admits a symplectic form ω , but
- does not admit an Einstein metric with s > 0.

Then, with respect to the symplectic orientation, any Einstein metric g on M satisfies

$$\int_{M} \frac{s^{2}}{24} d\mu_{g} \ge \int_{M} |W_{+}|^{2} d\mu_{g} ,$$

with equality $\Leftrightarrow g$ is a Kähler-Einstein metric.

Method: Seiberg-Witten theory.

Hypotheses $\Longrightarrow \exists$ solution (Φ, θ) of SW equations for spin^c structure determined by ω . \Longrightarrow

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_{\theta}\Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

$$\int_{M} |W_{+}|^{2} d\mu_{g} \stackrel{?}{\geq} \int_{M} \frac{s^{2}}{24} d\mu_{g}$$

$$\int_{M} |W_{+}|^{2} d\mu_{g} \stackrel{?}{\geq} \int_{M} \frac{s^{2}}{24} d\mu_{g}$$

for all metrics g on M.

$$\int_{M} |W_{+}|^{2} d\mu_{g} \stackrel{?}{\geq} \int_{M} \frac{s^{2}}{24} d\mu_{g}$$

for all metrics g on M.

But this is actually a silly question!

$$\int_{M} |W_{+}|^{2} d\mu_{g} \stackrel{?}{\geq} \int_{M} \frac{s^{2}}{24} d\mu_{g}$$

for all metrics g on M.

But this is actually a silly question!

 $\int_{M} |W_{+}|^{2} d\mu_{g}$ conformally invariant.

$$\int_{M} |W_{+}|^{2} d\mu_{g} \stackrel{?}{\geq} \int_{M} \frac{s^{2}}{24} d\mu_{g}$$

for all metrics g on M.

But this is actually a silly question!

$$\int_{M} |W_{+}|^{2} d\mu_{g}$$
 conformally invariant.

$$\int_{M} \frac{s^2}{24} d\mu_g$$
 is certainly not!

Standard lore for Yamabe problem \Longrightarrow

$$\int_{M} |W_{+}|^{2} d\mu_{g} \stackrel{?}{\geq} \int_{M} \frac{s^{2}}{24} d\mu_{g}$$

for all metrics g on M.

But this is actually a silly question!

$$\int_{M} |W_{+}|^{2} d\mu_{g}$$
 conformally invariant.

$$\int_{M} \frac{s^2}{24} d\mu_g$$
 is certainly not!

Standard lore for Yamabe problem \Longrightarrow

 \exists metrics g_i in any conformal class

$$[g] = \{u^2g\} \text{ with } \int_{M} \frac{s^2}{24} d\mu_{g_j} \to +\infty;$$

$$\int_{M} |W_{+}|^{2} d\mu_{g} \stackrel{?}{\geq} \int_{M} \frac{s^{2}}{24} d\mu_{g}$$

for all metrics g on M.

But this is actually a silly question!

$$\int_{M} |W_{+}|^{2} d\mu_{g}$$
 conformally invariant.

$$\int_{M} \frac{s^2}{24} d\mu_g$$
 is certainly not!

Standard lore for Yamabe problem \Longrightarrow

 \exists metrics g_i in any conformal class

$$[g] = \{u^2g\}$$
 with $\int_{M} \frac{s^2}{24} d\mu_{g_j} \to +\infty$; but

 \exists minimizer of $\int_{M} \frac{s^2}{24} d\mu_g$ in any [g], and s = constant for any such minimizer.

$$\int_{M} |W_{+}|^{2} d\mu_{g} \stackrel{?}{\geq} \int_{M} \frac{s^{2}}{24} d\mu_{g}$$

for all metrics g on M.

But this is actually a silly question!

 $\int_{M} |W_{+}|^{2} d\mu_{g}$ conformally invariant.

 $\int_{M} \frac{s^2}{24} d\mu_g$ is certainly not!

Standard lore for Yamabe problem \Longrightarrow

 \exists metrics g_j in any conformal class

$$[g] = \{u^2g\}$$
 with $\int_{M} \frac{s^2}{24} d\mu_{g_j} \to +\infty$; but

 \exists minimizer of $\int_{M} \frac{s^2}{24} d\mu_g$ in any [g], and s = constant for any such minimizer.

... Any complex surface M with b_1 even carries (conformally Kähler) metrics with > and <.

• restrict our question to a class of metrics where general conformal rescaling is not possible:

- restrict our question to a class of metrics where general conformal rescaling is not possible:
 - Kähler metrics;

- restrict our question to a class of metrics where general conformal rescaling is not possible:
 - -Kähler metrics;
 - Einstein metrics;

- restrict our question to a class of metrics where general conformal rescaling is not possible:
 - -Kähler metrics;
 - Einstein metrics;
 - almost-Kähler metrics.

