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Theorem (Hitchin-Thorpe Inequality). If smooth
compact oriented M* admits Einstein g, then
(2x + 37)(M) > 0,

with equality only if AT is flat on (M, q). The
latter happens only if (M, qg) finitely covered by
a flat T* or by a Calabi-Yau K3.
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Corollary. Suppose that M* is homeomorphic,
but not diffeomorphic, to K3. Then M does not
admit Einstein metrics.

Kodaira: d complex surfaces that are homotopy
equivalent to /3, but which have ¢ # 0.

(Of course, still have ¢;? = 2y 4+ 37 = 0.)
For any integer £, 9 examples where 2¢|c;.

Later today: Pairwise non-diffeomorphic, even though
all are homeomorphic to K3.

.. Topological manifold |/ 3| has infinitely many
smooth structures, but only one of these admits
Finstein metrics.



However, don’t get too discouraged. . .
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Many complex surfaces do admit Einstein metrics.

For example: Fermat surface of degree ¢ in CIPg

t€+u6+v€+w€:()

l M Einstein A
1 CP, +
2 CP; x CP4 +
3 CPy#6CP, +
4 K3 0
> 5 | “general type”

T =0, x={{"—40+6), T= —%8(82—4), spin < £ even.



Case of high degree £ > 5:



Case of high degree £ > 5:

Theorem (Aubin/Yau). Compact complexr man-
ifold (M?™, J) admits compatible Kihler-Einstein
metric with A < 0 <= “c; < 0.”



Case of high degree £ > 5:

Theorem (Aubin/Yau). Compact complexr man-
ifold (M?™, J) admits compatible Kihler-Einstein
metric with A\ < 0 <= —c{(M) a Kdhler class.



Case of high degree £ > 5:

Theorem (Aubin/Yau). Compact complexr man-
ifold (M?™, J) admits compatible Kihler-Einstein
metric with A < 0 <= 4 holomorphic embedding

such that c1(M) is negative multiple of 7% ¢1(CPy.).



Case of high degree £ > 5:

Theorem (Aubin/Yau). Compact complexr man-
ifold (M?™, J) admits compatible Kihler-Einstein
metric with A < 0 <= 4 holomorphic embedding

such that c1(M) is negative multiple of 7% ¢1(CPy.).

(Kodaira embedding theorem)
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Question. If (M4, J) is a compact complex sur-
face, when does M admit an Einstein metric g

(unrelated to .J)?

Question. When this happens, must g be Kahler
(but perhaps adapted to some other .J)?

These questions will be our main focus. ..
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Question. Which smooth compact 4-manifolds
M* admit Einstein metrics?

Complex geometry is rich source of examples.

On suitable 4-manifolds, Seiberg-Witten theory al-
lows one to mimic Kahler geometry when treating
non-Kahler metrics.

Our Focus. Suppose (M*,.]) is a compact com-
plex surface. When does M* admit an Einstein
metric g, perhaps completely unrelated to .J ¢
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Kodaira Classification of Complex Surfaces
Most important invariant: Kodaira dimension.

Given (M 1 ) compact complex surface, set

log dimI(M, O (K¢
Kod(M) = limsup og diml(M, OLK ™))
(—+00 log €

where K = A%V is canonical line bundle.

Then Kod(M, J) € {—00,0,1,2} is exactly
max dimg Image(M --+ CPy)
over maps defined by holomorphic sections of /& L
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A complex surface X is called minimal if it is not
the blow-up of another complex surtace.

Any complex surface M can be obtained from a
minimal surface X by blowing up a finite number
of times:

M =~ X#kCP;
One says that X is minimal model of M.

The minimal model X of M is unique if
Kod(M) > 0.
Moreover, always have
Kod(X') = Kod (M),

and Kod mmvariant under deformations.
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o (M, .J) is of general type.

Moreover, M admits Kahler metrics, and so in
particular admits symplectic structures.

Symplectic structure:

2-form w with dw = 0 and w A w > 0.
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Theorem. Let (M*,J) be a compact complex
surface, and suppose that M admaits an Einstein
metric g (not assumed to be related to J in any
way). Then either

QM%SQXSQ;OT

o V[ ~ CPy#kCP>, where 0 < k <38; or
o \[ is is finitely covered by T*: or

o \[ is is finitely covered by K3, or

o (M, .J) is of general type.

Moreover, M admits Kahler metrics, and so in
particular admits symplectic structures.

Proof: Hitchin-Thorpe!

c12 = 2x + 37 decreases under blowing up.

. Minimal model must have ¢ > 0. ..
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Will also discuss results in the converse direction.
But first we need to develop some new tools!

Let’s think more about Riemannian 4-manifolds. . .
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H*(M,R)={p e D(A°) | dp =0, d*p =0}
Since « is involution of RHS, =—

H*(M,R) =H} dH,,

where

Hy ={p € I(A\") | dp = 0}

self-dual & anti-self-dual harmonic forms. Then

b+ (M) = dimH.
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Corresponds to:
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U U |
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—82 r

s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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Kahler metrics:

(M*, g) Kéhler <= holonomy C U(2)

<— 4 almost-complex structure .J with V.J = 0
and g(J-, J-) = g.