• restrict our question to a class of general conformal rescaling is not possible; or

- restrict our question to a class of general conformal rescaling is not possible; or
- modify problem to make it conformally invariant.

- restrict our question to a class of general conformal rescaling is not possible; or
- modify problem to make it conformally invariant.

One conformally-invariant version:

- restrict our question to a class of general conformal rescaling is not possible; or
- modify problem to make it conformally invariant.

One conformally-invariant version:

$$\int_{M} |W_{+}|^{2} d\mu_{g} \stackrel{?}{\geq} \int_{M} \left(\frac{s^{2}}{24} - \frac{|\mathring{r}|^{2}}{2} \right) d\mu_{g}$$

- restrict our question to a class of general conformal rescaling is not possible; or
- modify problem to make it conformally invariant.

One conformally-invariant version:

$$\int_{M} |W_{+}|^{2} d\mu_{g} \stackrel{?}{\geq} \int_{M} \left(\frac{s^{2}}{24} - \frac{|\mathring{r}|^{2}}{2} \right) d\mu_{g}$$

agrees with previous question in the Einstein case.

- restrict our question to a class of general conformal rescaling is not possible; or
- modify problem to make it conformally invariant.

One conformally-invariant version:

$$\int_{M} |W_{+}|^{2} d\mu_{g} \stackrel{?}{\geq} \int_{M} \left(\frac{s^{2}}{24} - \frac{|\mathring{r}|^{2}}{2} \right) d\mu_{g}$$

agrees with previous question in the Einstein case.

Equivalent to

- restrict our question to a class of general conformal rescaling is not possible; or
- modify problem to make it conformally invariant.

One conformally-invariant version:

$$\int_{M} |W_{+}|^{2} d\mu_{g} \stackrel{?}{\geq} \int_{M} \left(\frac{s^{2}}{24} - \frac{|\mathring{r}|^{2}}{2} \right) d\mu_{g}$$

agrees with previous question in the Einstein case.

Equivalent to

$$\frac{1}{4\pi^2} \int_{M} |W_{+}|^2 d\mu_g \stackrel{?}{\geq} \frac{1}{3} (2\chi + 3\tau)(M).$$

Since

$$W([g]) = -12\pi^2 \tau(M) + 2\int_M |W_+|^2 d\mu_g$$

this is really a question about $inf \mathcal{W}$.

For (M^4, g) compact oriented Riemannian,

Signature

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

For (M^4, g) compact oriented Riemannian,

Signature

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$
$$= \left\langle \frac{1}{3} p_1(\mathbf{M}), [\mathbf{M}] \right\rangle$$

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

Diagonalize:

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

Diagonalize:

$$+1$$
 $\cdot \cdot \cdot \cdot \cdot +1$
 -1
 $\cdot \cdot \cdot \cdot \cdot -1$

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

Diagonalize:

$$\begin{array}{c}
+1 \\
 & \cdots \\
 & +1 \\
\hline
 & b_{+}(M)
\end{array}$$

$$\begin{array}{c}
-1 \\
 & \cdots \\
 & -1
\end{array}$$

$$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$

$$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$

Since \star is involution of RHS, \Longrightarrow

$$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$

$$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$

Since \star is involution of RHS, \Longrightarrow

$$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$

where

$$\mathcal{H}_g^{\pm} = \{ \varphi \in \Gamma(\Lambda^{\pm}) \mid d\varphi = 0 \}$$

self-dual & anti-self-dual harmonic forms.

$$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$

Since \star is involution of RHS, \Longrightarrow

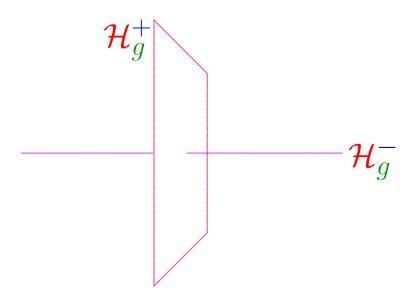
$$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$

where

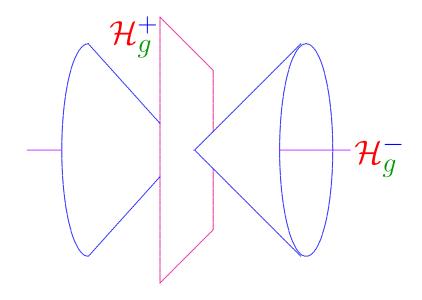
$$\mathcal{H}_g^{\pm} = \{ \varphi \in \Gamma(\Lambda^{\pm}) \mid d\varphi = 0 \}$$

self-dual & anti-self-dual harmonic forms. Then

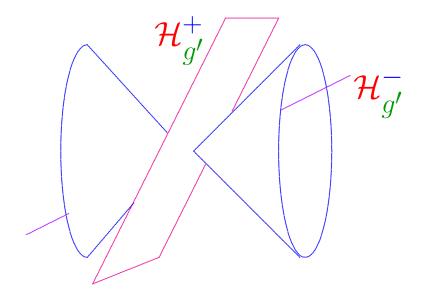
$$b_{\pm}(M) = \dim \mathcal{H}_g^{\pm}.$$