<= .J is integrable and 3 J-invariant closed 2-form
w given by w = ¢g(.J-,-); called the “Kahler form.”

Kahler magic:

There is a closed 2-form p given by
P = T(‘] K )

and called the “Ricci form.” Moreover, 1p is exactly
the curvature of canonical line bundle K = A%,
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Kahler case:

AV = Ro @ AT
AT = Rw @ Re(AH)

VJ=0= R € End(AV) =

/ s dp = 4w ¢ - |w).
M

So Cauchy-Schwarz =—-

/ szd,u2327r2 o 5
M w]

because [,/ dp = w]?/2.
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Al =Ru@ A~

AT = Rw @& Re(A*Y)

VJ=0= R €EndA") =

/ 52 dp > 327T2\01+\2
M

with equality iff s is constant. Similarly,

[ ez 872 (et B+ 1P

with equality iff s is constant.  (Calabi 1982)
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“Kahler Paradigms in a Riemannian World”



Theorem (L). Let (M*,.J) be a compact com-
plex surface with Kod # —oo and by even. Lel
g be any Riemannian metric on M. Then, pos-
sibly after moving J by a self-diffeomorphism of
M, the curvature of g satisfies

/ s du > 32W2|01+\2
M
P dp > 872 (et P+ e )
M
with equality iff g 1s constant-scalar-curvature

Kdhler (for some J" with same c1 as J ).

Self-diffeomorphism unneeded if b4 > 1 or ¢12 > 0.



Proof involves a non-linear Dirac equation. . .
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wo (T M) is obstruction to spin structure on M:

Double cover of SO(4) bundle of oriented orthonor-
mal frames by principal bundle for group

Spin(4) = Sp(1) x Sp(1).
Standard representation of Sp(1) = SU(2) —

Spinor bundles S+ and S_:

H=C? - Sy

!
M
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The bundle S(A™) over any oriented (M * q)

|
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can be viewed as a CIP{-bundle.

If wy =0 (M spin), then

S(AT) = P(S4)
NSy =C

S(A7) = P(S_)
A’S_ =C
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A<1C = Hom(S4,S_)
so get natural Clifford multiplication map
o . ANl®S; > S_.
Also have covariant derivative
V:[(Sy) - T(A' ®Sy)

Compose to get Dirac operator D:

D
r(s,) - T(S.)

A4

MA'®Sy)
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Theorem (Rochlin). For any smooth compact
spin M*, 7(M) = 0 mod 16.

Example. 7(K3) = —16.
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Atiyah-Singer: Dirac operator

D :T'(Sy) = T'(S2)
is elliptic, with ind(D) = —7(M)/8.

Weitzenbock formula: VO € I'(S4),

1 S
(D, D*DP) = §Ay<1>|2+ yvq>|2+iyq>\2

Proposition (Lichnerowicz). If M* compact spin,
with 7 # 0, then 3 metric g on M with s> 0.

Example. # metric of s> 0 on K 3.
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Spin© structures:

wo(TM?Y) € H* (M, Zs)
in image of
H?(M,Z) — H*(M,Zs)
—> d Hermitian line bundles
L — M

with
c1(L) = wo(TM) mod 2.

Given g on M, — drank-2 Hermitian vector bun-
dles V4 — M which formally satisfy

Ve =S4+ ® Ll/Q,

where S+ are the (locally defined) left- and right-
handed spinor bundles of (M, g).
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Key Example
Let J be any almost-complex structure on M.

Let L = AY%2 be its anti-canonical line bundle.

Vg on M, the bundles

V_|_ _ AO’O @/\072
Vo =AY

can formally be written as
Vie=05+® LY/ 2,
where St are left & right-handed spinor bundles.

A spin€ structure arises from some .J <=

(L) = (2x +37)(M) .
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Every unitary connection A on L induces
spin® Dirac operator

DA : F<V+> — F(V_)
generalizing 0 + O*.

Weitzenbock formula: VO € I'(V4),

1 S
(O, DA"Dy0) = iﬁl@\Q + V4P + Z!@lz
+2<_iFA+7O((D>>

where F' 47 = self-dual part curvature of A, and
oc:Vye—=ATisa natural real-quadratic map,

()] = —=|5]2

22
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Witten:

consider both ® and A as unknowns,

subject to Seiberg- Witten equations
Dpgd =0
F i = io(®).

Non-linear, but elliptic once ‘gauge-fixing’
d*(A— Ay =0

imposed to eliminate automorphisms of L — M.



Weitzenbock formula becomes

0 = 2A|DP + 4|V 4P| + 5|D|* + ||



Weitzenbock formula becomes

0 = 2A|D2 + 4|V 4P| + 5O + |0

— moduli space compact, finite-dimensional. . .



Weitzenbock formula becomes

0 = 2A|D2 + 4|V 4P| + 5O + |0

— moduli space compact, finite-dimensional. . .