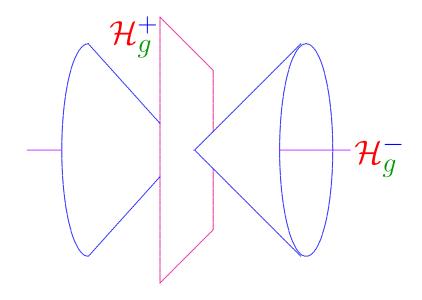
$$H^2(M,\mathbb{R})$$



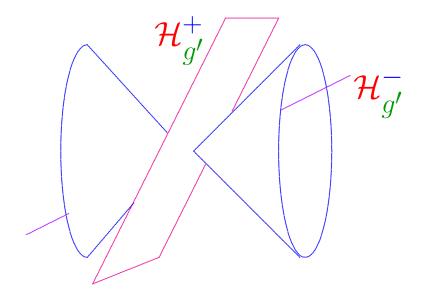
$$\{a \mid a \cdot a = 0\} \subset H^2(M, \mathbb{R})$$



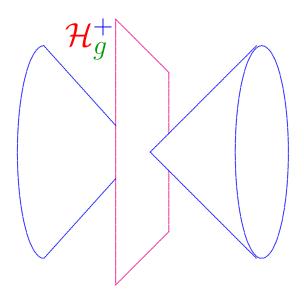
$$\{a \mid a \cdot a = 0\} \subset H^2(M, \mathbb{R})$$



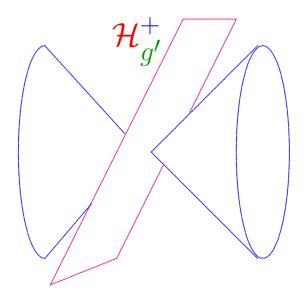
$$\{a \mid a \cdot a = 0\} \subset H^2(M, \mathbb{R})$$



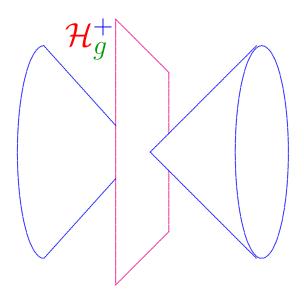
$$\{a \mid a \cdot a = 0\} \subset H^2(M, \mathbb{R})$$



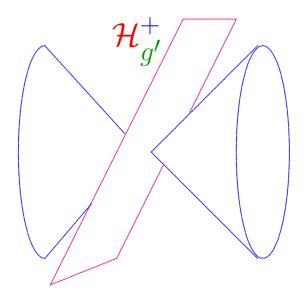
 $H^2(M,\mathbb{R})$



$$H^2(M,\mathbb{R})$$



 $H^2(M,\mathbb{R})$



$$H^2(M,\mathbb{R})$$

$$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$

Since \star is involution of RHS, \Longrightarrow

$$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$

where

$$\mathcal{H}_g^{\pm} = \{ \varphi \in \Gamma(\Lambda^{\pm}) \mid d\varphi = 0 \}$$

self-dual & anti-self-dual harmonic forms. Then

$$b_{\pm}(M) = \dim \mathcal{H}_g^{\pm}.$$

$$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$

Since \star is involution of RHS, \Longrightarrow

$$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$

where

$$\mathcal{H}_g^{\pm} = \{ \varphi \in \Gamma(\Lambda^{\pm}) \mid d\varphi = 0 \}$$

self-dual & anti-self-dual harmonic forms. Then

$$b_{\pm}(M) = \dim \mathcal{H}_g^{\pm}.$$

The subspaces \mathcal{H}_g^{\pm} are conformally invariant: Same for g and any $\widehat{g} = u^2 g$.

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

$$\mathscr{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

$$\mathcal{W}([g]) = \int_{M} |W_{g}|^{2} d\mu_{g}$$

$$= \int_{M} (|W_{+}|^{2} + |W_{-}|^{2}) d\mu_{g}$$

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

$$\mathcal{W}([g]) = \int_{M} |W_{g}|^{2} d\mu_{g}$$

$$= \int_{M} (|W_{+}|^{2} + |W_{-}|^{2}) d\mu_{g}$$

$$\geq \left| \int_{M} (|W_{+}|^{2} - |W_{-}|^{2}) d\mu_{g} \right|$$

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

$$\mathscr{W}([g]) = \int_{M} |W_{g}|^{2} d\mu_{g}$$

$$= \int_{M} (|W_{+}|^{2} + |W_{-}|^{2}) d\mu_{g}$$

$$\ge \left| \int_{M} (|W_{+}|^{2} - |W_{-}|^{2}) d\mu_{g} \right|$$

$$= 12\pi^{2} |\tau(M)|$$

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

$$\mathscr{W}([g]) \ge 12\pi^2 \tau(M)$$

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

$$\mathscr{W}([g]) \ge 12\pi^2 \tau(M)$$

with $= \iff W_- \equiv 0$.

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

$$\mathscr{W}([g]) \ge 12\pi^2 \tau(M)$$

with $= \iff W_- \equiv 0$. "self-dual"

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

$$\mathscr{W}([g]) \ge 12\pi^2 \tau(M)$$

with $= \iff W_- \equiv 0$. "self-dual"
 $\star W = W$

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

Signature

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

Proposition (Atiyah-Hitchin-Singer). The Fubini-Study metric on \mathbb{CP}_2 is self-dual. Consequently, minimizes Weyl functional.

Signature

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

Theorem (Poon '86). Up conformal isometry, the Fubini-Study class is the unique self-dual conformal class on \mathbb{CP}_2 with Y([g]) > 0.

$$Y([g]) = \inf_{\widehat{g} = u^2 g} \frac{\int_{M} s_{\widehat{g}} d\mu_{\widehat{g}}}{\sqrt{\int_{M} d\mu_{\widehat{g}}}};$$

$$Y([g]) = \inf_{\widehat{g} = u^2 g} \frac{\int_{M} s_{\widehat{g}} d\mu_{\widehat{g}}}{\sqrt{\int_{M} d\mu_{\widehat{g}}}};$$

If g has s of fixed sign, agrees with sign of $Y_{[g]}$.

Signature

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

Theorem (Poon '86). Up conformal isometry, the Fubini-Study class is the unique self-dual conformal class on \mathbb{CP}_2 with Y([g]) > 0.

Signature

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

Proposition (Atiyah-Hitchin-Singer '78). The Fubini-Study metric on \mathbb{CP}_2 is self-dual. Consequently, minimizes Weyl functional.

What about $S^2 \times S^2$?

What about $S^2 \times S^2$?

No self-dual metric!

What about $S^2 \times S^2$?

No self-dual metric!

Would be conformally flat, because $\tau = 0$.

What about $S^2 \times S^2$?

No self-dual metric!

Would be conformally flat, because $\tau = 0$.

Also $\pi_1 = 0$.

What about $S^2 \times S^2$?

No self-dual metric!

Would be conformally flat, because $\tau = 0$.

Also $\pi_1 = 0$.

Kuiper '49: .: Round $S^4! \Rightarrow \Leftarrow$

What about $S^2 \times S^2$?

What about $S^2 \times S^2$?

Conjecture (Kobayashi). The Kähler-Einstein product metric on $S^2 \times S^2$ minimizes the Weyl functional \mathcal{W} .

What about $S^2 \times S^2$?

Conjecture (Kobayashi). The Kähler-Einstein product metric on $S^2 \times S^2$ minimizes the Weyl functional \mathcal{W} .

Gave weak evidence:

What about $S^2 \times S^2$?

Conjecture (Kobayashi). The Kähler-Einstein product metric on $S^2 \times S^2$ minimizes the Weyl functional \mathcal{W} .

Gave weak evidence:

Local minimum.

Conjecture. On any del Pezzo surface (M^4, J) , the conformally Kähler, Einstein product metric minimizes the Weyl functional \mathcal{W} .

Conjecture. On any del Pezzo surface (M^4, J) , the conformally Kähler, Einstein product metric minimizes the Weyl functional \mathcal{W} .

Persuasive partial results.

Conjecture. On any del Pezzo surface (M^4, J) , the conformally Kähler, Einstein product metric minimizes the Weyl functional \mathcal{W} .

Persuasive partial results.

But problem still not settled.

Theorem (Gursky '98). Let M be a smooth compact 4-manifold with $b_{+}(M) \neq 0$.