Compactness:



Weitzenbock formula becomes

0 = 2A|D2 + 4|V 4P| + 5O + |0

— moduli space compact, finite-dimensional. . .

Compactness: Implies CV bound on ®:



Weitzenbock formula becomes

0 = 2A|D2 + 4|V 4P| + 5O + |0

— moduli space compact, finite-dimensional. . .

Compactness: Implies CV bound on ®:

At maximum of @, A|®[? > 0, so



Weitzenbock formula becomes

0 = 2A|D2 + 4|V 4P| + 5O + |0

— moduli space compact, finite-dimensional. . .

Compactness: Implies CV bound on ®:

At maximum of @, A|®[? > 0, so

0> s|d|” + |D*



Weitzenbock formula becomes

0 = 2A|D2 + 4|V 4P| + 5O + |0

— moduli space compact, finite-dimensional. . .

Compactness: Implies CV bound on ®:

At maximum of @, A|®[? > 0, so

0> s|d|” + |D*

and hence |P|? < —s, unless ® = 0. Hence



Weitzenbock formula becomes

0 = 2A|D2 + 4|V 4P| + 5O + |0

— moduli space compact, finite-dimensional. . .

Compactness: Implies CV bound on ®:

At maximum of @, A|®[? > 0, so

0> s|d|” + |D*

and hence |P|? < —s, unless ® = 0. Hence

9] < y/max [5_|

everywhere!



Weitzenbock formula becomes
0 = 2A|D2 + 4|V 4P| + 5O + |0
— moduli space compact, finite-dimensional. . .

Compactness: Implies CV bound on ®:

At maximum of @, A|®[? > 0, so

0> s|d|” + |D*

and hence |P|? < —s, unless ® = 0. Hence

9] < y/max [5_|

everywhere!

Bootstrapping with gauge-fixed equations, one gets
Lg bounds for (&, A) for all k, p.
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0 = 2A|D2 + 4|V 4P| + 5O + |0
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Dimension: Index of gauge-fixed system is

c1(L) — (2x + 37)(M)
4

For a given spin® structure and fixed metric ¢, this
is the dimension of pre-image of any regular value
of map defined by gauge-fixed S\ equations.

Spin© structure arises from some J <—

c%(L) = 2x + 37 <= Fredholm index is zero.

SW invariant € Zo means mod-2 mapping degree.
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Weitzenbock formula becomes

0 = 2A|D2 + 4|V 4P| + 5O + |0

— moduli space compact, finite-dimensional. . .

I[f b (M) > 2, then, as metric varies, moduli spaces
are cobordant, so can construct invariants that some-
times predict existence of solutions.

Specifically, if spin© structure comes from some ./,
Fredholm index is 0, and moduli spaces generically
discrete. Counting solutions mod 2 gives Zo-valued
invariant.

This invariant is non-zero for complex surfaces of
Kéhler type (i.e. with by even).

Implies non-existence of metrics ¢ for which s > 0.
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When by (M) = 1, theory is more complicated.

However, theory works the same way when

o ci(L) > 0; or

o ci(L)=0,but c;(L) #0 € H*(M,R).
Enough for us, by Hitchin-Thorpe Inequality.

In this context,
o SW =0 if Kod(M) = —o0; and
o SW # 0 if Kod(M) >0

for spin® structure given by complex structure.
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Application:

Theorem. Suppose that (M, .J) is a compact com-
plex surface. If the smooth compact 4-manifold
M admats an Einstein metric g with A > 0, then

Kod(M,.J) = —o0, and

(CP#kCPy, 0< k<8
M=, < or

S% x 52

Tomorrow: We will see that this is sharp!
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(*) Either b (M) > 2, or (2x + 37)(M) > 0.

Definition. Let M be a smooth compact ori-
ented 4-manifold satisfying (%), and suppose that
M carries almost-complex structure J such that

SW # 0
for spin® structure induced by J. Then
c1(M,J) e H*(M,R)
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Key property:

Every basic class
be H*(M,R)

arises from a spin® structure such that the Seiberg-
Witten equations

Ds® =0
Fi = io(d).

have a solution (®, A) for every metric g on M.

It (M, J) complex surface with by even, and either
o b_|_<M> > 1 or
o Kod(M) # —o0 and ¢;2 > 0,

then ¢ (M, .J) is a basic class of M.
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Only finitely many basic classes on any smooth M4,
On K3, only basic class is 0 € H*(M, 7).
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Replace chosen fiber T2 with T2 /Loy q
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On K3, only basic class is 0 € H*(M, 7).
Different for any Kodaira “homotopy K3.”

Key: [T2x(D? = {0}))/Zag41 = T2 (D2 — {0}).

X X
T4/Z,
X X
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When SW # 0, corresponding ¢i(L) € H*(M,Z)

called basic class.

J integrable, by even = ¢{(M, J) is a basic class.
Only finitely many basic classes on any smooth M4,
On K3, only basic class is 0 € H*(M, 7).

Different for any Kodaira “homotopy K3.”

Proposition. The topological manifold | K3| ad-
mits infinitely many smooth structures. Ezactly
one of these admits an Einstein metric.



End, Part 1