Theorem (Gursky '98). Let M be a smooth compact 4-manifold with $b_{+}(M) \neq 0$. Then any conformal class [g]

$$Y([g]) = \inf_{\widehat{g} = u^2 g} \frac{\int_{M} s_{\widehat{g}} d\mu_{\widehat{g}}}{\sqrt{\int_{M} d\mu_{\widehat{g}}}};$$

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality \Leftrightarrow [g] contains Kähler-Einstein \widehat{g} with s > 0.

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality \Leftrightarrow [g] contains Kähler-Einstein \widehat{g} with s > 0.

In particular, any K-E g with s > 0 minimizes restriction of \mathcal{W} to s > 0 metrics.

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality \Leftrightarrow [g] contains Kähler-Einstein \widehat{g} with s > 0.

In particular, any K-E g with s > 0 minimizes restriction of \mathcal{W} to s > 0 metrics.

Big step in direction of Kobayashi's conjecture.

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality \Leftrightarrow [g] contains Kähler-Einstein \widehat{g} with s > 0.

In particular, any K-E g with s > 0 minimizes restriction of \mathcal{W} to s > 0 metrics.

Big step in direction of Kobayashi's conjecture.

Applies in much greater generality.

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality \Leftrightarrow [g] contains Kähler-Einstein \widehat{g} with s > 0.

In particular, any K-E g with s > 0 minimizes restriction of \mathcal{W} to s > 0 metrics.

Big step in direction of Kobayashi's conjecture.

But says nothing about Y([g]) < 0 realm.

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality \Leftrightarrow [g] contains Kähler-Einstein \widehat{g} with s > 0.

In particular, any K-E g with s > 0 minimizes restriction of \mathcal{W} to s > 0 metrics.

Big step in direction of Kobayashi's conjecture.

But says nothing about "most" conformal classes.

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality \Leftrightarrow [g] contains Kähler-Einstein \widehat{g} with s > 0.

Method: Weitzenböck formula

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality \Leftrightarrow [g] contains Kähler-Einstein \widehat{g} with s > 0.

Method: Weitzenböck formula

$$0 = \frac{1}{2}\Delta|\omega|^2 + |\nabla\omega|^2 - 2W_{+}(\omega, \omega) + \frac{s}{3}|\omega|^2$$

for self-dual harmonic 2-form ω .

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality \Leftrightarrow [g] contains Kähler-Einstein \widehat{g} with s > 0.

Method: Weitzenböck formula

$$\Longrightarrow \exists \widehat{g} = u^2 g \quad \text{s.t.} \quad \widehat{\mathfrak{s}} := \widehat{\mathfrak{s}} - 2\sqrt{6}|\widehat{W_+}| \le 0.$$

Definition. A conformal class [g] on a compact oriented 4-manifold M is said to be of symplectic type

Definition. A conformal class [g] on a compact oriented 4-manifold M is said to be of symplectic $type \Leftrightarrow$

Definition. A conformal class [g] on a compact oriented 4-manifold M is said to be of symplectic $type \Leftrightarrow \exists self$ -dual harmonic 2-form ω on (M,g)

Definition. A conformal class [g] on a compact oriented 4-manifold M is said to be of symplectic $type \Leftrightarrow \exists self$ -dual harmonic 2-form ω on (M,g) such that $\omega \neq 0$ everywhere.

Definition. A conformal class [g] on a compact oriented 4-manifold M is said to be of symplectic $type \Leftrightarrow \exists self$ -dual harmonic 2-form ω on (M,g) such that $\omega \neq 0$ everywhere.

Implies ω is orientation-compatible symplectic form.

Definition. A conformal class [g] on a compact oriented 4-manifold M is said to be of symplectic $type \Leftrightarrow \exists self$ -dual harmonic 2-form ω on (M,g) such that $\omega \neq 0$ everywhere.

Implies ω is orientation-compatible symplectic form.

Every symplectic 4-manifold arises this way.

Definition. A conformal class [g] on a compact oriented 4-manifold M is said to be of symplectic $type \Leftrightarrow \exists self$ -dual harmonic 2-form ω on (M,g) such that $\omega \neq 0$ everywhere.

Implies ω is orientation-compatible symplectic form.

Every symplectic 4-manifold arises this way.

Choose $g \in [g]$ so that $|\omega| \equiv \sqrt{2}$.

Definition. A conformal class [g] on a compact oriented 4-manifold M is said to be of symplectic $type \Leftrightarrow \exists self$ -dual harmonic 2-form ω on (M,g) such that $\omega \neq 0$ everywhere.

Implies ω is orientation-compatible symplectic form.

Every symplectic 4-manifold arises this way.

Choose
$$g \in [g]$$
 so that $|\omega| \equiv \sqrt{2}$.

Then (M, g, ω) is almost-Kähler manifold:

Definition. A conformal class [g] on a compact oriented 4-manifold M is said to be of symplectic $type \Leftrightarrow \exists self$ -dual harmonic 2-form ω on (M,g) such that $\omega \neq 0$ everywhere.

Implies ω is orientation-compatible symplectic form.

Every symplectic 4-manifold arises this way.

Choose
$$g \in [g]$$
 so that $|\omega| \equiv \sqrt{2}$.

Then (M, g, ω) is almost-Kähler manifold:

$$\exists J \quad s.t. \quad \omega = g(J \cdot, \cdot)$$

Definition. A conformal class [g] on a compact oriented 4-manifold M is said to be of symplectic $type \Leftrightarrow \exists self$ -dual harmonic 2-form ω on (M,g) such that $\omega \neq 0$ everywhere.

Open condition in C^2 topology on metrics.

Definition. A conformal class [g] on a compact oriented 4-manifold M is said to be of symplectic $type \Leftrightarrow \exists self$ -dual harmonic 2-form ω on (M,g) such that $\omega \neq 0$ everywhere.

Open condition in C^2 topology on metrics.

(Harmonic forms depend continuously on metric.)

Theorem (L '15). Let *M* be the underlying smooth oriented 4-manifold of a del Pezzo surface.

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality \Leftrightarrow [g] contains a Kähler-Einstein metric g.

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality \Leftrightarrow [g] contains a Kähler-Einstein metric g.

This recovers Gursky's inequality

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality \Leftrightarrow [g] contains a Kähler-Einstein metric g.

This recovers Gursky's inequality — but for a different open set of conformal classes!

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality \Leftrightarrow [g] contains a Kähler-Einstein metric g.

∃ conformal classes of symplectic type with

$$Y([g_j]) \to -\infty.$$

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality \Leftrightarrow [g] contains a Kähler-Einstein metric g.

∃ conformal classes of symplectic type with

$$Y([g_j]) \to -\infty.$$

Inequality not limited to the positive Yamabe realm!

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality \Leftrightarrow [g] contains a Kähler-Einstein metric g.

Method: Almost-Kähler geometry:

$$\int_{M} \left[\frac{2s}{3} + W_{+}(\omega, \omega) \right] d\mu = 4\pi c_{1} \bullet [\omega]$$

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality \Leftrightarrow [g] contains a Kähler-Einstein metric g.

Method: Almost-Kähler geometry:

$$3\int_{M} W_{+}(\omega, \omega) \ d\mu \ge 4\pi c_{1} \bullet [\omega]$$

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality \Leftrightarrow [g] contains a Kähler-Einstein metric g.

However, only works for M del Pezzo.

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality \Leftrightarrow [g] contains a Kähler-Einstein metric g.

However, only works for M del Pezzo.

This is apparently not an accident!

But Gursky's theorem also works for $(S^2 \times S^2) \# (S^2 \times S^2)$.

But Gursky's theorem also works for $(S^2 \times S^2) \# (S^2 \times S^2)$.

And indeed for all iterated connect-sums $m(S^2 \times S^2)$.

But Gursky's theorem also works for $(S^2 \times S^2) \# (S^2 \times S^2)$.

And indeed for all iterated connect-sums $m(S^2 \times S^2)$.

What happens there in the Yamabe-negative realm?

Theorem A. For any sufficiently large integer m,

$$M = m(S^2 \times S^2) := \underbrace{(S^2 \times S^2) \# \cdots \# (S^2 \times S^2)}_{m}$$

$$M = m(S^2 \times S^2) := \underbrace{(S^2 \times S^2) \# \cdots \# (S^2 \times S^2)}_{m}$$

 $admits \ Riemannian \ conformal \ classes \ [g] \ such \ that$

$$M = m(S^2 \times S^2) := \underbrace{(S^2 \times S^2) \# \cdots \# (S^2 \times S^2)}_{m}$$

admits $Riemannian\ conformal\ classes\ [g]\ such$ that

$$\int_{M} |W_{+}|^{2} d\mu < \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M).$$

$$M = m(S^2 \times S^2) := \underbrace{(S^2 \times S^2) \# \cdots \# (S^2 \times S^2)}_{m}$$

admits $Riemannian\ conformal\ classes\ [g]\ such$ that

$$\int_{M} |W_{+}|^{2} d\mu < \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M).$$

Similarly, for any any sufficiently large integer m and any integer n such that $\frac{n}{m}$ is sufficiently close to 1,

$$M = m(S^2 \times S^2) := \underbrace{(S^2 \times S^2) \# \cdots \# (S^2 \times S^2)}_{m}$$

admits $Riemannian\ conformal\ classes\ [g]\ such\ that$

$$\int_{M} |W_{+}|^{2} d\mu < \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M).$$

Similarly, for any any sufficiently large integer m and any integer n such that $\frac{n}{m}$ is sufficiently close to 1, the smooth compact simply-connected non-spin manifold

$$M = m\mathbb{CP}_2 \# n\overline{\mathbb{CP}}_2 := \underbrace{\mathbb{CP}_2 \# \cdots \# \mathbb{CP}_2}_{m} \# \underbrace{\overline{\mathbb{CP}}_2 \# \cdots \# \overline{\mathbb{CP}}_2}_{n}$$

$$M = m(S^2 \times S^2) := \underbrace{(S^2 \times S^2) \# \cdots \# (S^2 \times S^2)}_{m}$$

admits $Riemannian\ conformal\ classes\ [g]\ such$ that

$$\int_{M} |W_{+}|^{2} d\mu < \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M).$$

Similarly, for any any sufficiently large integer m and any integer n such that $\frac{n}{m}$ is sufficiently close to 1, the smooth compact simply-connected non-spin manifold

$$M = m\mathbb{CP}_2 \# n\overline{\mathbb{CP}}_2 := \underbrace{\mathbb{CP}_2 \# \cdots \# \mathbb{CP}_2}_{m} \# \underbrace{\overline{\mathbb{CP}}_2 \# \cdots \# \overline{\mathbb{CP}}_2}_{n}$$

admits conformal classes [g] where the above inequality holds.

Wall '66: If Y and Z are homotopy-equivalent simply-connected smooth compact 4-manifolds,

Wall '66: If Y and Z are homotopy-equivalent simply-connected smooth compact 4-manifolds,

then $Y \# \ell(S^2 \times S^2) \approx Z \# \ell(S^2 \times S^2)$ for all $\ell \gg 0$.

Wall '66: If Y and Z are homotopy-equivalent simply-connected smooth compact 4-manifolds,

then
$$Y \# \ell(S^2 \times S^2) \approx Z \# \ell(S^2 \times S^2)$$
 for all $\ell \gg 0$.

In proof, we apply this to

$$M = (k + \ell)(X \# \overline{X}) \# (k + 2\ell)(S^2 \times S^2)$$

where X simply-connected minimal complex surface of general type with $\tau(X) > 0$.

Wall '66: If Y and Z are homotopy-equivalent simply-connected smooth compact 4-manifolds,

then
$$Y \# \ell(S^2 \times S^2) \approx Z \# \ell(S^2 \times S^2)$$
 for all $\ell \gg 0$.

In proof, we apply this to

$$M = (k + \ell)(X \# \overline{X}) \# (k + 2\ell)(S^2 \times S^2)$$

where X simply-connected minimal complex surface of general type with $\tau(X) > 0$.

Such X now known to exist in profusion!

Wall '66: If Y and Z are homotopy-equivalent simply-connected smooth compact 4-manifolds,

then
$$Y \# \ell(S^2 \times S^2) \approx Z \# \ell(S^2 \times S^2)$$
 for all $\ell \gg 0$.

In proof, we apply this to

$$M = (k + \ell)(X \# \overline{X}) \# (k + 2\ell)(S^2 \times S^2)$$

where X simply-connected minimal complex surface of general type with $\tau(X) > 0$.

Such X now known to exist in profusion!

Wall '66: If Y and Z are homotopy-equivalent simply-connected smooth compact 4-manifolds,

then
$$Y \# \ell(S^2 \times S^2) \approx Z \# \ell(S^2 \times S^2)$$
 for all $\ell \gg 0$.

In proof, we apply this to

$$M = (k + \ell)(X \# \overline{X}) \# (k + 2\ell)(S^2 \times S^2)$$

where X simply-connected minimal complex surface of general type with $\tau(X) > 0$.

Such X now known to exist in profusion!

Roulleau-Urzúa '15: \exists sequences with $\tau/\chi \to 1/3$.

→ Miyaoka-Yau line! Can choose spin or non-spin!

• Question of balance;

- Question of balance;
- Almost-Kähler Manifolds; and

- Question of balance;
- Almost-Kähler Manifolds; and
- Harmonic self-dual Weyl curvature.

- Question of balance;
- Almost-Kähler Manifolds; and
- Harmonic self-dual Weyl curvature.

Dessert course:

- Question of balance;
- Almost-Kähler Manifolds; and
- Harmonic self-dual Weyl curvature.

Dessert course:

Another new result involving these ideas.

Theorem B. If (M, g, ω) is a compact almost-Kähler 4-manifold Theorem B. If (M, g, ω) is a compact almost-Kähler 4-manifold such that $\delta W_+ = 0$,

$$\int_{M} \frac{s^{2}}{24} d\mu_{g} \ge \int_{M} |W_{+}|^{2} d\mu_{g} ,$$

$$\int_{M} \frac{s^{2}}{24} d\mu_{g} \ge \int_{M} |W_{+}|^{2} d\mu_{g} ,$$

with equality $\Leftrightarrow (M, g, \omega)$ is Kähler. By contrast, if (M, g, ω) instead has scalar curvature s > 0, then

$$\int_{M} \frac{s^2}{24} d\mu_g \ge \int_{M} |W_{+}|^2 d\mu_g ,$$

with equality $\Leftrightarrow (M, g, \omega)$ is Kähler. By contrast, if (M, g, ω) instead has scalar curvature $s \geq 0$, then

$$\int_{M} |W_{+}|^{2} d\mu_{g} \ge \int_{M} \frac{s^{2}}{24} d\mu_{g},$$

$$\int_{M} \frac{s^2}{24} d\mu_g \ge \int_{M} |W_{+}|^2 d\mu_g ,$$

with equality $\Leftrightarrow (M, g, \omega)$ is Kähler. By contrast, if (M, g, ω) instead has scalar curvature $s \geq 0$, then

$$\int_{M} |W_{+}|^{2} d\mu_{g} \ge \int_{M} \frac{s^{2}}{24} d\mu_{g},$$

again with equality $\Leftrightarrow (M, g, \omega)$ is Kähler.

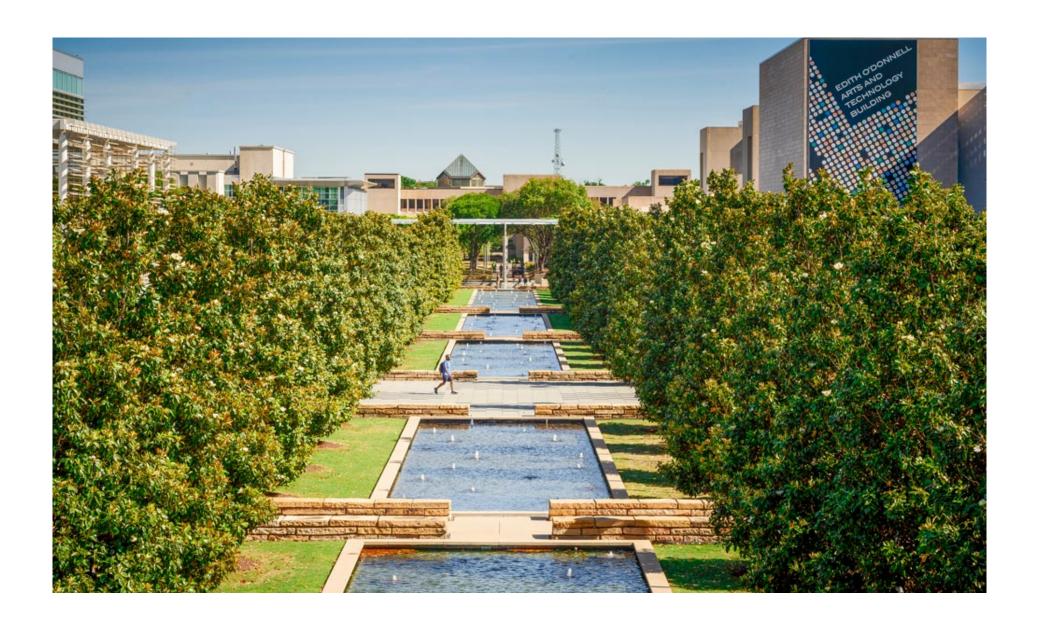
$$\int_{M} \frac{s^{2}}{24} d\mu_{g} \ge \int_{M} |W_{+}|^{2} d\mu_{g} ,$$

with equality $\Leftrightarrow (M, g, \omega)$ is Kähler. By contrast, if (M, g, ω) instead has scalar curvature $s \geq 0$, then

$$\int_{M} |W_{+}|^{2} d\mu_{g} \ge \int_{M} \frac{s^{2}}{24} d\mu_{g},$$

again with equality $\Leftrightarrow (M, g, \omega)$ is Kähler. In particular, any compact almost-Kähler 4-manifold (M, g, ω) with $\delta W_+ = 0$ and $s \geq 0$ is Kähler. It's a real pleasure to be here!

It's a real pleasure to be here!



Thanks for the invitation!

